Polynomial automorphisms of the Fricke characters of a free group

Richard Brown

Johns Hopkins University

July 22, 2010

Richard Brown (Johns Hopkins University) Polynomial automorphisms of the Fricke chara

July 22, 2010 1 / 14

For a rank-*n* free group F_n , call

$$V_{F_n} = Hom(F_n, SL(2, \mathbb{C}))//SL(2, \mathbb{C})$$

the $SL(2, \mathbb{C})$ -character variety of F_n .

For a rank-n free group F_n , call

$$V_{F_n} = Hom(F_n, SL(2, \mathbb{C}))//SL(2, \mathbb{C})$$

the $SL(2, \mathbb{C})$ -character variety of F_n .

 $Out(F_n) = Aut(F_n)/Inn(F_n)$ acts on V_{F_n} . We study the dynamics of this action in terms of how individual elements act.

Today, we discuss a model to facilitate this study.

Order a basis for $F_n = \langle A, B, C, \ldots \rangle$ so that $A > B > C > \ldots$ and extend to all <u>basic words</u>: $\alpha \in F_n$ is *basic* if

- Each letter has exponent one, and
- each letter is strictly greater than its successor.

Order a basis for $F_n = \langle A, B, C, \ldots \rangle$ so that $A > B > C > \ldots$ and extend to all <u>basic words</u>: $\alpha \in F_n$ is *basic* if

- Each letter has exponent one, and
- each letter is strictly greater than its successor.

There are $2^n - 1$ basic words in F_n .

Example (n = 3)

Basic set is $\{A, B, C, AB, AC, BC, ABC\}$.

Order a basis for $F_n = \langle A, B, C, \ldots \rangle$ so that $A > B > C > \ldots$ and extend to all <u>basic words</u>: $\alpha \in F_n$ is *basic* if

- Each letter has exponent one, and
- each letter is strictly greater than its successor.

There are $2^n - 1$ basic words in F_n .

Example (n = 3)

Basic set is $\{A, B, C, AB, AC, BC, ABC\}$.

Order a basis for $F_n = \langle A, B, C, \ldots \rangle$ so that $A > B > C > \ldots$ and extend to all <u>basic words</u>: $\alpha \in F_n$ is *basic* if

- Each letter has exponent one, and
- each letter is strictly greater than its successor.

There are $2^n - 1$ basic words in F_n .

Example (n = 3)

Basic set is $\{A, B, C, AB, AC, BC, ABC\}$.

Also, for $\alpha \in F_n$, call

 tr_{α} : $Hom(F_n, SL(2, \mathbb{C})) \to \mathbb{C}, \quad tr_{\alpha}(\phi) = tr(\phi(\alpha))$

the $SL(2, \mathbb{C})$ -character of α .

Order a basis for $F_n = \langle A, B, C, \ldots \rangle$ so that $A > B > C > \ldots$ and extend to all <u>basic words</u>: $\alpha \in F_n$ is *basic* if

- Each letter has exponent one, and
- each letter is strictly greater than its successor.

There are $2^n - 1$ basic words in F_n .

Example (n = 3)

Basic set is $\{A, B, C, AB, AC, BC, ABC\}$.

Also, for $\alpha \in F_n$, call

$$tr_{\alpha}: Hom(F_n, SL(2, \mathbb{C})) \to \mathbb{C}, \quad tr_{\alpha}(\phi) = tr(\phi(\alpha))$$

the $SL(2, \mathbb{C})$ -character of α . Call $\mathcal{H}_n = \{ tr_\beta | \beta \text{ is basic in } F_n \}$ the *Horowitz generating set*.

Theorem (Horowitz)

For any $\alpha \in F_n$, $tr_{\alpha} \in \mathbb{Z}[\mathcal{H}_n]$.

