Polynomial automorphisms of the Fricke characters of a free group

Richard Brown

Johns Hopkins University

July 22, 2010

The model

For a rank- n free group F_{n}, call

$$
V_{F_{n}}=\operatorname{Hom}\left(F_{n}, S L(2, \mathbb{C})\right) / / S L(2, \mathbb{C})
$$

the $S L(2, \mathbb{C})$-character variety of F_{n}.

The model

For a rank- n free group F_{n}, call

$$
V_{F_{n}}=\operatorname{Hom}\left(F_{n}, S L(2, \mathbb{C})\right) / / S L(2, \mathbb{C})
$$

the $S L(2, \mathbb{C})$-character variety of F_{n}.
$\operatorname{Out}\left(F_{n}\right)=\operatorname{Aut}\left(F_{n}\right) / \operatorname{Inn}\left(F_{n}\right)$ acts on $V_{F_{n}}$. We study the dynamics of this action in terms of how individual elements act.

Today, we discuss a model to facilitate this study.

Fricke Characters

Order a basis for $F_{n}=\langle A, B, C, \ldots\rangle$ so that $A>B>C>\ldots$ and extend to all basic words: $\alpha \in F_{n}$ is basic if

- Each letter has exponent one, and
- each letter is strictly greater than its successor.

Fricke Characters

Order a basis for $F_{n}=\langle A, B, C, \ldots\rangle$ so that $A>B>C>\ldots$ and extend to all basic words: $\alpha \in F_{n}$ is basic if

- Each letter has exponent one, and
- each letter is strictly greater than its successor.

There are $2^{n}-1$ basic words in F_{n}.

Example $(n=3)$

Basic set is $\{A, B, C, A B, A C, B C, A B C\}$.

Fricke Characters

Order a basis for $F_{n}=\langle A, B, C, \ldots\rangle$ so that $A>B>C>\ldots$ and extend to all basic words: $\alpha \in F_{n}$ is basic if

- Each letter has exponent one, and
- each letter is strictly greater than its successor.

There are $2^{n}-1$ basic words in F_{n}.

Example $(n=3)$

Basic set is $\{A, B, C, A B, A C, B C, A B C\}$.

Fricke Characters

Order a basis for $F_{n}=\langle A, B, C, \ldots\rangle$ so that $A>B>C>\ldots$ and extend to all basic words: $\alpha \in F_{n}$ is basic if

- Each letter has exponent one, and
- each letter is strictly greater than its successor.

There are $2^{n}-1$ basic words in F_{n}.

Example $(n=3)$

Basic set is $\{A, B, C, A B, A C, B C, A B C\}$.
Also, for $\alpha \in F_{n}$, call

$$
\operatorname{tr}_{\alpha}: \operatorname{Hom}\left(F_{n}, S L(2, \mathbb{C})\right) \rightarrow \mathbb{C}, \quad \operatorname{tr}_{\alpha}(\phi)=\operatorname{tr}(\phi(\alpha))
$$

the $S L(2, \mathbb{C})$-character of α.

Fricke Characters

Order a basis for $F_{n}=\langle A, B, C, \ldots\rangle$ so that $A>B>C>\ldots$ and extend to all basic words: $\alpha \in F_{n}$ is basic if

- Each letter has exponent one, and
- each letter is strictly greater than its successor.

There are $2^{n}-1$ basic words in F_{n}.

Example $(n=3)$

Basic set is $\{A, B, C, A B, A C, B C, A B C\}$.
Also, for $\alpha \in F_{n}$, call

$$
\operatorname{tr}_{\alpha}: \operatorname{Hom}\left(F_{n}, S L(2, \mathbb{C})\right) \rightarrow \mathbb{C}, \quad \operatorname{tr}_{\alpha}(\phi)=\operatorname{tr}(\phi(\alpha))
$$

the $S L(2, \mathbb{C})$-character of α. Call $\mathcal{H}_{n}=\left\{\operatorname{tr}_{\beta} \mid \beta\right.$ is basic in $\left.F_{n}\right\}$ the Horowitz generating set.

Theorem (Horowitz)

For any $\alpha \in F_{n}, \operatorname{tr}_{\alpha} \in \mathbb{Z}\left[\mathcal{H}_{n}\right]$.

