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Let G be either •compact, or

•complex, reductive, eg. SL(n,C),...

For a fin. gen. group Γ, let XG(Γ) be the

G-character variety of Γ.

For G compact, XG(Γ)
def
= Hom(Γ, G)/G.

For complex reductive G,

XG(Γ)
def
= Hom(Γ, G)//G.

(This is an algebraic set.)

Character varieties are “classical objects” un-

derlying many Quantum Field Theories, e.g.

Chern-Simons QFT of Witten. This theory

gives quantum invariants of 3-mflds.
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1. Algebraic description of XG(Γ).

For algebraic G, XG(Γ) is an algebraic set which

can be described by:

(a) an embedding XG(Γ)→ Cn

It requires a finite set of generators of C[XG(Γ)].

(b) a finite set of polynomial equations on Cn

describing XG(Γ).

This can be done by the Gröbner basis method.

Candidates for generators:

For each γ ∈ Γ and φ : G → GL(n,C) we

have τγ,φ : XG(Γ) → C sending ρ : Γ → G to

trφρ(γ) ∈ C.

For classical groups, one often considers the

defining rep., eg. SL(n,C), SO(n,C) ⊂ GL(n,C)

and τγ = τγ,φ.

τγ depends on the conjugacy class of γ only.

These are the “Wilson loops”.
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Generators of Character Varieties

C[XG(Γ)] is generated by τγ’s for G = GL(2,C),

SL(2,C).

Thm C[XG(Γ)] is generated by τγ for all γ for

G = GL(n,C), SL(n,C), Sp(n,C), O(n,C),

SO(2n+ 1,C).

Thm (follows from work of Aslaksen-Tan-Zhu)

For n ≥ 2, C[XSO(2n,C)(Γ)] is generated by τγ

for all γ and by functions λγ1,...,γn, for γ1, ..., γn ∈
Γ where λ is obtained by polarization of a func-

tion Λ : M(2n,C)→ C, Λ(A) = Pf(A−AT ).

Thm(S.) For n ≥ 2, C[XSO(2n,C)(Γ)] is not

generated by τγ,φ for all γ ∈ Γ and and all rep-

resentations φ of SO(2n,C).

Reminder: τγ,φ sends ρ : Γ→ G to trφρ(γ) ∈ C.
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Finite Generating Sets of C[XG(Γ)].

Thm For G = SL(n,C), GL(n,C),

C[XG(Γ)] is generated by τγ for all γ which are

words in at most n2 generators of Γ.

Conj Words in at most
(
n+1

2

)
generators are

enough.

Thm.(S.) Similar finite generating sets of for

all classical groups G.

Open: Exceptional groups.
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2. Character varieties of the torus.

If G is compact then XG(Z2) = (T × T )/W, for

T = max torus in G, W=Weyl group.

Thm (S.) XG(torus) = (T × T )/W,

for G = GL(n,C), SL(n,C), Sp(n,C), O(n,C),

SO(2n+ 1,C) but not SO(2n,C).

XSO(2n,C)(Z2) is not a normal algebraic set.

Its normalization is (T × T )/W.
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3. Tangent Spaces to Character Varieties

Thm T[ρ]XG(Γ) = H1(Γ, g) (twisted by Γ
Ad−→

G
ρ−→ Gl(g)) if two conditions hold.

•ρ(Γ) ⊂ G has the trivial stabilizer.

Irreducibility implies trivial stabilizer for SL(n,C),

SU(n), but not other groups.

•ρ is a reduced point of the scheme XG(Γ)

(no nilpotents).

There are groups Γ for which

dimT[ρ]XG(Γ) < dimH1(Γ, g)

for a Zariski open set of ρ’s.

In fact, there are 3-mfld groups like this.

Thm(S.) If T[ρ]XG(Γ) = H1(Γ, g) for a Zariski

open set of ρ’s iff XG(Γ) is reduced.

Thm(S.) All G-representations of surface groups

for all G are reduced.
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4.

If Y is a top. space then XG(Y )
def
= XG(π1(Y )).

Thm(Goldman) Let F be a closed surface.

If G is compact then XG(F ) is symplectic.

If G is complex, reductive, then XG(F ) is com-

plex symplectic.

Thm If ∂M3 = F then the image of

r∗XG(M)→ XG(F ) is an isotropic submanifold

(with singularities).

For ”simple” examples (eg. M =handlebody),

it is Lagrangian. However, there are reasons

to believe that r∗(XG(M)) ⊂ XG(F ) is not La-

grangian.
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5. A Generalization of Tangent Space For-

mula

What if the stabilizer Sρ of ρ(Γ) in G is non-

trivial?

Thm(S.) If ρ is completely reducible and scheme

smooth then

T[ρ]XG(Γ) ' T0

(
H1(Γ, Ad ρ)//Sρ

)
.

Def ρ is ”scheme smooth” if it is a smooth

point of the algebraic scheme Hom(Γ, G).

Heusener and Porti: G = PSL(2,C).
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6. Complete Integrability

From physics point of view, character varieties

are phase spaces. In this context it is an im-

portant question whether they are completely

integrable.

