Compactification of moduli spaces of completely reducible representations

1

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

Anne Parreau

Institut Fourier, Université de Grenoble, France

July 2010

Settings

Counsider

- Γ any finitely generated group
- G a reductive group over a local field K
 Example G = SL_n(K)
 K = R (archimedean)
 K = Q_p (non archimedean)
- The space of representations is $R = Hom(\Gamma, G)$

Geometric interpretation

G acts on the associated symmetric space *X* or euclidean building (non-archimedean case)

Example for $G = SL_2(\mathbb{R})$, $X = \mathbb{H}^2$.

It is a nonpositively curved metric space

We are interested in the quotient space of R under G

Example For $\Gamma = \pi_1(S)$

- ► G = SL₂(ℝ) : Teichmüller space a cc of R/G
- $G = SL_n(\mathbb{R}) : \mathcal{T}(S)$ is included in a cc of R/G which is a cell (Hitchin)

Problem Naïve quotient R/G is not Hausdorff

(Some orbits are not closed)

Goal

- 1. Construct geometrically a good quotient space $\mathcal{X} = R//G$
- 2. Construct a compactification of \mathcal{X}
 - mimic Thurston's compactification of Teichmüller space.
 - ▶ replace the usual distance on X by a the "€-distance".

Outline

- 1. Good quotient space $\mathcal{X} = R//G$ via complete reducibility
- 2. The \mathfrak{C} -distance on X
- 3. Compactification of $\mathcal{X} = R//G$

◆□▶▲@▶▲目▶▲目▶ ④< ④

Outline

- Good quotient space X = R//G via complete reducibility complete reducibility in X Good quotient
- 2. The C-distance on X
- 3. Compactification of $\mathcal{X} = R//G$

◆□> < @> < E> < E> EIE のQ@

How to construct a good quotient ?

Remarks

- Closed orbits does not imply Hausdorff quotient in general Example : Γ = ℤ, X = ℝ² and G = Isom (X)
- Classical methods : Algebraic geometry (GIT)

 Symplectic geometry, moment map
 · good quotient from closed orbits
- ► We give a geometric definition and proof (via action on *X*)

Good quotient space $\mathcal{X} = R//G$ via complete reducibility

Complete reducibility on Hadamard spaces

For two points α , β in $\partial_{\infty} X$ opposite= joined by a geodesic in X

Definition (Serre) $\rho: \Gamma \to G$ is completely reducible (cr) if, if ρ fixes some point in $\partial_{\infty} X$ then ρ also fixes an opposite point in $\partial_{\infty} X$

For $G = SL_n \mathbb{R}$ and $X = SL_n/SO(n) : \rho$ cr $\Leftrightarrow \rho$ semisimple on \mathbb{R}^n

Geometric characterizations of cr

To a representation $\rho : \Gamma \longrightarrow G$ we associate the convex function on *X* (displacement function)

$$egin{array}{rcl} d_{
ho} & : & X &
ightarrow & \mathbb{R}^+ \ & x & \mapsto & \sqrt{\sum_{m{s} \in \mathcal{S}} d(x,
ho(m{s})x)^2} \end{array}$$

Theorem

Suppose $\mathbb{K} = \mathbb{R}$. For $\rho : \Gamma \longrightarrow G$, tfae

- (i) ρ is completely reducible
- (ii) ρ stabilize a closed convex $Y \subset X$, and $Y = Y_0 \times Y'$ with Y_0 translated and no fixed point in $\partial_{\infty} Y'$.

(iii) d_{ρ} has a minimal value

Remarks

- $(iii) \Rightarrow (i)$ false in a tree
- related to existence of harmonic maps

Good quotient space $\mathcal{X} = R//G$ via complete reducibility

Good quotient of $R = Hom(\Gamma, G)$

Theorem

- Every orbit contains in it closure a unique cr orbit
- The corresponding "semisimplification" map π : R → R_{cr}/G is the biggest Hausdorff quotient.

This is a classical result from GIT for $\mathbb{K} = \mathbb{C}$ $\mathbb{K} = \mathbb{R}$: Luna, Richardson-Slodowy (moment map) Local fiels of char 0 : Bremigan 94

We give a new proof : direct, geometric, valid for all local fields (including the new case of char > 0)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

- 1. Good quotient space $\mathcal{X} = R//G$ via complete reducibility
- The C-distance on X Definition
 C-length of an isometry
- 3. Compactification of $\mathcal{X} = \mathbf{R}//\mathbf{G}$

The *C*-distance on *X*

The C-distance on X

Fix $x_0 \in X$, a maximal flat \mathbb{A} of X and \mathfrak{C} a Weyl chamber in \mathbb{A} .

Example

For $G = SL_n$

•
$$\mathbb{A} = \{(\lambda_1, \dots, \lambda_n), \sum \lambda_i = 0\}$$

• $\mathfrak{C} = \{(\lambda_1 \ge \dots \ge \lambda_n)\}$

Fact

 $\overline{\mathfrak{C}}$ is a strict fundamental domain for $K = \operatorname{Stab}_G x_0$ in X.

