Six Properties of Character Varieties

Adam S. Sikora

July 22, 2010

Let G be either •compact, or •complex, reductive, eg. $SL(n, \mathbb{C}),...$

For a fin. gen. group Γ , let $X_G(\Gamma)$ be the *G*-character variety of Γ .

For G compact, $X_G(\Gamma) \stackrel{def}{=} Hom(\Gamma, G)/G$. For complex reductive G, $X_G(\Gamma) \stackrel{def}{=} Hom(\Gamma, G)//G$. (This is an algebraic set.)

Character varieties are "classical objects" underlying many Quantum Field Theories, e.g. Chern-Simons QFT of Witten. This theory gives quantum invariants of 3-mflds.

1. Algebraic description of $X_G(\Gamma)$.

For algebraic G, $X_G(\Gamma)$ is an algebraic set which can be described by:

(a) an embedding $X_G(\Gamma) \to \mathbb{C}^n$

It requires a finite set of generators of $\mathbb{C}[X_G(\Gamma)]$. (b) a finite set of polynomial equations on \mathbb{C}^n describing $X_G(\Gamma)$.

This can be done by the Gröbner basis method.

Candidates for generators:

For each $\gamma \in \Gamma$ and $\phi : G \to GL(n, \mathbb{C})$ we have $\tau_{\gamma, \phi} : X_G(\Gamma) \to \mathbb{C}$ sending $\rho : \Gamma \to G$ to $tr\phi\rho(\gamma) \in \mathbb{C}$.

For classical groups, one often considers the defining rep., eg. $SL(n, \mathbb{C}), SO(n, \mathbb{C}) \subset GL(n, \mathbb{C})$ and $\tau_{\gamma} = \tau_{\gamma, \phi}$.

 τ_{γ} depends on the conjugacy class of γ only. These are the ''Wilson loops''.

Generators of Character Varieties

 $\mathbb{C}[X_G(\Gamma)]$ is generated by τ_{γ} 's for $G = GL(2, \mathbb{C})$, $SL(2, \mathbb{C})$.

Thm $\mathbb{C}[X_G(\Gamma)]$ is generated by τ_{γ} for all γ for $G = GL(n, \mathbb{C}), SL(n, \mathbb{C}), Sp(n, \mathbb{C}), O(n, \mathbb{C}),$ $SO(2n + 1, \mathbb{C}).$

Thm (follows from work of Aslaksen-Tan-Zhu) For $n \ge 2$, $\mathbb{C}[X_{SO(2n,\mathbb{C})}(\Gamma)]$ is generated by τ_{γ} for all γ and by functions $\lambda_{\gamma_1,...,\gamma_n}$, for $\gamma_1,...,\gamma_n \in$ Γ where λ is obtained by polarization of a function $\Lambda : M(2n,\mathbb{C}) \to \mathbb{C}$, $\Lambda(A) = Pf(A - A^T)$.

Thm(S.) For $n \geq 2$, $\mathbb{C}[X_{SO(2n,\mathbb{C})}(\Gamma)]$ is not generated by $\tau_{\gamma,\phi}$ for all $\gamma \in \Gamma$ and and all representations ϕ of $SO(2n,\mathbb{C})$.

Reminder: $\tau_{\gamma,\phi}$ sends $\rho : \Gamma \to G$ to $tr\phi\rho(\gamma) \in \mathbb{C}$.

Finite Generating Sets of $\mathbb{C}[X_G(\Gamma)]$.

Thm For $G = SL(n, \mathbb{C}), GL(n, \mathbb{C}),$ $\mathbb{C}[X_G(\Gamma)]$ is generated by τ_{γ} for all γ which are words in at most n^2 generators of Γ .

Conj Words in at most $\binom{n+1}{2}$ generators are enough.

Thm.(S.) Similar finite generating sets of for all classical groups G.

Open: Exceptional groups.

2. Character varieties of the torus.

If G is compact then $X_G(\mathbb{Z}^2) = (T \times T)/W$, for $T = \max$ torus in G, W = Weyl group.

Thm (S.) $X_G(torus) = (T \times T)/W$, for $G = GL(n, \mathbb{C}), SL(n, \mathbb{C}), Sp(n, \mathbb{C}), O(n, \mathbb{C}),$ $SO(2n + 1, \mathbb{C})$ but not $SO(2n, \mathbb{C})$.