Fricke Characters

For $n>2, \exists$ a nontrivial ideal $\mathcal{I}_{n} \subset \mathbb{Z}\left[\mathcal{H}_{n}\right]$ of "trace relations": Complicated versions of Cayley-Ham. form of characteristic poly. of elements in $S L(2, \mathbb{C})$:

$$
\operatorname{tr}_{A B}=\operatorname{tr}_{A} t r_{B}-\operatorname{tr}_{A B^{-1}}
$$

Fricke Characters

For $n>2, \exists$ a nontrivial ideal $\mathcal{I}_{n} \subset \mathbb{Z}\left[\mathcal{H}_{n}\right]$ of "trace relations": Complicated versions of Cayley-Ham. form of characteristic poly. of elements in $S L(2, \mathbb{C})$:

$$
t r_{A B}=t r_{A} t r_{B}-t r_{A B^{-1}}
$$

Magnus called $\mathbb{Z}\left[\mathcal{H}_{n}\right] / \mathcal{I}_{n}$ the ring of Fricke Characters of F_{n}.

Fricke Characters

For $n>2, \exists$ a nontrivial ideal $\mathcal{I}_{n} \subset \mathbb{Z}\left[\mathcal{H}_{n}\right]$ of "trace relations": Complicated versions of Cayley-Ham. form of characteristic poly. of elements in $S L(2, \mathbb{C})$:

$$
\operatorname{tr}_{A B}=\operatorname{tr}_{A} t r_{B}-\operatorname{tr}_{A B^{-1}}
$$

Magnus called $\mathbb{Z}\left[\mathcal{H}_{n}\right] / \mathcal{I}_{n}$ the ring of Fricke Characters of F_{n}. Via the CS-evaluation map

$$
T: \operatorname{Hom}\left(F_{n}, S L(2, \mathbb{C})\right) \rightarrow \mathbb{C}^{2^{n}-1}, \quad T(\phi)=\left(\mathcal{H}_{n}(\phi)\right),
$$

$V_{F_{n}}=T\left(\operatorname{Hom}\left(F_{n}, S L(2, \mathbb{C})\right)\right) \subset \mathbb{C}^{2^{n}-1}\left(\mathcal{H}_{n}\right.$ called trace coordinates) as the common 0 -set of \mathcal{I}_{n}.

Example (Gonz.-Acuña,Mont.-Am.)

$V_{F_{2}} \cong \mathbb{C}^{3}$ and for $n \geq 2, V_{F_{n}} \subset \mathbb{C}^{2^{n}-1}$ is $3 n-3$-dim. \mathcal{I}_{3} is principal, but a basis for \mathcal{I}_{4} uses 12 gens. to cut the 9-dim. $V_{F_{4}}$ out of \mathbb{C}^{15}.

Automorphisms of $V_{F_{n}}$

To describe the $\operatorname{Out}\left(F_{n}\right)$ action, present $F_{n}=\left\langle A_{1}, A_{2}, A_{3}, \ldots\right\rangle$, so that

$$
U: A_{1} \mapsto A_{1} A_{2} \quad P: \begin{gathered}
A_{1} \mapsto A_{2} \\
A_{2} \mapsto A_{1}
\end{gathered} \quad Q: \begin{aligned}
& A_{i} \mapsto A_{i+1} \\
& A_{n} \mapsto A_{1}
\end{aligned} \quad \sigma: A_{1} \mapsto A_{1}^{-1}
$$

are the 4 Nielsen generators of $\operatorname{Aut}\left(F_{n}\right)$.

Automorphisms of $V_{F_{n}}$

To describe the $\operatorname{Out}\left(F_{n}\right)$ action, present $F_{n}=\left\langle A_{1}, A_{2}, A_{3}, \ldots\right\rangle$, so that

$$
U: A_{1} \mapsto A_{1} A_{2} \quad P: \begin{gathered}
A_{1} \mapsto A_{2} \\
A_{2} \mapsto A_{1}
\end{gathered} \quad Q: \begin{aligned}
& A_{i} \mapsto A_{i+1} \\
& A_{n} \mapsto A_{1}
\end{aligned} \quad \sigma: A_{1} \mapsto A_{1}^{-1}
$$

are the 4 Nielsen generators of $\operatorname{Aut}\left(F_{n}\right)$.
Interp. as outer autos., their action on \mathcal{H}_{n} specifies the action on $\mathbb{Z}\left[\mathcal{H}_{n}\right] / \mathcal{I}_{n}$. Individually, we can extend each to an auto of $\mathbb{Z}\left[\mathcal{H}_{n}\right]$. But not uniquely for $n>2$.

