PRELIMINARY TO PCF

OMER ZILBERBOIM

ABSTRACT. Basic notions for the course on PCF: stationary sets, clubs, club
guessing sequences etc. Proofs were taken from the book Set Theory by Jech,
Handbook of Set Theory, chapter on cardinal arithmetic by Abraham-Magidor
and from Non-Existence of Universal Members (Sh820) by Shelah.
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1. CoFINALITY AND KONIG’S THEOREM

Definition 1. 1.For limit ordinals «, 5 we say that the increasing sequence (o, :
v < B) is cofinal in « if lz’n}ioz7 = «. We say that the cofinality of « is S, if 5 is the
=

least limit ordinal such that an increasing 3 cofinal sequence exists in a.
2.We can also say that A C ais cofinal in « if sup(A) = a.

Claim 2. cf(cf(a)) = cf(a).

Proof. If c¢f(a) = B the there exists a sequence (o; : ¢ < ) which is a witness
for it. Now suppose that cf(3) = v as witnessed by (B¢ : ( < ), then < ag, :
¢ < v >is cofinal in « (so if we assumed that c¢f(8) < S we would have had a
contradiction). O

Claim 3. For every k , cf(k) is a cardinal.

Proof. If @ = cf(k) is a limit ordinal and not a cardinal, then there is a one to one,

onto map f : @ — |a| and we can use this map to define a |a| sequence, cofinal

in k: suppose we are given(x; : i < «) cofinal in x, and define by induction a

new sequence :0g = ko, ;11 = max(d; + 1,k + 1), for a limit ordinal we define

6; = max(Ud; + 1,k¢¢;y + 1) (note that at a limit stage i, the union is less than »
j<i

since we assumed cf(k) = a > |a| > i). O

Remark 4. The proof actually demonstrates that the definition is the same if we de-
fined cf (k) to be the least cardinal such that there is a cofinal set of such cardinality
in k.

Definition 5. We define a cardinal x to be regular if cf (k) = k.

Exercise 6. Let us draw a short table, to try and understand how the class of
cardinals divides. Try to fill the table with examples of cardinals that provide the
cross properties and are uncountable. If you can’t find one, try to explain why.

[ successor [ limit |

singular
regular
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Theorem 7. (KONIG) Assume I is an infinite set, and for everyi € I k; < \;then:
Zlﬂ < H)\z

iel i€l
Proof. Assume first that we had: > k; > [[A;. Then we would have an onto
i€l i€l
function f from the L.H.S to the R.H.S. In that case we would have: [[\; = ‘UISi
i€l e

where S; = f(x;) and hence |S;| < k; < A; (kihere is a set so this is an abuse of

notation). So if we could prove that for any such union of sets [[A; # _UISi then
icl 1€
we are done. Assume then that AUISz' C [] X and look at the projection of S; onto
e iel
the i’th coordinate namely: S;(i) := {h(i) : h € S;}. Since |S;| < A\; we have for

every i S;(i) & Ajand choose h € J]\; such that h(i) ¢ S;(i). So h ¢ 'UISi and we
i€l e
are done. (]

Corollary 8. For every infinite cardinal k we have k(%) > g,

Proof. Let k = Y. k; where r; <k then v = Yk < [[r = s, O
i<cf(k) i<cf(k) i<cf(k)

Exercise 9. Use Konig’s Theorem to prove that x < 2%
Corollary 10. For every infinite k we have cf(2%) > k.

Proof. We use the fact that (2#)# = 24> = 2/ for any infinite cardinal p. Assume
now that for every i < xk we have a; < 2, then > a; < [] 2" = (27)". O
<K <K

It may be worth mentioning at this point a

Theorem 11. (Easton) Let M be a transitive model of ZFC and assume that the
Generalized Continuum Hypothesis holds in M (namely that 25 = k* for every
infinite cardinal k). Let F be a function in M from the regqular cardinals to the
cardinals such that:

1. F(k) > k.

2. F(k) < F(\) whenever £ < .

3.cf(F(k)) > k.