 $X_{SO(2n,\mathbb{C})}(\mathbb{Z}^2)$ is not a normal algebraic set. Its normalization is $(T \times T)/W$.

3. Tangent Spaces to Character Varieties

Thm $T_{[\rho]} X_G(\Gamma) = H^1(\Gamma, \mathfrak{g})$ (twisted by $\Gamma \xrightarrow{Ad} G \xrightarrow{\rho} Gl(\mathfrak{g})$) if two conditions hold.

• $\rho(\Gamma) \subset G$ has the trivial stabilizer. Irreducibility implies trivial stabilizer for $SL(n, \mathbb{C})$, SU(n), but not other groups.

• ρ is a reduced point of the scheme $\mathcal{X}_G(\Gamma)$ (no nilpotents).

There are groups Γ for which $\dim T_{[\rho]} X_G(\Gamma) < \dim H^1(\Gamma, \mathfrak{g})$ for a Zariski open set of ρ 's. In fact, there are 3-mfld groups like this.

Thm(S.) If $T_{[\rho]} X_G(\Gamma) = H^1(\Gamma, \mathfrak{g})$ for a Zariski open set of ρ 's iff $\mathcal{X}_G(\Gamma)$ is reduced.

Thm(S.) All G-representations of surface groups for all G are reduced.

4.

If Y is a top. space then $X_G(Y) \stackrel{def}{=} X_G(\pi_1(Y))$.

Thm(Goldman) Let F be a closed surface. If G is compact then $X_G(F)$ is symplectic. If G is complex, reductive, then $X_G(F)$ is complex symplectic.

Thm If $\partial M^3 = F$ then the image of $r^*X_G(M) \to X_G(F)$ is an isotropic submanifold (with singularities).

For "simple" examples (eg. M =handlebody), it is Lagrangian. However, there are reasons to believe that $r^*(X_G(M)) \subset X_G(F)$ is not Lagrangian.

5. A Generalization of Tangent Space Formula

What if the stabilizer S_{ρ} of $\rho(\Gamma)$ in G is non-trivial?

Thm(S.) If ρ is completely reducible and scheme smooth then

$$T_{[\rho]} X_G(\Gamma) \simeq T_0 \left(H^1(\Gamma, Ad \rho) / / S_\rho \right).$$

Def ρ is "scheme smooth" if it is a smooth point of the algebraic scheme $Hom(\Gamma, G)$.

Heusener and Porti: $G = PSL(2, \mathbb{C})$.

6. Complete Integrability

From physics point of view, character varieties are phase spaces. In this context it is an important question whether they are completely integrable.

Def. For a symplectic mfld, (M, ω) , a completely integrable system is $\{f_1, ..., f_n : M \rightarrow \mathbb{R}\}$ s.t. $f_1, ..., f_n$ are alg. independent and $\{f_i, f_j\} = 0$ for all i, j, and $n = \frac{1}{2} \dim M$.

For a complex symplectic mfld, (M, ω) , a completely integrable system is $\{f_1, ..., f_n : M \rightarrow \mathbb{C}\}$ s.t. $f_1, ..., f_n$ are alg. independent and $\{f_i, f_j\} = 0$ for all i, j, and $n = \frac{1}{2} dim_{\mathbb{C}} M$.

9

Let F be a surface F of genus g. Let G simple, $G \neq \mathbb{C}^*$.

$$\dim X_G(F) = (2g - 2)\dim G$$

Hence, $\dim X_{SU(2)}(F) = 6g - 6$ and $\dim_{\mathbb{C}} X_{SL(2,\mathbb{C})}(F) = 6g - 6.$

Thm $\tau_1, ..., \tau_{3g-3}$ form a completely integrable system on $X_{SU(2)}(F)$ and on $X_{SL(2,\mathbb{C})}(F)$.

Rk Note that $\tau_1, ..., \tau_{3g-3} : X_{SU(2)}(F) \to \mathbb{R}$.

Proof:

(1) Poisson commuting:

Thm(Goldman) For every classical G, loops α, β in F,

 $\{\tau_{\alpha}, \tau_{\beta}\} = \sum_{c \in \alpha \cap \beta}$ expression in τ 's,

where the sum is over all crossings between α and β .

