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Abstract. Basic notions for the course on PCF: stationary sets, clubs, club
guessing sequences etc. Proofs were taken from the book Set Theory by Jech,
Handbook of Set Theory, chapter on cardinal arithmetic by Abraham-Magidor
and from Non-Existence of Universal Members (Sh820) by Shelah.
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1. Cofinality and König's Theorem

De�nition 1. 1.For limit ordinals α, β we say that the increasing sequence 〈αγ :
γ < β〉 is co�nal in α if lim

γ→β
αγ = α. We say that the co�nality of α is β, if β is the

least limit ordinal such that an increasing β co�nal sequence exists in α.
2.We can also say that A ⊂ αis co�nal in α if sup(A) = α.

Claim 2. cf(cf(α)) = cf(α).

Proof. If cf(α) = β the there exists a sequence 〈αi : i < β〉 which is a witness
for it. Now suppose that cf(β) = γ as witnessed by 〈βζ : ζ < γ〉, then < αβζ

:
ζ < γ >is co�nal in α (so if we assumed that cf(β) < β we would have had a
contradiction). �

Claim 3. For every κ , cf(κ) is a cardinal.

Proof. If α = cf(κ) is a limit ordinal and not a cardinal, then there is a one to one,
onto map f : α → |α| and we can use this map to de�ne a |α| sequence, co�nal
in κ: suppose we are given〈κi : i < α〉 co�nal in κ, and de�ne by induction a
new sequence :δ0 = κ0, δi+1 = max(δi + 1, κf(i) + 1), for a limit ordinal we de�ne
δi = max(∪δj

j<i

+ 1, κf(i) + 1) (note that at a limit stage i, the union is less than κ

since we assumed cf(κ) = α > |α| ≥ i). �

Remark 4. The proof actually demonstrates that the de�nition is the same if we de-
�ned cf(κ) to be the least cardinal such that there is a co�nal set of such cardinality
in κ.

De�nition 5. We de�ne a cardinal κ to be regular if cf(κ) = κ.

Exercise 6. Let us draw a short table, to try and understand how the class of
cardinals divides. Try to �ll the table with examples of cardinals that provide the
cross properties and are uncountable. If you can't �nd one, try to explain why.

successor limit

singular

regular
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Theorem 7. (KÖNIG) Assume I is an in�nite set, and for every i ∈ I κi < λithen:∑
i∈I
κi <

∏
i∈I
λi.

Proof. Assume �rst that we had:
∑
i∈I
κi ≥

∏
i∈I
λi. Then we would have an onto

function f from the L.H.S to the R.H.S. In that case we would have:
∏
i∈I
λi = ∪

i∈I
Si

where Si = f(κi) and hence |Si| ≤ κi < λi (κihere is a set so this is an abuse of
notation). So if we could prove that for any such union of sets

∏
i∈I
λi 6= ∪

i∈I
Si then

we are done. Assume then that ∪
i∈I
Si ⊂

∏
i∈I
λi and look at the projection of Si onto

the i'th coordinate namely: Si(i) := {h(i) : h ∈ Si}. Since |Si| < λi we have for
every i Si(i) $ λiand choose h ∈

∏
i∈I
λi such that h(i) /∈ Si(i). So h /∈ ∪

i∈I
Si and we

are done. �

Corollary 8. For every in�nite cardinal κ we have κcf(κ) > κ.

Proof. Let κ =
∑
κi

i<cf(κ)

where κi < κ then κ =
∑
κi

i<cf(κ)

<
∏
κ

i<cf(κ)

= κcf(κ). �

Exercise 9. Use König's Theorem to prove that κ < 2κ

Corollary 10. For every in�nite κ we have cf(2κ) > κ.

Proof. We use the fact that (2µ)µ = 2µ×µ = 2µ for any in�nite cardinal µ. Assume
now that for every i < κ we have ai < 2κ, then

∑
ai

i<κ

<
∏

2κ
i<κ

= (2κ)κ. �

It may be worth mentioning at this point a

Theorem 11. (Easton) Let M be a transitive model of ZFC and assume that the
Generalized Continuum Hypothesis holds in M (namely that 2κ = κ+ for every
in�nite cardinal κ). Let F be a function in M from the regular cardinals to the
cardinals such that:

1. F (κ) > κ.
2. F (κ) ≤ F (λ) whenever κ ≤ λ.
3. cf(F (κ)) > κ.
Then there is a generic extension of M with the same cardinals and co�nalities,

that realizes F as the continuum function on regular cardinals.