Definition

The C-distance is the corresponding projection

$$\delta: \mathbf{X} \times \mathbf{X} \longrightarrow \overline{\mathfrak{C}}$$

refines usual distance (equal in rk 1)

Properties of the C-distance

Remark

The $\mathfrak{C}\text{-distance }\delta$ satifies remarkable distance-like properties, notably

- triangular inequalities
- convexity properties

with respects to a suitable partial order in \mathbb{A} (work in progress)

c-length of an isometry

Define the \mathfrak{C} -length of $g \in G$ by

$$\ell^{\mathfrak{C}}(g) = \inf_{x \in X} \delta(x, gx)$$

- "inf" is for the partial order on A
- The & length refines usual translation length (equal in rk 1)
- Algebraically it is Jordan projection.
- For G = SL_n, it's ℓ^𝔅(g) = (log |λ₁(g)| ≥ ... ≥ log |λ_n(g)|) (eigenvalues)

Outline

1. Good quotient space $\mathcal{X} = R//G$ via complete reducibility

2. The C-distance on X

3. Compactification of $\mathcal{X} = R//G$ Construction On the proof

Compactification of $\mathcal{X} = R//G$

Let $\mathcal{X} = R//G = R_{cr}/G$ the biggest Hausdorff quotient of $R = \text{Hom}(\Gamma, G)$ under G.

For $\rho: \Gamma \longrightarrow G$ the (marked) \mathfrak{C} -length spectrum is

$$\ell^{\mathfrak{C}} \circ \rho \in \overline{\mathfrak{C}}^{\Gamma}$$

• Projectivization : $\mathbb{P}\overline{\mathfrak{C}}^{\Gamma} = (\overline{\mathfrak{C}}^{\Gamma} - \{0\})/\sim$

(ロ) (同) (E) (E) (E) (O)

Theorem (Compactification) The projectivized \mathfrak{C} -length spectrum $\mathbb{P}\mathcal{L}^{\mathfrak{C}}: \mathcal{X} \to \mathbb{P}\overline{\mathfrak{C}}^{\Gamma}$ $[\rho] \mapsto [\ell^{\mathfrak{C}} \circ \rho]$ induces a compactification $\widetilde{\mathcal{X}}$ of \mathcal{X} , which boundary $\partial_{\infty}\widetilde{\mathcal{X}} - \mathcal{X}$ consists of points $[w] \in \subset \mathbb{P}\overline{\mathfrak{C}}^{\Gamma}$ that are projectivized \mathfrak{C} -length spectra of actions of Γ on euclidean buildings.

Description (convergent sequences) $[\rho_i]_{i\in\mathbb{N}} \to [w] \in \partial_{\infty} \widetilde{\mathcal{X}} \text{ iff } \begin{cases} [\rho_i] \text{ gets out of any compact} \\ [\ell^{\mathfrak{C}} \circ \rho_i] \to [w] \text{ in } \mathbb{P}\overline{\mathfrak{C}}^{\Gamma} \end{cases}$

Remarks

- Extends
 - $G = SL_2(\mathbb{R})$: Thurston's compactification of Teich(S)
 - rk(G) = 1: Morgan-Shalen, Bestvina, Paulin
- Natural action of Out(Γ) on $\widetilde{\mathcal{X}}$
- Gives compactifications for generalized Teichmüller spaces
- For boundary points
 - buildings involved are nondiscrete (extend real trees)
 - no global fixed point
 - If the action comes from ρ : Γ → G(𝔅), where 𝔅 is a non archimedean field.

(ロ) (同) (E) (E) (E) (O)

Ingredients of the proof

Renormalize L^c by minimal displacement

$$\lambda(\rho) = \inf_{X} d_{\rho} = \inf_{x \in X} \sqrt{\sum_{s \in S} d(x, \rho(s)x)^2}$$

to stay in a compact of $\overline{\mathfrak{C}}^{\Gamma}$.

- Main point : Show that 0 is not in the closure of $\frac{1}{\lambda} \mathcal{L}^{\mathfrak{C}}(\mathcal{X} C)$ for suitable compact *C*.
- Use asymptotic cones (Gromov) to get actions on buildings
 - C-length pass continuously to asymptotic cones
- Length spectrum of actions on euclidean buildings with no global fixed point are non zero

Thank you for your attention.

Anne.Parreau@ujf-grenoble.fr

◆□ ▶ < @ ▶ < E ▶ < E ▶ E = 9000</p>

the partial order in $\mathbb A$

The partial order in \mathbb{A} $v \ge_{\mathbb{A}} 0$ in \mathbb{A} iff $(v, u) \ge 0$ for all $v \in \mathfrak{C}$

<<

20

<

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Denote by $\Theta : \mathbb{A} \longrightarrow \overline{\mathfrak{C}}$ the canonical projection.