For n > 2, \exists a nontrivial ideal $\mathcal{I}_n \subset \mathbb{Z}[\mathcal{H}_n]$ of "trace relations": Complicated versions of Cayley-Ham. form of characteristic poly. of elements in $SL(2, \mathbb{C})$:

 $tr_{AB} = tr_A tr_B - tr_{AB^{-1}}.$

For n > 2, \exists a nontrivial ideal $\mathcal{I}_n \subset \mathbb{Z}[\mathcal{H}_n]$ of "trace relations": Complicated versions of Cayley-Ham. form of characteristic poly. of elements in $SL(2, \mathbb{C})$:

$$tr_{AB} = tr_A tr_B - tr_{AB^{-1}}.$$

Magnus called $\mathbb{Z}[\mathcal{H}_n]/\mathcal{I}_n$ the ring of Fricke Characters of F_n .

For n > 2, \exists a nontrivial ideal $\mathcal{I}_n \subset \mathbb{Z}[\mathcal{H}_n]$ of "trace relations": Complicated versions of Cayley-Ham. form of characteristic poly. of elements in $SL(2, \mathbb{C})$:

$$tr_{AB} = tr_A tr_B - tr_{AB^{-1}}.$$

Magnus called $\mathbb{Z}[\mathcal{H}_n]/\mathcal{I}_n$ the ring of Fricke Characters of F_n . Via the CS-evaluation map

$$T: Hom(F_n, SL(2, \mathbb{C})) \to \mathbb{C}^{2^n-1}, \quad T(\phi) = (\mathcal{H}_n(\phi)),$$

 $V_{F_n} = T(Hom(F_n, SL(2, \mathbb{C}))) \subset \mathbb{C}^{2^n-1}(\mathcal{H}_n \text{ called trace coordinates})$ as the common 0-set of \mathcal{I}_n .

Example (Gonz.-Acuña, Mont.-Am.)

 $V_{F_2} \cong \mathbb{C}^3$ and for $n \ge 2$, $V_{F_n} \subset \mathbb{C}^{2^n-1}$ is 3n-3-dim. \mathcal{I}_3 is principal, but a basis for \mathcal{I}_4 uses 12 gens. to cut the 9-dim. V_{F_4} out of \mathbb{C}^{15} .

To describe the $Out(F_n)$ action, present $F_n = \langle A_1, A_2, A_3, \ldots \rangle$, so that

$$U: A_1 \mapsto A_1 A_2 \quad P: \begin{array}{cc} A_1 \mapsto A_2 \\ A_2 \mapsto A_1 \end{array} \quad Q: \begin{array}{cc} A_i \mapsto A_{i+1} \\ A_n \mapsto A_1 \end{array} \quad \sigma: A_1 \mapsto A_1^{-1}$$

are the 4 Nielsen generators of $Aut(F_n)$.

To describe the $Out(F_n)$ action, present $F_n = \langle A_1, A_2, A_3, \ldots \rangle$, so that

$$U: A_1 \mapsto A_1 A_2 \quad P: \begin{array}{cc} A_1 \mapsto A_2 \\ A_2 \mapsto A_1 \end{array} \quad Q: \begin{array}{cc} A_i \mapsto A_{i+1} \\ A_n \mapsto A_1 \end{array} \quad \sigma: A_1 \mapsto A_1^{-1}$$

are the 4 Nielsen generators of $Aut(F_n)$.

Interp. as outer autos., their action on \mathcal{H}_n specifies the action on $\mathbb{Z}[\mathcal{H}_n]/\mathcal{I}_n$. Individually, we can extend each to an auto of $\mathbb{Z}[\mathcal{H}_n]$. But not uniquely for n > 2.

To describe the $Out(F_n)$ action, present $F_n = \langle A_1, A_2, A_3, \ldots \rangle$, so that

$$U: A_1 \mapsto A_1 A_2 \quad P: \begin{array}{cc} A_1 \mapsto A_2 \\ A_2 \mapsto A_1 \end{array} \quad Q: \begin{array}{cc} A_i \mapsto A_{i+1} \\ A_n \mapsto A_1 \end{array} \quad \sigma: A_1 \mapsto A_1^{-1}$$

are the 4 Nielsen generators of $Aut(F_n)$.

Interp. as outer autos., their action on \mathcal{H}_n specifies the action on $\mathbb{Z}[\mathcal{H}_n]/\mathcal{I}_n$. Individually, we can extend each to an auto of $\mathbb{Z}[\mathcal{H}_n]$. But not uniquely for n > 2.