2. Closed Unbounded Sets, Stationary Sets.

We start with some de�nitions:

De�nition 12. Let κ be a regular uncountable cardinal. A closed unbounded set
(or a club) C ⊂ κ is a subset of κ with the property sup(C) = κ and such that C
contains all its limit points in κ, namely: that for each limit ordinal α < κ we have
(sup(C ∩ α) = α) =⇒ α ∈ κ.

Exercise 13. If C and D are clubs then so is C ∩D. (Notice that this is not true
for κ = ℵ0).

Remark 14. The fact that the empty set is not a club, that the set of clubs are
closed under intersection and that the set κ is a club suggests that we can de�ne:
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De�nition 15. The Closed Unbounded Filter on κ, is the set of all subsets of κ
that contain a club.

Claim 16. The club �lter on κ is κ complete.

Proof. We only need to prove that the intersection of less than κ clubs is again
a club. So let γ < κ and for every α < γ let Cα be a club. We �rst note that
if we replace Cα with Dα = ∩Cβ

β<α

then we still have: ∩Dα
α<γ

= ∩Cα
α<γ

. We proceed

by induction on α ≤ γ to prove that ∩Dβ
β<α

is a club. For α = 0 this is given.

On successor stage this is the content of the exercise. At a limit ordinal δ we
have: D0 ⊃ D1 ⊃ D2 ⊃ .... ⊃ Dδ = ∩Dβ

β<δ

a descending series of clubs accept

maybe for Dδ. It is an exercise to see that Dδ is closed. We prove that it is
unbounded: Let η < κ and choose a sequence: η < a0 < a1 < ... inductively
such that aβ ∈ Dβ , aβ ≥ sup{ai : i < β}, a0 > η. This is possible because of
the induction hypothesis, and the fact that κ is regular. The resulting sequence is
bounded in κ and hence has a limit. For Evey β, < aξ : β < ξ < δ >⊂ Dβ and
since Dβ is closed it contains this limit, and we are done. �

De�nition 17. Let κ be an uncountable regular cardinal. We call a set S ⊂ κ
stationary if for every club C we have C ∩ S 6= ∅.

Remark 18. On one hand stationary implies that we are dealing with a �big� set.
However, Notice that according to Exercise 12, the complement of a club cannot
contain a club. The situation is not the same for stationary sets, since for κ regular
less then λ, we can de�ne Eλκ := {δ < λ : δ is a limit ordinal and cf(δ) = κ} which
is a stationary set (exercise) and if λ > κ > ℵ0 and κ is regular, then the sets Eλκ ,
Eλℵ0 are disjoint. But in fact we get much more, as we shall see later.

De�nition 19. A function f on a set of ordinals S is regressive, if for every β ∈ S
we have f(β) < β.

Theorem 20. (Fodor) if f is a regressive function which domain is a stationary set
S, then there is S′ ⊂ S which is also a stationary set, and on which f is constant.

We might skip the proof, but we state a result of the Fodor Theorem:

Exercise 21. Every stationary set contains either a stationary set which is also
contained in Eλκ for some κ < λ, or a stationary set which is also contained in
Eλreg = {δ < λ : δ is a limit cardinal and cf(δ) = δ} (and notice that the latter set
is not necessarily stationary).

Theorem 22. Let λ > κ be regular cardinals. Every stationary subset of Eλκ is the
union of λ disjoint stationary sets.

Proof. Let S ⊂ Eλκ be as above. Since every α ∈ S has co�nality κ, we can choose
for every α an increasing sequence 〈aαi : i < κ〉 with limit α. Then if for some i < κ
we had that for every β < κ the set Wβ := {α ∈ S : aαi ≥ β} is stationary, we could
de�ne a regressive function with domain S such that f(α) = aαi . The function f is
regressive, de�ned on S, and for each β < κ we have Wβ ⊂ S. So for each β < κ we
can �nd a stationary subset Sγβ ⊂ Wβ such that f is constant with value γβ ≥ β.
Regularity of λ implies that we obtain λ such di�erent values, and since γβ1

6= γβ2

implies Sγβ1
∩Sγβ2

= ∅, we have the required result. It remains to show that indeed
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we can �nd such i < κ such that for every β < κ the set Wβ := {α ∈ S : aαi ≥ β} is
stationary. Assume towards contradiction that this is not the case, then for every
i < κ there are βi and Ci such that aαi < βi for every α ∈ Ci ∩ S. Let β be the
supremum over all βi, which is less than λ, and C = ∩Ci

i<κ
, then we have on one

hand that C is a club and hence C ∩ S is stationary, and on the other hand that
for all i < κ and α ∈ C ∩ S, aαi < β, a contradiction. �

