Determinsms of Set-Indexed stable processes

Shigeo TAKENAKA Dept.of Appl. Math. Okayama University of Science

March, 2003

Let $\mathcal{Y} = \{Y(B); B \in \mathcal{B}\}$ be the symmetric α stable random mesure controled by a measure space $(E, \mathcal{B}, \mu), 0 < \alpha \leq 2$. That is,

- 1. $\mathbf{E}[e^{izY(B)}] = e^{-\mu(B)|z|^{\alpha}},$
- 2. $Y(B_1)$ and $Y(B_2)$ is independent if $B_1 \cap B_2 = \emptyset$.
- 3. $Y(A) = \sum Y(B_n)$, a.s. if $A = \bigcup B_n$, $B_i \cap B_j = \emptyset$.

A stochastic process, $\mathcal{X} = \{X(t), t \in \mathbf{T}\}$ is called a set-indexed process if there exist a random mesure \mathcal{Y} above and a map $S : \mathbf{T} \to \mathcal{B}$ and it holds $X(t) = Y(S_t)$.

For example, let take (E, \mathcal{B}, μ) be the *d*-dimensional Euclidean space with Lebesgue measure and set $S_{\mathbf{t}} = \{|\mathbf{x} - \mathbf{t}| < 1; x \in \mathbf{R}^d\}$, $\mathbf{t} \in \mathbf{R}$. Then $\mathcal{X} = \{X(\mathbf{t}) = Y(S_{\mathbf{t}}) \text{ is a stationary stable process with parameter in } \mathbf{R}^{\mathbf{d}}$.

There are several important processes which are expressed as set indexed processes.

- 1. The multi-parameter Lévy motions—the stable version of multi-parameter Brownian motion.
- 2. Some class of self-similar processes.
- 3. Multi-parameter additive processes. These processes are the subjects of my second talk. The parameter restriction of the process on any time-like curve becomes an additive process.

Let return the above example. It is well known that in \mathbb{R}^2 , 3-circles can divide the plain into 2^3 parts but 4-circles can divide at most 14 parts (see figures).

From this elementary fact it follows that;

any 4-dimensional marginal distribution of the process can be calcultes by their own 3-dimensional marginals.

In general in d-dimensional Euclidean space, there exist configurations of d+1 spheres which devide the whole space into 2^{d+1} sub-regions but no configurations of d+2 spheres which devide the space into 2^{d+2} regions.

This fact tells us that

the set indexed process we are considering now is determined by d+1-dimensional marginal distributions.

Similar determinsms occures as follows;

- 1. R^d parameter Lévy motions: d-dimensional determinisms.
- 2. self-similar processes: d+2-dimensional or higer-dimensional determinisms.
- 3. Multi-parameter additive processes: d-dimensional determinsms.

References

- [1] Sato, Y. Distributions of stable random fields of Chentsov type. Nagoya Math. J. **123**, pp. 119–139 (1991)
- [2] Sato, Y. and Takenaka, S. On determinism of symmetric α -stable processes of generalized Chentsov type. 'Gaussian Random Fields', pp. 332–345, World Scientific (1991)
- [3] Takenaka, S. Integral-geometric constructions of self-similar stable processes. Nagoya Math. J. 123, pp. 1–12 (1991)
- [4] Takenaka, S. Examples of self-similar stable processes. 'Stochastic Processes', pp. 303-311, Springer-Verlag (1993)
- [5] Takenaka, S. Linearly additive random fields with independent increments on time-like curves Probabilty and Mathematical Statistics, accepted (2003)
- [6] Mori, T. Representation of linearly additive random fields. Prob. Theory and Related Fields **92**, pp. 91–115 (1992)