Via the eval. map, each of U, P, Q, σ yields a poly. auto. of \mathbb{C}^{2^n-1} . The (right) action is given by

For
$$\theta \in Out(F_n)$$
, $\widehat{\theta} : \mathbb{C}^{2^n-1} \to \mathbb{C}^{2^n-1}$, $tr_{\theta(\alpha)} = (tr_{\alpha})\widehat{\theta}$.

To describe the $Out(F_n)$ action, present $F_n = \langle A_1, A_2, A_3, \ldots \rangle$, so that

$$U: A_1 \mapsto A_1 A_2 \quad P: \begin{array}{cc} A_1 \mapsto A_2 \\ A_2 \mapsto A_1 \end{array} \quad Q: \begin{array}{cc} A_i \mapsto A_{i+1} \\ A_n \mapsto A_1 \end{array} \quad \sigma: A_1 \mapsto A_1^{-1}$$

are the 4 Nielsen generators of $Aut(F_n)$.

Interp. as outer autos., their action on \mathcal{H}_n specifies the action on $\mathbb{Z}[\mathcal{H}_n]/\mathcal{I}_n$. Individually, we can extend each to an auto of $\mathbb{Z}[\mathcal{H}_n]$. But not uniquely for n > 2.

Via the eval. map, each of U, P, Q, σ yields a poly. auto. of \mathbb{C}^{2^n-1} . The (right) action is given by

For
$$\theta \in Out(F_n)$$
, $\widehat{\theta} : \mathbb{C}^{2^n-1} \to \mathbb{C}^{2^n-1}$, $tr_{\theta(\alpha)} = (tr_{\alpha})\widehat{\theta}$.

Example
$$(n = 3 : V_{F_3} \in \mathbb{C}^7$$
 with coords. $(tr_A, tr_B, \dots, tr_{ABC}))$
 $(tr_{ABC}) \hat{U} = tr_{ABBC} = tr_{CABB} = tr_{CAB} tr_B - tr_{CABB^{-1}} = tr_{ABC} tr_B - tr_{AC}.$

伺下 くまた くまた しき

Example $(n = 2$: Let $(tr_A, tr_B, tr_{AB}) = (x, y, z))$										
	$ \begin{array}{cccc} z & & x \\ y & & \widehat{P}, \widehat{Q}: & y \\ yz - x & & z \end{array} $		$\begin{array}{rccc} x & \mapsto & x \\ y & \mapsto & y \\ z & \mapsto & xy - z \end{array}$							

Example $(n = 3:$ Let $(tr_A, tr_B, \ldots, tr_{ABC}) = (t, u, v, w, x, y, z))$											
	Û			P			Q			$\hat{\sigma}$	
t	⊢	w	t	\mapsto	и	t	\mapsto	и	t	\mapsto	t
u	\mapsto	и	и	\mapsto	t	и	\mapsto	v	и	\mapsto	u
v	\mapsto	v	v	\mapsto	V	v	\mapsto	t	v	\mapsto	v
W	\mapsto	uw – t	w	\mapsto	W	w	\mapsto	у	w	\mapsto	tu — w
x	\mapsto	z	x	\mapsto	у	x	\mapsto	w	x	\mapsto	tv - x
у	\mapsto		у	\mapsto	x	y	\mapsto	x	У	\mapsto	у
z	\mapsto	uz - x	z	\mapsto	-tuv + ty	z	\mapsto	z	z	\mapsto	ty – z
					+ux + vw - z						J

Richard Brown (Johns Hopkins University) Polynomial automorphisms of the Fricke chara

Q. Does $Out(F_n)$ -action on V_{F_n} extend to ambient space \mathbb{C}^{2^n-1} ? (Does action on quotient ring $\mathbb{Z}[\mathcal{H}_n]/\mathcal{I}_n$ extend to an action on $\mathbb{Z}[\mathcal{H}_n]$?)

Q. Does $Out(F_n)$ -action on V_{F_n} extend to ambient space \mathbb{C}^{2^n-1} ? (Does action on quotient ring $\mathbb{Z}[\mathcal{H}_n]/\mathcal{I}_n$ extend to an action on $\mathbb{Z}[\mathcal{H}_n]$?) If yes,

- Would allow for use of the machinery of polynomial autos of affine space.
- Would simplify dynamical study greatly. (E.g., would allow for the computation and class, of periodic points.)

