Compactification of moduli spaces of completely reducible representations

Anne Parreau

Institut Fourier,
Université de Grenoble, France
July 2010

Settings

Counsider

- 「 any finitely generated group
- G a reductive group over a local field \mathbb{K} Example $G=\operatorname{SL}_{n}(\mathbb{K}) \vee \mathbb{K}=\mathbb{R}$ (archimedean)
- $\mathbb{K}=\mathbb{Q}_{p}$ (non archimedean)

The space of representations is $R=\operatorname{Hom}(\Gamma, G)$
Geometric interpretation
G acts on the associated symmetric space X or euclidean building (non-archimedean case)
Example for $G=\mathrm{SL}_{2}(\mathbb{R}), X=\mathbb{H}^{2}$.
It is a nonpositively curved metric space

We are interested in the quotient space of R under G
Example For $\Gamma=\pi_{1}(S)$

- $G=\mathrm{SL}_{2}(\mathbb{R})$: Teichmüller space a cc of R / G
- $G=\operatorname{SL}_{n}(\mathbb{R}): \mathcal{T}(S)$ is included in a cc of R / G which is a cell (Hitchin)

Problem Naïve quotient R / G is not Hausdorff
(Some orbits are not closed)
Goal

1. Construct - geometrically - a good quotient space $\mathcal{X}=R / / G$
2. Construct a compactification of \mathcal{X}

- mimic Thurston's compactification of Teichmüller space.
- replace the usual distance on X by a the " \mathbb{C}-distance".

Outline

1. Good quotient space $\mathcal{X}=R / / G$ via complete reducibility
2. The \mathfrak{C}-distance on X
3. Compactification of $\mathcal{X}=R / / G$

Outline

1. Good quotient space $\mathcal{X}=R / / G$ via complete reducibility complete reducibility in X Good quotient

2. The \mathfrak{C}-distance on X

3. Compactification of $\mathcal{X}=R / / G$

How to construct a good quotient?

Remarks

- Closed orbits does not imply Hausdorff quotient in general Example : $\Gamma=\mathbb{Z}, X=\mathbb{R}^{2}$ and $G=\operatorname{Isom}(X)$
- Classical methods : - Algebraic geometry (GIT)
- Symplectic geometry, moment map
\rightsquigarrow good quotient from closed orbits
- We give a geometric definition and proof (via action on X)

Complete reducibility on Hadamard spaces

For two points α, β in $\partial_{\infty} X$
opposite= joined by a geodesic in X

Definition (Serre)
$\rho: \Gamma \rightarrow G$ is completely reducible (cr) if,
if ρ fixes some point in $\partial_{\infty} X$ then ρ also fixes an opposite point in $\partial_{\infty} X$

For $G=\mathrm{SL}_{n} \mathbb{R}$ and $X=\mathrm{SL}_{n} / \mathrm{SO}(n): \rho \mathrm{cr} \Leftrightarrow \rho$ semisimple on \mathbb{R}^{n}

Geometric characterizations of cr

To a representation $\rho: \Gamma \longrightarrow G$ we associate the convex function on X (displacement function)

$$
\begin{aligned}
d_{\rho}: & X
\end{aligned} \rightarrow \mathbb{R}^{+},{ }^{\sum_{s \in S} d(x, \rho(s) x)^{2}} .
$$

Theorem

Suppose $\mathbb{K}=\mathbb{R}$. For $\rho: \Gamma \longrightarrow G$, tfae
(i) ρ is completely reducible
(ii) ρ stabilize a closed convex $Y \subset X$, and $Y=Y_{0} \times Y^{\prime}$ with Y_{0} translated and no fixed point in $\partial_{\infty} Y^{\prime}$.
(iii) d_{ρ} has a minimal value

Remarks

- (iii) \Rightarrow (i) false in a tree
- related to existence of harmonic maps

Good quotient of $\mathrm{R}=\operatorname{Hom}(\Gamma, G)$

Theorem

- Every orbit contains in it closure a unique cr orbit
- The corresponding "semisimplification" map $\pi: \mathrm{R} \longrightarrow \mathrm{R}_{c r} / \mathrm{G}$ is the biggest Hausdorff quotient.

This is a classical result from GIT for $\mathbb{K}=\mathbb{C}$ $\mathbb{K}=\mathbb{R}:$ Luna, Richardson-Slodowy (moment map) Local fiels of char 0 : Bremigan 94

We give a new proof : direct, geometric, valid for all local fields (including the new case of char >0)

Outline

1. Good quotient space $\mathcal{X}=R / / G$ via complete reducibility
2. The \mathfrak{C}-distance on X

Definition
\mathfrak{C}-length of an isometry
3. Compactification of $\mathcal{X}=R / / G$

保

The \mathfrak{C}-distance on X

Fix $x_{0} \in X$, a maximal flat \mathbb{A} of X and \mathfrak{C} a Weyl chamber in \mathbb{A}.

