Linearly additive random processes with independent increments on any time-like curve

Shigeo TAKENAKA Dept.of Appl. Math. Okayama University of Science

March, 2003

Definition 1 (linearly additive processes) An \mathbb{R}^n -parameter stochastic process $\{X(\mathbf{t}); t \in \mathbb{R}^n\}$ is called a <u>linearly additive process</u> if it is additive on any lines. That is, the process $Z(s) \equiv X(s\mathbf{v} + \mathbf{v_0})$ has independent increments for any line $\{s\mathbf{v} + \mathbf{v_0}\}$.

T.Mori obtained the following theorem:

Theorem 2 T.Mori[92] Let $\{X(\mathbf{t})\}$ be an \mathbf{R}^n -parameter linearly additive process. Then, there uniquely exists a measure μ on the set of all hyper-planes (of co-dimension 1) in \mathbf{R}^n and the process has the representation

$$X(\mathbf{t}) = Y(S(\mathbf{t})),$$

where $S(\mathbf{t})$ is the connected component of $\mathbf{R}^n \setminus \mathbf{t}^*$ which does not include the origin and $\{Y(B); B \text{ measurable in } \mathbf{R}^n\}$ is the $S\alpha S$ -random measure with control measure (\mathbf{R}^n, μ) . Here we identify the space of hyperplanes with \mathbf{R}^n by the projective duality map * .

Let us call this measure the Chentsov-Mori mesure of $\{X\}$.

Definition 3 (multi-parameter additive process, K.Sato[00]) An n-parameter stochastic process $\{X(\mathbf{t}); t \in \mathbf{R}^n\}$ is called a <u>multi-parameter additive process</u> if:

- 1. For any points, $\mathbf{s}_1 \leq \mathbf{s}_2 \leq \cdots \leq \mathbf{s}_m, \cdots, X(\mathbf{s}_n) X(\mathbf{s}_{n-1})$ makes an independent system, where $\mathbf{u} = (u_1.u_2, \cdots, u_n) \leq \mathbf{t} = (t_1, t_2, \cdots, t_n)$ that is $u_1 \leq t_1, u_2 \leq t_2, \cdots, u_n \leq t_n, X(\mathbf{s}_2) X(\mathbf{s}_1), X(\mathbf{s}_3) X(\mathbf{s}_2)$.
- 2. If $\mathbf{s}_1 \leq \mathbf{s}_2$, $\mathbf{s}_3 \leq \mathbf{s}_4$ and $\mathbf{s}_2 \mathbf{s}_1 = \mathbf{s}_4 \mathbf{s}_3$, $X(\mathbf{s}_2) X(\mathbf{s}_1)$ and $X(\mathbf{s}_4) X(\mathbf{s}_3)$ are subject to the same law (i.e. $\{X\}$ is invariant under the parallel transforms).
- 3. $X(\mathbf{0}) = 0$, a.s.
- 4. $X(\mathbf{s})$ is right continuous and has left limits with respect to the order \prec .

Theorem 4 Let $\{X(\mathbf{t}); \mathbf{t} \in \mathbf{R}^n\}$ be a linearly additive multi-parameter press. Then there uniquely exists a measure Φ which concentrates on $S^{n-1} \cap \mathbf{R}^n_-$, the process $\{X\}$ has the following Chentsov type representation:

$$X(\mathbf{t}) = Y(S(\mathbf{t})).$$

Where $\mathbf{Y} = \{Y\}$ is the random mesure controlled by the mesure Φ which is invariant under the dual action of the Euclidean motion group.

Let $\mathbf{V} \in \mathbf{R}_{+}^{n}$ be a convex cone. A curve $L = \{\ell(t); t \in \mathbf{R}_{+}\} \in \mathbf{V}$ is called a <u>time like curve</u> if $\{\ell(s); s \geq t\} \in \ell(t) + \mathbf{V}$.

Definition 5 A process $\{X(\mathbf{t}); \mathbf{t} \in V\}$ is called an additive process with respect to \mathbf{V} if the parameter restriction $\{X_L(t) = X(\ell(t))\}$ is additive for any time-like curve L

Note that \mathbf{R}_{+}^{n} is a convex cone. Thus the above multi-parameter additive process is an exmple of addive process with respect to the cone \mathbf{R}_{+}^{n} .

Theorem 6 Let $\{X(\mathbf{t}); \mathbf{t} \in \mathbf{R}^n\}$ be a linearly additive process and \mathbf{V} be a convex cone. If $\{X(\mathbf{t}; \mathbf{t} \in \mathbf{V})\}$ is an additive process with respect to \mathbf{V} , then there uniquely exists a measure Φ which concentrates in the dual conve \mathbf{V}^* and the process $\{X\}$ has the following Chentsov type representation:

$$X(\mathbf{t}) = Y(S(\mathbf{t})).$$

Recently, my graduate student, Miss H.Tanida has successed to characterize the sub-ordinators valued on time-like curved. So, now we are ready to consider a multi-parameter version of sub-ordination.

References

[Mori92] Mori, T, Representation of linearly additive random fields. Prob. Theory and Related Fields **92** 91–115,(1992)

[KSato00] Sato, K, On Multivariate subordination and selfdecomposability. abstract of a workshop at Inst. Math. Stat. Oct. 2000

[HTanida03] anida, H. On Cone-valued Subordinators Master Theses, Okayama University of Science, Feb. 2003

[STakenaka03] akenaka, S. Linearly additive random fields with independent increments on time-like curves Probabilty and Mathematical Statistics, accepted (2003)