Q. Does $Out(F_n)$ -action on V_{F_n} extend to ambient space \mathbb{C}^{2^n-1} ? (Does action on quotient ring $\mathbb{Z}[\mathcal{H}_n]/\mathcal{I}_n$ extend to an action on $\mathbb{Z}[\mathcal{H}_n]$?) If yes,

- Would allow for use of the machinery of polynomial autos of affine space.
- Would simplify dynamical study greatly. (E.g., would allow for the computation and class, of periodic points.)
- A. No, in general.

Q. Does $Out(F_n)$ -action on V_{F_n} extend to ambient space \mathbb{C}^{2^n-1} ? (Does action on quotient ring $\mathbb{Z}[\mathcal{H}_n]/\mathcal{I}_n$ extend to an action on $\mathbb{Z}[\mathcal{H}_n]$?) If yes,

- Would allow for use of the machinery of polynomial autos of affine space.
- Would simplify dynamical study greatly. (E.g., would allow for the computation and class, of periodic points.)

A. No, in general. "Lift" each of $U, P, Q, \sigma \in Out(F_n)$ to the poly autos $\widehat{U}, \widehat{P}, \widehat{Q}, \widehat{\sigma}$ of \mathbb{C}^{2^n-1} and call $POut(F_n) = \langle \widehat{U}, \widehat{P}, \widehat{Q}, \widehat{\sigma} \rangle$.

Q. Does $Out(F_n)$ -action on V_{F_n} extend to ambient space \mathbb{C}^{2^n-1} ? (Does action on quotient ring $\mathbb{Z}[\mathcal{H}_n]/\mathcal{I}_n$ extend to an action on $\mathbb{Z}[\mathcal{H}_n]$?) If yes,

- Would allow for use of the machinery of polynomial autos of affine space.
- Would simplify dynamical study greatly. (E.g., would allow for the computation and class, of periodic points.)

A. No, in general. "Lift" each of $U, P, Q, \sigma \in Out(F_n)$ to the poly autos $\widehat{U}, \widehat{P}, \widehat{Q}, \widehat{\sigma}$ of \mathbb{C}^{2^n-1} and call $POut(F_n) = \langle \widehat{U}, \widehat{P}, \widehat{Q}, \widehat{\sigma} \rangle$.

Theorem (McCool)

This "lifting" induces an epimorphism

$$\Phi_n: POut(F_n) \to Out(F_n)$$

which is an isomorphism only for $n \leq 3$.

- For n = 2, 3, the $Out(F_n)$ on V_{F_n} extends into ambient space.
- McCool shows this by producing a member of $ker\Phi_n$, n > 3.
- very little additional info is known about ker Φ_n , n > 3.

- For n = 2, 3, the $Out(F_n)$ on V_{F_n} extends into ambient space.
- McCool shows this by producing a member of $ker\Phi_n$, n > 3.
- very little additional info is known about ker Φ_n , n > 3.

Theorem (Brown)

For $n \in \mathbb{N}$, $POut(F_n)$ acts on \mathbb{C}^{2^n-1} as volume preserving integer poly autos which leave invariant V_{F_n} and restrict to volume preserving $Out(F_n)$ action on V_{F_n} .

- For n = 2, 3, the $Out(F_n)$ on V_{F_n} extends into ambient space.
- McCool shows this by producing a member of $ker\Phi_n$, n > 3.
- very little additional info is known about ker Φ_n , n > 3.

Theorem (Brown)

For $n \in \mathbb{N}$, $POut(F_n)$ acts on \mathbb{C}^{2^n-1} as volume preserving integer poly autos which leave invariant V_{F_n} and restrict to volume preserving $Out(F_n)$ action on V_{F_n} .

Essentially, for $\theta \in POut(F_n)$, $\left|Jac(\widehat{\theta})\right| \equiv 1$ everywhere.

- For n = 2, 3, the $Out(F_n)$ on V_{F_n} extends into ambient space.
- McCool shows this by producing a member of $ker\Phi_n$, n > 3.
- very little additional info is known about ker Φ_n , n > 3.