Def. For a symplectic mfld, (M,ω), a com-

pletely integrable system is {f1, ..., fn : M →
R} s.t. f1, ..., fn are alg. independent and

{fi, fj} = 0 for all i, j, and n = 1
2dimM.

For a complex symplectic mfld, (M,ω), a com-

pletely integrable system is {f1, ..., fn : M →
C} s.t. f1, ..., fn are alg. independent and

{fi, fj} = 0 for all i, j, and n = 1
2dimCM.
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Let F be a surface F of genus g. Let G simple,

G 6= C∗.

dimXG(F ) = (2g − 2)dimG

Hence, dimXSU(2)(F ) = 6g − 6 and

dimCXSL(2,C)(F ) = 6g − 6.

Thm τ1, ..., τ3g−3 form a completely integrable

system on XSU(2)(F ) and on XSL(2,C)(F ).

Rk Note that τ1, ..., τ3g−3 : XSU(2)(F )→ R.
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Proof:

(1) Poisson commuting:

Thm(Goldman)

For every classical G, loops α, β in F ,

{τα, τβ} =
∑
c∈α∩β expression in τ ’s,

where the sum is over all crossings between α

and β.

Cor If α and β do not intersect then

{τα, τβ} = 0.

(2) Alg. independence:

For G = SL(2,C) :

As an application of Teichmuller Theory, τ1, ..., τ3g−3

are alg. indep over XPSL(2,R)(F ). Hence, over

XSL(2,C)(F ) as well.
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Alg. independence of τ1, ..., τ3g−3 over XSU(2)(F )

follows from the fact that XSU(2)(F ) is Zariski

dense in XSL(2,C)(F ).

Open: Is XG(F ) completely integrable for other

G? (Problem: Not enough τ ’s.)

Thm(S.) “Analogous” complete integrability

of XG(F ) for all rank 2 Lie groups, eg. SL(3,C),

SU(3).

Open for rank > 2.
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Let us start with G = SL(n,C).

An n-web in a surface F is an oriented graph

in F whose each vertex is either an n-valent

source or an n-valent sink. Loops are allowed.

Crossings are allowed.

The construction of functions τγ on XG(F ) for

G = SL(n,C) can be extended from loops to

n-webs in F.
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Construction of τγ(ρ) for an n-web γ ⊂ F :

Pull all vertices of γ to a base point b of F .

Associate to each edge, e ∈ π1(F, b) of γ

ρ(e) ∈ GL(n,C) ⊂ (Cn)∗ ⊗ Cn.

Associate to each vertex det : ∧nCn → Cn,
i.e. det ∈ ∧n(Cn)∗.

τγ(ρ) is the contraction of these tensors over

all edges.

Lemma τγ is a function on XSL(n,C)(F ).
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Canonical webs

Lemma For every n,

# of canonical webs in F =

= (g − 1)(n2 − 1) = 1
2dimXSL(n,C)(F ).

This suggests that canonical webs are good

candidates for a completely integrable system.
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Thm (S.) (1) τ ’s for the canonical webs for

n = 3 form a completely integrable system for

XSL(3,C)(F ).

(2) Re τ ’s for the canonical webs form a com-

pletely integrable system for XSU(3)(F ).

Proof:

Lemma If α and β are disjoint n-webs in F ,

then {τα, τβ} = 0.

Since the canonical graphs are pairwise disjoint

for n = 3, they Poisson commute.

.
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Proof of alg. independence of
τ1, ..., τ8(g−1) : XSL(3,C)(F )→ C.

Thm (S.) τ ’s give an isomorphism
C{3-webs in F}/Kuperberg rels→ C[XSL(3,C)(F )]

I have a version of this theorem for all n.

Thm(S.-Westbury)
C{3-webs in F}/Kuperberg rels
has a basis composed of all 3-webs without
crossings, bi-gons and true 4-gons.

Proof uses “confluence method” for graphs de-
veloped with B. Westbury.

Using this result, it is easy to prove that mono-
mials in canonical webs are lin. independent.
Hence τ ’s are alg. indep. for canonical graphs.
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(2) The proof of Re τ ’s being alg. indep. over
XSU(3)(F ) is technical. (Not enough to show
that XSU(3)(F ) is Zariski dense in XSL(3,C)(F ).)

Thm. (S.) There is analogous statements for
all other Lie groups of rank 2: (P )SO(4,C),
(P )Sp(4,C), (P )SO(5,C), G2.

Proof:

Step 1 There is enough known about the in-
variant theory for rank 2 Lie groups, to de-
scribe C[XG(F )] as a certain algebra of graphs
in F mod local relations.

Step 2 For rank(G) = 2 our “confluence method”
gives explicit, canonical bases of C[XG(F )].

Using those bases, one shows that all mono-
mials in canonical webs are lin. indep.

Step 3 For compact groups...
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For SL(n,C) for n ≥ 4,

# of canonical webs = 1
2dimXG(F )

but τ ’s for canonical webs do not Poisson com-

mute for n ≥ 4.
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