Remark 23. We may want to try and generalize our results to singular cardinals.
Let µ be a singular cardinal with µ > cf(µ) = κ > ω, we wish to de�ne by
the same way closed unbounded sets, stationary sets etc. Most of the results go
through, accept for Fodor's Theorem. We deal with this in the following de�nition
and theorem:

De�nition 24. 1. Let µ > cf(µ) = κ > ω. By a continuous unbounded embedding
of κ into µ we mean a one to one, increasing function e : κ → µ such that Im(κ)
is co�nal in µ (unbounded) and such that for every limit ordinal δ < κ we have:
e(δ) = ∪e(β)

β<δ

(continuous). In that case we note that the image of e is a club of µ,

and hence if S is stationary in µ then S ∩ Im(e) is again stationary, and that its
preimage under e is stationary in κ.

Theorem 25. (Fodor's Theorem For Singular Cardinals) Assume that µ > cf(µ) =
κ > ω and S ⊂ µ is stationary, and that f : S → µ is regressive. Then there exists
an S′ ⊂ S which is also stationary and on which f is bounded.

Proof. Without loss of generality S ⊂ Im(e). Now look at S′ ⊂ S which is again
stationary. Now denote T = e−1(S′) which is stationary in κ and de�ne: g : T → κ
by g(α) =Min

β<κ
(e(β) ≥ f(e(α)). Since f is regressive, and since α is a limit ordinal

(remember, α ∈ T e(α) ∈ S′) we have that f(e(α)) < e(α) → e(β) < e(α) which
means that g is regressive. Now apply the Fodor Theorem to get the necessary
result. �

De�nition 26. For S ⊂ κ stationary, a club guessing sequence 〈Cδ : δ ∈ S〉is such
that each Cδ ⊂ δ is closed unbounded in δ, and such that for each club D ⊂ κ there
exists a δ such that Cδ ⊂ D.

Theorem 27. For a regular cardinal κ and a cardinal λ with cf(λ) ≥ κ++ any
stationary S ⊂ Eλκ has a club guessing sequence 〈Cδ : δ ∈ S〉and Cδ is of order type
κ.

Proof. The proof given here is for an uncountable κ only.
Let S be as above, and �x any sequence C = 〈Cδ : δ ∈ S〉with Cδ ⊂ δ, otp(Cδ) =

κ closed and unbounded in δ. For any D which is a club in λ de�ne the (double)
reduction: C |D := 〈Cδ ∩D : δ ∈ S ∩D′〉 where D′ = Acc(D) ∩D = Acc(D). We
intersect with D′ to ensure that Cδis closed and unbounded in δ. We claim that for
some club of λ, this produces a club guessing sequence (once such a partial (to S)
sequence is obtained, we can expand it to be de�ned on S by de�ning Cαto be some
co�nal set in α for those elements that were thrown away). Assume that this is not
the case, then for every club D ⊂ λ there exist witnesses to the failure of C |D i.e.:
there is another club E(D) such that for every δ ∈ S∩D′ we have: Cδ∩D * E(D).
De�ne a decreasing sequence of clubs by induction on α ≤ κ+ as follows:

1. E0 = λ
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2. For a limit ordinal: Eγ = ∩{Eβ : β < γ} (and refer to a previous claim to
see that this is again a club).

3. For a successor ordinal, we de�ne Eβ+1 = (Eβ ∩E(Eβ))′ (the set of accumu-
lation points of the intersection of the previous club with its counter example)

We denote: E = Eκ
+

. We now get a contradiction: take any δ ∈ S ∩E and look
at Cδ ∩ E, then since Cδ has cardinality κ and since the sequence 〈Eα : α < κ+〉
is decreasing and is κ+ long, there exists an α < κ+ with Eα ∩ Cδ = E ∩ Cδ. For
Every β > α this is also true and in particular for β = α + 1. But since δ ∈ Eα+1

we have Cδ ∩ Eα * Eα+1. �

At this stage we could prove for instance a

Theorem 28. Shelah (Sh820): Assume µ+ < λ = cf(λ) < µℵ0 Then the class Ktr
λ

has no universal member where:
1. Ktr

λ is the class of trees of cardinality λ with ω + 1 levels.
2. The embeddings are one to one functions such that: I. t < s ⇐⇒ f(t) < f(s)

and II. lev(x)=lev(f(x)).

Another result which uses club guessing sequences is given in Universal Abelian
Groups, by Kojman-Shelah (no. 455 in the Shelah archive) which states a

Theorem 29. For n ≥ 2 there is a purely universal separable p-group in ℵn if and
only if 2ℵ0 < ℵn.
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