Theorem (Brown)

For $n \in \mathbb{N}$, $POut(F_n)$ acts on \mathbb{C}^{2^n-1} as volume preserving integer poly autos which leave invariant V_{F_n} and restrict to volume preserving $Out(F_n)$ action on V_{F_n} .

Essentially, for
$$heta\in POut({\sf F}_n), \, \left| {\sf Jac}(\widehat{ heta})
ight|\equiv 1$$
 everywhere.

Theorem (Brown)

Let $F_n = \pi_1(S)$ for a compact surface S, and call PMCG(S) the pre-image of MCG(S) under Φ_n . Then PMCG(S) acts as unit Jacobian polynomial automorphisms on \mathbb{C}^{2^n-1} which restrict to the MCG(S) action on V_{F_n} .

Theorem (Brown) ker $\Phi_4 = \langle \hat{K}_1, \hat{K}_2, \hat{K}_3 | \hat{K}_1^2 = \hat{K}_2^2 = \hat{K}_3^2 = 1 \rangle$, the universal rank-3 Coxeter group.

Theorem (Brown)

ker
$$\Phi_4 = \langle \widehat{K}_1, \widehat{K}_2, \widehat{K}_3 | \widehat{K}_1^2 = \widehat{K}_2^2 = \widehat{K}_3^2 = 1 \rangle$$
, the universal rank-3 Coxeter group.

In the Nielsen presentation, there are 18 non-inner relations. Of these, 3 do not evaluate to 1 in $POut(F_n)$:

$$R_{1} = \left[Q^{-1}PQPQ^{-1}, U^{-1}\right], \quad R_{2} = U^{-1}QU^{-1}Q^{-1}U\left(QUQ^{-1}P\right)^{2}, \quad R_{3} = (PQ)^{n-1}.$$

Theorem (Brown)

 $\ker \Phi_4 = \langle \widehat{K}_1, \widehat{K}_2, \widehat{K}_3 \Big| \widehat{K}_1^2 = \widehat{K}_2^2 = \widehat{K}_3^2 = 1 \rangle, \text{ the universal rank-3 Coxeter group.}$

In the Nielsen presentation, there are 18 non-inner relations. Of these, 3 do not evaluate to 1 in $POut(F_n)$:

$$R_{1} = \left[Q^{-1}PQPQ^{-1}, U^{-1}\right], \quad R_{2} = U^{-1}QU^{-1}Q^{-1}U\left(QUQ^{-1}P\right)^{2}, \quad R_{3} = (PQ)^{n-1}.$$

For the case where n = 4, one can show directly that $\widehat{R}_3 = (PQ)^3$ is an involution of \mathbb{C}^{15} , but that \widehat{R}_1 and \widehat{R}_2 are of infinite order.

Theorem (Brown)

 $\ker \Phi_4 = \langle \widehat{K}_1, \widehat{K}_2, \widehat{K}_3 \Big| \widehat{K}_1^2 = \widehat{K}_2^2 = \widehat{K}_3^2 = 1 \rangle, \text{ the universal rank-3 Coxeter group.}$

In the Nielsen presentation, there are 18 non-inner relations. Of these, 3 do not evaluate to 1 in $POut(F_n)$:

$$R_1 = \left[Q^{-1}PQPQ^{-1}, U^{-1}\right], \quad R_2 = U^{-1}QU^{-1}Q^{-1}U\left(QUQ^{-1}P\right)^2, \quad R_3 = (PQ)^{n-1}.$$

For the case where n = 4, one can show directly that $\widehat{R}_3 = (PQ)^3$ is an involution of \mathbb{C}^{15} , but that \widehat{R}_1 and \widehat{R}_2 are of infinite order. However, let $K_3 = R_3$, and $K_i = R_i R_3$, i = 1, 2. Then $\widehat{K}_1, \widehat{K}_2, \widehat{K}_3$ are all involutions.