Cor If α and β do not intersect then $\{\tau_{\alpha}, \tau_{\beta}\} = 0.$

(2) Alg. independence:

For $G = SL(2, \mathbb{C})$:

As an application of Teichmuller Theory, $\tau_1, ..., \tau_{3g-3}$ are alg. indep over $X_{PSL(2,\mathbb{R})}(F)$. Hence, over $X_{SL(2,\mathbb{C})}(F)$ as well. Alg. independence of $\tau_1, ..., \tau_{3g-3}$ over $X_{SU(2)}(F)$ follows from the fact that $X_{SU(2)}(F)$ is Zariski dense in $X_{SL(2,\mathbb{C})}(F)$.

Open: Is $X_G(F)$ completely integrable for other *G*? (Problem: Not enough τ 's.)

Thm(S.) "Analogous" complete integrability of $X_G(F)$ for all rank 2 Lie groups, eg. $SL(3, \mathbb{C})$, SU(3).

Open for rank > 2.

Let us start with $G = SL(n, \mathbb{C})$.

An *n*-web in a surface F is an oriented graph in F whose each vertex is either an *n*-valent source or an *n*-valent sink. Loops are allowed. Crossings are allowed.

The construction of functions τ_{γ} on $X_G(F)$ for $G = SL(n, \mathbb{C})$ can be extended from loops to n-webs in F.

Construction of $\tau_{\gamma}(\rho)$ for an *n*-web $\gamma \subset F$:

Pull all vertices of γ to a base point b of F.

Associate to each edge, $e \in \pi_1(F, b)$ of γ $\rho(e) \in GL(n, \mathbb{C}) \subset (\mathbb{C}^n)^* \otimes \mathbb{C}^n$.

Associate to each vertex $det : \wedge^n \mathbb{C}^n \to \mathbb{C}^n$, i.e. $det \in \wedge^n (\mathbb{C}^n)^*$.

 $\tau_{\gamma}(\rho)$ is the contraction of these tensors over all edges.

Lemma τ_{γ} is a function on $X_{SL(n,\mathbb{C})}(F)$.

Canonical webs

Lemma For every n, # of canonical webs in $F = (g-1)(n^2-1) = \frac{1}{2}dim X_{SL(n,\mathbb{C})}(F)$.

This suggests that canonical webs are good candidates for a completely integrable system.

Thm (S.) (1) τ 's for the canonical webs for n = 3 form a completely integrable system for $X_{SL(3,\mathbb{C})}(F)$.

(2) $Re \tau$'s for the canonical webs form a completely integrable system for $X_{SU(3)}(F)$.

Proof:

Lemma If α and β are disjoint *n*-webs in *F*, then $\{\tau_{\alpha}, \tau_{\beta}\} = 0$.

Since the canonical graphs are pairwise disjoint for n = 3, they Poisson commute.

Proof of alg. independence of $au_1, \dots, au_{8(g-1)} : X_{SL(3,\mathbb{C})}(F) \to \mathbb{C}.$ Thm (S.) au's give an isomorphism \mathbb{C} {3-webs in F}/Kuperberg rels $\to \mathbb{C}[X_{SL(3,\mathbb{C})}(F)]$

I have a version of this theorem for all n.

Thm(S.-Westbury) \mathbb{C} {3-webs in F}/Kuperberg rels has a basis composed of all 3-webs without crossings, bi-gons and true 4-gons.

Proof uses "confluence method" for graphs developed with B. Westbury.

Using this result, it is easy to prove that monomials in canonical webs are lin. independent. Hence τ 's are alg. indep. for canonical graphs. (2) The proof of $\operatorname{Re} \tau$'s being alg. indep. over $X_{SU(3)}(F)$ is technical. (Not enough to show that $X_{SU(3)}(F)$ is Zariski dense in $X_{SL(3,\mathbb{C})}(F)$.)

Thm. (S.) There is analogous statements for all other Lie groups of rank 2: $(P)SO(4, \mathbb{C})$, $(P)SP(4, \mathbb{C}), (P)SO(5, \mathbb{C}), G_2$.

Proof:

Step 1 There is enough known about the invariant theory for rank 2 Lie groups, to describe $\mathbb{C}[X_G(F)]$ as a certain algebra of graphs in F mod local relations.

Step 2 For rank(G) = 2 our "confluence method" gives explicit, canonical bases of $\mathbb{C}[X_G(F)]$.

Using those bases, one shows that all monomials in canonical webs are lin. indep.

Step 3 For compact groups...

18

For $SL(n, \mathbb{C})$ for $n \ge 4$, # of canonical webs $= \frac{1}{2} dim X_G(F)$ but τ 's for canonical webs do not Poisson commute for $n \ge 4$.