Then there is a generic extension of M with the same cardinals and cofinalities,
that realizes F as the continuum function on regular cardinals.

2. CLOSED UNBOUNDED SETS, STATIONARY SETS.

We start with some definitions:

Definition 12. Let x be a regular uncountable cardinal. A closed unbounded set
(or a club) C' C k is a subset of k with the property sup(C) = k and such that C
contains all its limit points in x, namely: that for each limit ordinal o < xk we have
(sup(CNa)=a) = «a€k.

Exercise 13. If C and D are clubs then so is C' N D. (Notice that this is not true
for k = Ny).

Remark 14. The fact that the empty set is not a club, that the set of clubs are
closed under intersection and that the set & is a club suggests that we can define:
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Definition 15. The Closed Unbounded Filter on k, is the set of all subsets of x
that contain a club.

Claim 16. The club filter on « is k complete.

Proof. We only need to prove that the intersection of less than x clubs is again
a club. So let v < k and for every a < v let C, be a club. We first note that

if we replace C, with D, = NCg then we still have: ND, = NC,. We proceed
B<a a<y  a<y
by induction on o < v to prove that NDg is a club. For a = 0 this is given.
B<a
On successor stage this is the content of the exercise. At a limit ordinal § we

have: Dy D D1 D Dy D ... D Ds = NDg a descending series of clubs accept
B<d
maybe for Dgs. It is an exercise to see that Dj is closed. We prove that it is

unbounded: Let 7 < k and choose a sequence: 1 < ag < a1 < ... inductively
such that ag € Dg, ag > sup{a; : ¢ < B}, ap > 1. This is possible because of
the induction hypothesis, and the fact that x is regular. The resulting sequence is
bounded in x and hence has a limit. For Evey 3, < a¢ : 8 < £ < § >C Dg and
since Dg is closed it contains this limit, and we are done. O

Definition 17. Let x be an uncountable regular cardinal. We call a set S C k
stationary if for every club C we have C' NS # 0.

Remark 18. On one hand stationary implies that we are dealing with a “big” set.
However, Notice that according to Exercise 12, the complement of a club cannot
contain a club. The situation is not the same for stationary sets, since for « regular
less then )\, we can define E := {§ < )\ : §isalimit ordinal and cf(§) = x} which
is a stationary set (exercise) and if A > k > g and & is regular, then the sets E2,
EQO are disjoint. But in fact we get much more, as we shall see later.

Definition 19. A function f on a set of ordinals S is regressive, if for every g € S

we have f(f) < 8.

Theorem 20. (Fodor) if [ is a regressive function which domain is a stationary set
S, then there is S C S which is also a stationary set, and on which f is constant.

We might skip the proof, but we state a result of the Fodor Theorem:

Exercise 21. Every stationary set contains either a stationary set which is also
contained in E for some k < A, or a stationary set which is also contained in
E}., = {6 < X : disalimit cardinal and cf(5) = 6} (and notice that the latter set
is not necessarily stationary).

Theorem 22. Let A\ > k be reqular cardinals. Every stationary subset of E? is the
union of \ disjoint stationary sets.

Proof. Let S C E) be as above. Since every o € S has cofinality , we can choose
for every o an increasing sequence (a? : ¢ < k) with limit o. Then if for some i < &
we had that for every 8 < r the set Wp := {a € S : a® > S} is stationary, we could
define a regressive function with domain S such that f(«) = af*. The function f is
regressive, defined on S, and for each 8 < k we have Wz C S. So for each § < k we
can find a stationary subset S,, C Wy such that f is constant with value v5 > .
Regularity of A implies that we obtain A such different values, and since vg, # vs,

implies S,, NS,, = (0, we have the required result. It remains to show that indeed
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we can find such ¢ <  such that for every 8 < x the set Wz :={a € S :af > 8} is

stationary. Assume towards contradiction that this is not the case, then for every

i < k there are ; and C; such that o < 3; for every a € C; N S. Let 5 be the

supremum over all 3;, which is less than A\, and C = NC;, then we have on one
1<K

hand that C' is a club and hence C'N S is stationary, anfi on the other hand that

foralli <k and . € CN S, af < B, a contradiction. (]