Generators of $ker \Phi_4$

Let $F_4 = \langle A, B, C, D \rangle$, so that

$$\mathcal{H}_4 = \{tr_A, tr_B, tr_C, tr_D, tr_{AB}, \dots, tr_{BCD}, tr_{ABCD}\} \\ = \{l, m, n, o, p, \dots, y, z\}$$

as coordinates of \mathbb{C}^{15} .

< A > < > > <

Generators of $ker \Phi_4$

Let $F_4 = \langle A, B, C, D \rangle$, so that

$$\mathcal{H}_4 = \{tr_A, tr_B, tr_C, tr_D, tr_{AB}, \dots, tr_{BCD}, tr_{ABCD}\} \\ = \{l, m, n, o, p, \dots, y, z\}$$

as coordinates of \mathbb{C}^{15} . Then

 \rightarrow 1 1 \mapsto 1 \rightarrow m \mapsto m m \mapsto m m \rightarrow m п \mapsto n n \mapsto п п \mapsto п 0 \mapsto 0 \mapsto \mapsto 0 0 0 0 D \mapsto D р p \rightarrow p \rightarrow р q \mapsto q q q \mapsto q \mapsto q \mapsto r r r \rightarrow r r \rightarrow r s \rightarrow s s \mapsto s s \mapsto s \widehat{K}_1 : \widehat{K}_2 : t \mapsto t \widehat{K}_3 : t \mapsto t \mapsto (1)t t п \mapsto 11 ... \rightarrow и ... \rightarrow и v \rightarrow v \mapsto \mapsto ν v v v w \rightarrow w -lmo - lnv + lsuw \rightarrow w \mapsto w х \mapsto х +lt + mr + nz + op-lno - mov + opsх \rightarrow y \mapsto v +qy - sx - uy - w+lu + mz + nr + oq7 \mapsto Imno – Imu – Ios х \rightarrow х -py - sw + tv - x-mnr - nop + lyy \rightarrow y y \rightarrow y +mx + nw + ov7 z z z \rightarrow \rightarrow +pu + rs - at - z

July 22, 2010 10 / 14

3

< < p>< < p>

Showing there are no other relations among the \hat{K}_i , i = 1, 2, 3, is tricky, but amounts to constructing the geometric representation that defines the Coxeter group explicitly. This is done by restricting these autos to an appropriate invariant vector space in \mathbb{C}^{15} .

Showing there are no other relations among the \hat{K}_i , i = 1, 2, 3, is tricky, but amounts to constructing the geometric representation that defines the Coxeter group explicitly. This is done by restricting these autos to an appropriate invariant vector space in \mathbb{C}^{15} .

Theorem (Brown)

For n > 4, ker Φ_n is rank-3 with all generators of infinite order.

Constructing $POut(F_n)$ via other CS-embeddings into \mathbb{C}^m does not lead to an action by volume preserving automorphisms.

Constructing $POut(F_n)$ via other CS-embeddings into \mathbb{C}^m does not lead to an action by volume preserving automorphisms. GAMA embeds $V_{F_n} \subset \mathbb{C}^m$, $m = \frac{n(n^2+5)}{6}$ using only Horowitz generators of basic words of word-length 3 or less (with rational coefficients). Here one can show that \widehat{U} has nonconstant Jacobian which degenerates along a line.

Constructing $POut(F_n)$ via other CS-embeddings into \mathbb{C}^m does not lead to an action by volume preserving automorphisms. GAMA embeds $V_{F_n} \subset \mathbb{C}^m$, $m = \frac{n(n^2+5)}{6}$ using only Horowitz generators of basic words of word-length 3 or less (with rational coefficients). Here one can show that \widehat{U} has nonconstant Jacobian which degenerates along a line.

Remark (New reps of subgroups of $Out(F_n)$ and MCG(S))

Let $p \in V_{F_n}$ be periodic under $POut(F_n)$. Then $POut(F_n)_p$ is a finite index subgroup.

Constructing $POut(F_n)$ via other CS-embeddings into \mathbb{C}^m does not lead to an action by volume preserving automorphisms. GAMA embeds $V_{F_n} \subset \mathbb{C}^m$, $m = \frac{n(n^2+5)}{6}$ using only Horowitz generators of basic words of word-length 3 or less (with rational coefficients). Here one can show that \widehat{U} has nonconstant Jacobian which degenerates along a line.