Example

For $G=\mathrm{SL}_{n}$

- $\mathbb{A}=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right), \sum \lambda_{i}=0\right\}$
- $\mathfrak{C}=\left\{\left(\lambda_{1} \geq \ldots \geq \lambda_{n}\right)\right\}$

Fact
$\overline{\mathfrak{C}}$ is a strict fundamental domain for $K=\operatorname{Stab}_{G} X_{0}$ in X.
Definition
The \mathfrak{C}-distance is the corresponding projection

$$
\delta: X \times X \longrightarrow \overline{\mathfrak{C}}
$$

- refines usual distance (equal in rk 1)

Properties of the \mathfrak{C}-distance

Remark

The \mathfrak{C}-distance δ satifies remarkable distance-like properties, notably

- triangular inequalities
- convexity properties
with respects to a suitable partial order in \mathbb{A}
(work in progress)

\mathfrak{C}-length of an isometry

Define the \mathfrak{C}-length of $g \in G$ by

$$
\ell^{\mathfrak{C}}(g)=\inf _{x \in X} \delta(x, g x)
$$

- "inf" is for the partial order on \mathbb{A}
- The \mathfrak{C}-length refines usual translation length (equal in rk 1)
- Algebraically it is Jordan projection.
- For $G=\operatorname{SL}_{n}$, it's $\ell^{\mathscr{C}}(g)=\left(\log \left|\lambda_{1}(g)\right| \geq \ldots \geq \log \left|\lambda_{n}(g)\right|\right)$ (eigenvalues)

Outline

1. Good quotient space $\mathcal{X}=R / / G$ via complete reducibility
2. The \mathfrak{C}-distance on X
3. Compactification of $\mathcal{X}=R / / G$

Construction
On the proof

Compactification of $\mathcal{X}=R / / G$

Let $\mathcal{X}=R / / G=\mathrm{R}_{c r} / G$ the biggest Hausdorff quotient of $R=\operatorname{Hom}(\Gamma, G)$ under G.

- For $\rho: \Gamma \longrightarrow G$ the (marked) \mathfrak{C}-length spectrum is

$$
\ell^{\mathfrak{C}} \circ \rho \in \overline{\mathfrak{C}}^{\Gamma}
$$

- Projectivization : $\mathbb{P} \overline{C^{\Gamma}}=(\overline{\mathfrak{C}}-\{0\}) / \sim$

Theorem (Compactification)
The projectivized \mathfrak{C}-length spectrum

$$
\begin{aligned}
\mathbb{P} \mathcal{L}^{\mathfrak{C}}: \mathcal{X} & \rightarrow \mathbb{P} \overline{\mathcal{C}^{「}} \\
{[\rho] } & \mapsto\left[\ell^{\mathfrak{C}} \circ \rho\right]
\end{aligned}
$$

induces a compactification $\widetilde{\mathcal{X}}$ of \mathcal{X}, which boundary $\partial_{\infty} \tilde{\mathcal{X}}-\mathcal{X}$ consists of points $[\omega] \in \subset \mathbb{P} \overline{\mathbb{C}}^{\ulcorner }$that are
 euclidean buildings.

Description (convergent sequences)
$\left[\rho_{i}\right]_{i \in \mathbb{N}} \rightarrow[w] \in \partial_{\infty} \tilde{\mathcal{X}}$ iff $\left\{\left[\rho_{i}\right]\right.$ gets out of any compact $\left\{\left[\mathscr{C}^{\mathfrak{C}} \circ \rho_{i}\right] \rightarrow[w]\right.$ in $\mathbb{P} \mathbb{C}^{「}$

Remarks

- Extends
- $G=\mathrm{SL}_{2}(\mathbb{R})$:Thurston's compactification of $\operatorname{Teich}(S)$
- $\operatorname{rk}(G)=1$: Morgan-Shalen, Bestvina, Paulin
- Natural action of $\operatorname{Out}(\Gamma)$ on $\widetilde{\mathcal{X}}$
- Gives compactifications for generalized Teichmüller spaces
- For boundary points
- buildings involved are nondiscrete (extend real trees)
- no global fixed point
- the action comes from $\rho: \Gamma \longrightarrow G(\mathbb{F})$, where \mathbb{F} is a non archimedean field.

Ingredients of the proof

- Renormalize $\mathcal{L}^{\mathfrak{C}}$ by minimal displacement

$$
\lambda(\rho)=\inf _{X} d_{\rho}=\inf _{x \in X} \sqrt{\sum_{s \in S} d(x, \rho(s) x)^{2}}
$$

to stay in a compact of $\overline{\mathfrak{C}}$.

- Main point : Show that 0 is not in the closure of $\frac{1}{\lambda} \mathcal{L} \mathcal{C}(\mathcal{X}-C)$ for suitable compact C.
- Use asymptotic cones (Gromov) to get actions on buildings
- \mathfrak{C}-length pass continuously to asymptotic cones
- Length spectrum of actions on euclidean buildings with no global fixed point are non zero

Thank you for your attention.

Anne.Parreau@ujf-grenoble.fr

the partial order in \mathbb{A}

The partial order in \mathbb{A}
$v \geq_{\mathbb{A}} 0$ in \mathbb{A}
iff $(v, u) \geq 0$ for all $v \in \mathfrak{C}$

Positive cone

Denote by $\Theta: \mathbb{A} \longrightarrow \overline{\mathfrak{C}}$ the canonical projection.
\ll

