EXERCISE FROM PROF. MAGIDOR'S LECTURES IN AII SUMMER SCHOOL

ZHU HUILING

1. Lecture 1

Exercise 1. Suppose f,g are $<_I$ exact upper bounds for $\mathcal{F} \subseteq Ord^A$, show that $f =_I g$.

Exercise 2. Find an example of $\langle g_{\alpha} | \alpha < \omega_1 \rangle \subseteq \omega^{\omega}$, such that it is $<_{[\omega]}<_{\omega}$ -increasing but has no e.u.b.

Exercise 3. Suppose $\langle g_{\alpha} | \alpha < \lambda \rangle$ is strongly $<_{I}$ -increasing in Ord^{A}/I , where $\lambda > |A|$ is a regular cardinal. Show that $\langle g_{\alpha} | \alpha < \lambda \rangle$ has an $<_{I}$ exact upper bound.

Exercise 4. Suppose $\langle g_{\alpha} | \alpha < \lambda \rangle$ is $<_{I}$ -increasing with h an $<_{I}$ exact upper bound. Suppose it satisfies $(*)_{\kappa}$, where $|A| < \kappa < \lambda$ and both κ, λ are regular cardinals. Show that

$$\{a|cf(h(a)) < \kappa\} \in I$$

Exercise 5. Suppose λ is regular and $\lambda > 2^{|A|}$, show that $\langle g_{\alpha} | \alpha < \lambda \rangle$ satisfies $(*)_{|A|^+}$.

Hint: Use Erős-Rado Theorem:

$$(2^{\kappa})^+ \to (\kappa)^2_{\kappa^+}$$

Exercise 6. Suppose $\kappa > \aleph_2$ is a regular cardinals. $S \subseteq S_{\omega}^{\kappa}$ is a stationary set. Show that there is a club-guessing sequence $\langle C_{\alpha} | \alpha \in S \rangle$ for κ .

2. lecture 2

Exercise 7. Show that $\prod \{\aleph_n | n \in \omega\} / [\omega]^{<\omega}$ is \aleph_{ω}^+ -directed.

Exercise 8. Let I be an ideal on A, $h \in Ord^A/I$, $B = \{cf(h(a)) | a \in A\}$ be such that |A| < min(B). Let $J = \{X \subset B | \{a | cf(h(a)) \in X\} \in I\}$. Show that:

- J is an ideal on B.
- For each $a \in A$, let $\{\zeta_{\alpha}^{a} | \alpha \in cf(h(a))\}$ be a strictly increasing sequence in h(a). For each $f \in \prod B$, define $\overline{f} \in \prod A$:

$$f(a) = \zeta^a_{f(cf(h(a)))}$$

Show that: if $f =_J g$, then $\overline{f} =_I \overline{g}$; and if $f \leq_J g$, then $\overline{f} \leq_I \overline{g}$.

Date: July 23, 2010.

ZHU HUILING

3. Lecture 3

Exercise 9. If κ carries a Jonsson algebra, then so is κ^+ .

Exercise 10. If κ is a regular cardinal with a non-reflecting stationary subset, then κ carries a Jonsson algebra.

Exercise 11. If κ is a regular cardinal, then κ^+ carries a Jonsson algebra.

Definition 3.1. A cardinal is Jonsson cardinal if it does not carry a Jonsson algebra.

Exercise 12. If κ is measurable, then it is Jonsson.

Exercise 13. If κ is measurable and \mathcal{P}_{κ} is the basic Prikry forcing at κ , then $\mathcal{V}^{\mathcal{P}_{\kappa}} \vDash \kappa$ is Jonsson.

4. Lecture 4

Exercise 14. Let A be progressive set of regular cardinals, $B \subseteq pcf(A)$ is progressive, then $pcf(B) \subseteq pcf(A)$.

5. Lecture 5

Exercise 15. Show that $cov(\kappa^{++}, \kappa) = \kappa^{++}$.

Exercise 16. Let $\mathcal{F}^* = \{M \cap \mu | M \prec H_{\theta}, M \text{ is } \omega \text{ closed } \}$. Show that \mathcal{F}^* is a covering family.

Exercise 17. If $B \subseteq H_{\theta}$, $|B| = \kappa$, then $\exists M \prec H_{\theta}$ such that $B \subseteq M$ and M is κ -presentable.

Exercise 18. If M is κ -presentable, $A \in M$ and $|A| \leq \kappa$, then $A \subseteq M$.

Exercise 19. *M* is κ -presentable, $\omega < \kappa$, show that *M* is ω closed.

6. Lecture 6

Exercise 20. Let \aleph_{δ} be a singular cardinal such that $\delta < \aleph_{\delta}$, then $cov(\aleph_{\delta}, |\delta|) < \aleph_{|\delta|^{+4}}$.

If the exercise above are too easy for you, how about the following:

Exercise 21. pcf-conjecture: If A is a progressive set of regular cardinals, then |pcf(A)| = |A|.

Exercise 22. Improve Shelah's theorem on the bound of $2^{\aleph_{\omega}}$.