Remark (New reps of subgroups of $Out(F_n)$ and MCG(S))

Let $p \in V_{F_n}$ be periodic under $POut(F_n)$. Then $POut(F_n)_p$ is a finite index subgroup. The resulting tangent linear representation is a rep into $SL(2^n - 1, \mathbb{C})$ which restricts to a rep of $Out(F_n)_p$ into $SL(3n - 3, \mathbb{C})$ (at least off of the singular set).

イロト 不得下 イヨト イヨト 三日

One can construct a pseudo-Anosov auto of a surface group corresponding to a high genus surface by lifting one from a lower genus surface via a covering map. [GD'03]

One can construct a pseudo-Anosov auto of a surface group corresponding to a high genus surface by lifting one from a lower genus surface via a covering map. [GD'03] A covering $\rho: S \to T$ induces $\rho_*: \pi_1(S) \hookrightarrow \pi_1(T)$ which induces $\overline{\rho}: V_{\pi_1(T)} \hookrightarrow V_{\pi_1(S)}$, an embedding.

One can construct a pseudo-Anosov auto of a surface group corresponding to a high genus surface by lifting one from a lower genus surface via a covering map. [GD'03] A covering $\rho: S \to T$ induces $\rho_*: \pi_1(S) \hookrightarrow \pi_1(T)$ which induces $\overline{\rho}: V_{\pi_1(T)} \hookrightarrow V_{\pi_1(S)}$, an embedding. Mapping classes which commute with ρ agree on $\overline{p}(V_{\pi_1(T)}) \subset V_{\pi_1(S)}$.

One can construct a pseudo-Anosov auto of a surface group corresponding to a high genus surface by lifting one from a lower genus surface via a covering map. [GD'03] A covering $\rho: S \to T$ induces $\rho_*: \pi_1(S) \hookrightarrow \pi_1(T)$ which induces $\overline{\rho}: V_{\pi_1(T)} \hookrightarrow V_{\pi_1(S)}$, an embedding. Mapping classes which commute with ρ agree on $\overline{p}(V_{\pi_1(T)}) \subset V_{\pi_1(S)}$.

• this makes the hunt for periodic points easier.

One can construct a pseudo-Anosov auto of a surface group corresponding to a high genus surface by lifting one from a lower genus surface via a covering map. [GD'03] A covering $\rho: S \to T$ induces $\rho_*: \pi_1(S) \hookrightarrow \pi_1(T)$ which induces $\overline{\rho}: V_{\pi_1(T)} \hookrightarrow V_{\pi_1(S)}$, an embedding. Mapping classes which commute with ρ agree on $\overline{p}(V_{\pi_1(T)}) \subset V_{\pi_1(S)}$.

- this makes the hunt for periodic points easier.
- The dynamical type of a fixed point is known along the tangent directions of the embedding.

One can construct a pseudo-Anosov auto of a surface group corresponding to a high genus surface by lifting one from a lower genus surface via a covering map. [GD'03] A covering $\rho: S \to T$ induces $\rho_*: \pi_1(S) \hookrightarrow \pi_1(T)$ which induces $\overline{\rho}: V_{\pi_1(T)} \hookrightarrow V_{\pi_1(S)}$, an embedding. Mapping classes which commute with ρ agree on $\overline{p}(V_{\pi_1(T)}) \subset V_{\pi_1(S)}$.

- this makes the hunt for periodic points easier.
- The dynamical type of a fixed point is known along the tangent directions of the embedding.
- Can use POut to calculate the dynamical type along the normal directions.

Image: A math and A math and

Application (More Dynamics)

[Bellon-Viallet] For a polynomial endomorphism f of C^m , define the algebraic entropy

$$d_f = \log \lim_{n \to \infty} (degf^n)^{rac{1}{n}}$$

as the asympt exp growth rate of the degree.

- Measures the growth in per. points of f and approx. top. entropy.
- Calculated this for SU(2)-char. var. of a punct. torus (some real points of V_{F2}. [TAMS'06]
- Hadari: The algebraic entropy of an element in $POut(F_n)$ is the same as that of the corresponding element in $Out(F_n)$.