Automorphisms of $V_{F_{n}}$

To describe the $\operatorname{Out}\left(F_{n}\right)$ action, present $F_{n}=\left\langle A_{1}, A_{2}, A_{3}, \ldots\right\rangle$, so that

$$
U: A_{1} \mapsto A_{1} A_{2} \quad P: \begin{gathered}
A_{1} \mapsto A_{2} \\
A_{2} \mapsto A_{1}
\end{gathered} \quad Q: \begin{aligned}
& A_{i} \mapsto A_{i+1} \\
& A_{n} \mapsto A_{1}
\end{aligned} \quad \sigma: A_{1} \mapsto A_{1}^{-1}
$$

are the 4 Nielsen generators of $\operatorname{Aut}\left(F_{n}\right)$.
Interp. as outer autos., their action on \mathcal{H}_{n} specifies the action on $\mathbb{Z}\left[\mathcal{H}_{n}\right] / \mathcal{I}_{n}$. Individually, we can extend each to an auto of $\mathbb{Z}\left[\mathcal{H}_{n}\right]$. But not uniquely for $n>2$.
Via the eval. map, each of U, P, Q, σ yields a poly. auto. of $\mathbb{C}^{2^{n}-1}$. The (right) action is given by

$$
\text { For } \theta \in \operatorname{Out}\left(F_{n}\right), \quad \widehat{\theta}: \mathbb{C}^{2^{n}-1} \rightarrow \mathbb{C}^{2^{n}-1}, \quad \operatorname{tr}_{\theta(\alpha)}=\left(t r_{\alpha}\right) \widehat{\theta}
$$

Automorphisms of $V_{F_{n}}$

To describe the $\operatorname{Out}\left(F_{n}\right)$ action, present $F_{n}=\left\langle A_{1}, A_{2}, A_{3}, \ldots\right\rangle$, so that

$$
U: A_{1} \mapsto A_{1} A_{2} \quad P: \begin{gathered}
A_{1} \mapsto A_{2} \\
A_{2} \mapsto A_{1}
\end{gathered} \quad Q: \begin{aligned}
& A_{i} \mapsto A_{i+1} \\
& A_{n} \mapsto A_{1}
\end{aligned} \quad \sigma: A_{1} \mapsto A_{1}^{-1}
$$

are the 4 Nielsen generators of $\operatorname{Aut}\left(F_{n}\right)$.
Interp. as outer autos., their action on \mathcal{H}_{n} specifies the action on $\mathbb{Z}\left[\mathcal{H}_{n}\right] / \mathcal{I}_{n}$. Individually, we can extend each to an auto of $\mathbb{Z}\left[\mathcal{H}_{n}\right]$. But not uniquely for $n>2$.
Via the eval. map, each of U, P, Q, σ yields a poly. auto. of $\mathbb{C}^{2^{n}-1}$. The (right) action is given by

$$
\text { For } \theta \in \operatorname{Out}\left(F_{n}\right), \quad \widehat{\theta}: \mathbb{C}^{2^{n}-1} \rightarrow \mathbb{C}^{2^{n}-1}, \quad \operatorname{tr}_{\theta(\alpha)}=\left(\operatorname{tr}_{\alpha}\right) \widehat{\theta}
$$

Example $\left(n=3: V_{F_{3}} \in \mathbb{C}^{7}\right.$ with coords. $\left.\left(t r_{A}, \operatorname{tr}_{B}, \ldots, \operatorname{tr}_{A B C}\right)\right)$
$\left(\operatorname{tr}_{A B C}\right) \widehat{U}=\operatorname{tr}_{A B B C}=t r_{C A B B}=\operatorname{tr}_{C A B} \operatorname{tr}_{B}-\operatorname{tr}_{C A B B^{-1}}=\operatorname{tr}_{A B C} t r_{B}-\operatorname{tr}_{A C}$.