Remark 23. We may want to try and generalize our results to singular cardinals.
Let o be a singular cardinal with p > c¢f(p) = £ > w, we wish to define by
the same way closed unbounded sets, stationary sets etc. Most of the results go
through, accept for Fodor’s Theorem. We deal with this in the following definition
and theorem:

Definition 24. 1. Let u > ¢f(p) = £ > w. By a continuous unbounded embedding
of k into p we mean a one to one, increasing function e : Kk — p such that I'm(k)
is cofinal in g (unbounded) and such that for every limit ordinal § < x we have:

e(d) = Ue(p) (continuous). In that case we note that the image of e is a club of y,
B<é
and hence if S is stationary in g then S N Im(e) is again stationary, and that its

preimage under e is stationary in k.

Theorem 25. (Fodor’s Theorem For Singular Cardinals) Assume that p > cf (n) =
k> w and S C p is stationary, and that f : S — p is regressive. Then there exists
an S’ C S which is also stationary and on which f is bounded.

Proof. Without loss of generality S C I'm(e). Now look at S’ C S which is again

stationary. Now denote T' = e~!(S’) which is stationary in x and define: g : T — &

by g(a) = ]\B/[in(e(ﬂ) > f(e(a)). Since f is regressive, and since « is a limit ordinal
<K

(remember, a € T e(a) € S’) we have that f(e(a)) < e(a) — e(8) < e(a) which
means that g is regressive. Now apply the Fodor Theorem to get the necessary
result. (]

Definition 26. For S C k stationary, a club guessing sequence (Cs : € S)is such
that each Cs5 C 0 is closed unbounded in é, and such that for each club D C k there
exists a ¢ such that Cs C D.

Theorem 27. For a regular cardinal x and a cardinal X\ with cf(\) > &1 any
stationary S C E has a club guessing sequence (Cs : 6 € S)and Cjs is of order type
K.

Proof. The proof given here is for an uncountable  only.

Let S be as above, and fix any sequence C = (Cs : 6 € S)with Cs C ¢, otp(Cs) =
k closed and unbounded in 4. For any D which is a club in A define the (double)
reduction: C'|D :={(CsND:6 € SND') where D' = Ace(D)N D = Ace(D). We
intersect with D’ to ensure that Csis closed and unbounded in §. We claim that for
some club of A, this produces a club guessing sequence (once such a partial (to S)
sequence is obtained, we can expand it to be defined on S by defining C,to be some
cofinal set in « for those elements that were thrown away). Assume that this is not
the case, then for every club D C ) there exist witnesses to the failure of C'| D i.e.:
there is another club E(D) such that for every § € SND’ we have: CsND ¢ E(D).
Define a decreasing sequence of clubs by induction on o < k™ as follows:

1. B9 =)\
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2. For a limit ordinal: EY = N{E® : 8 < v} (and refer to a previous claim to
see that this is again a club).

3. For a successor ordinal, we define EA*! = (E# N E(EP))’ (the set of accumu-
lation points of the intersection of the previous club with its counter example)

We denote: E = E*'. We now get a contradiction: take any § € SN E and look
at Cs N E, then since Cs has cardinality x and since the sequence (E* : a < k™)
is decreasing and is kT long, there exists an a < k* with E*NCs = EN Cs. For
Every B > « this is also true and in particular for 3 = o + 1. But since § € Eo+!
we have C5 N E~ ¢ EoT1 O

At this stage we could prove for instance a

Theorem 28. Shelah (Sh820): Assume ut < X\ = cf(\) < u™° Then the class Ki
has no universal member where:

1. K& is the class of trees of cardinality X\ with w + 1 levels.

2. The embeddings are one to one functions such that: I. t < s <= f(t) < f(s)
and II. lev(z)=lev(f(x)).

Another result which uses club guessing sequences is given in Universal Abelian
Groups, by Kojman-Shelah (no. 455 in the Shelah archive) which states a

Theorem 29. For n > 2 there is a purely universal separable p-group in X,, if and
only if 2% < X,
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