Individual lifts of generators of $\operatorname{Out}\left(F_{n}\right)$

$$
\begin{aligned}
& \text { Example }\left(n=2 \text { : Let }\left(t r_{A}, \operatorname{tr}_{B}, \operatorname{tr}_{A B}\right)=(x, y, z)\right)
\end{aligned}
$$

Individual lifts of generators of $\operatorname{Out}\left(F_{n}\right)$

Example $\left(n=2\right.$: Let $\left.\left(t r_{A}, t r_{B}, \operatorname{tr}_{A B}\right)=(x, y, z)\right)$

$$
\begin{aligned}
& z \mapsto y z-x \quad z \quad \mapsto \quad z \quad z \quad>y=z
\end{aligned}
$$

Example $\left(n=3\right.$: Let $\left.\left(t r_{A}, \operatorname{tr}_{B}, \ldots, \operatorname{tr}_{A B C}\right)=(t, u, v, w, x, y, z)\right)$

	\widehat{U}			\widehat{P}	
t	\mapsto	w	t	\mapsto	u
u	\mapsto	u	u	\mapsto	t
v	\mapsto	v	v	\mapsto	v
w	\mapsto	$u w-t$	w	\mapsto	w
x	\mapsto	z	x	\mapsto	y
y	\mapsto	y	y	\mapsto	x
z	\mapsto	$u z-x$	z	\mapsto	$-t u v+t y$
					$+u x+v w-z$

	\widehat{Q}			$\widehat{\sigma}$	
t	\mapsto	u	t	\mapsto	t
u	\mapsto	v	u	\mapsto	u
v	\mapsto	t	v	\mapsto	v
w	\mapsto	y	w	\mapsto	$t u-w$
x	\mapsto	w	x	\mapsto	$t v-x$
y	\mapsto	x	y	\mapsto	y
z	\mapsto	z	z	\mapsto	$t y-z$

Automorphisms of $V_{F_{n}}$

Q. Does $\operatorname{Out}\left(F_{n}\right)$-action on $V_{F_{n}}$ extend to ambient space $\mathbb{C}^{2^{n}-1}$? (Does action on quotient ring $\mathbb{Z}\left[\mathcal{H}_{n}\right] / \mathcal{I}_{n}$ extend to an action on $\mathbb{Z}\left[\mathcal{H}_{n}\right]$?)

Automorphisms of $V_{F_{n}}$

Q. Does $\operatorname{Out}\left(F_{n}\right)$-action on $V_{F_{n}}$ extend to ambient space $\mathbb{C}^{2^{n}-1}$? (Does action on quotient ring $\mathbb{Z}\left[\mathcal{H}_{n}\right] / \mathcal{I}_{n}$ extend to an action on $\mathbb{Z}\left[\mathcal{H}_{n}\right]$?) If yes,

- Would allow for use of the machinery of polynomial autos of affine space.
- Would simplify dynamical study greatly. (E.g., would allow for the computation and class, of periodic points.)

Automorphisms of $V_{F_{n}}$

Q. Does $\operatorname{Out}\left(F_{n}\right)$-action on $V_{F_{n}}$ extend to ambient space $\mathbb{C}^{2^{n}-1}$? (Does action on quotient ring $\mathbb{Z}\left[\mathcal{H}_{n}\right] / \mathcal{I}_{n}$ extend to an action on $\mathbb{Z}\left[\mathcal{H}_{n}\right]$?) If yes,

- Would allow for use of the machinery of polynomial autos of affine space.
- Would simplify dynamical study greatly. (E.g., would allow for the computation and class, of periodic points.)
A. No, in general.

Automorphisms of $V_{F_{n}}$

Q. Does $\operatorname{Out}\left(F_{n}\right)$-action on $V_{F_{n}}$ extend to ambient space $\mathbb{C}^{2^{n}-1}$? (Does action on quotient ring $\mathbb{Z}\left[\mathcal{H}_{n}\right] / \mathcal{I}_{n}$ extend to an action on $\mathbb{Z}\left[\mathcal{H}_{n}\right]$?) If yes,

- Would allow for use of the machinery of polynomial autos of affine space.
- Would simplify dynamical study greatly. (E.g., would allow for the computation and class, of periodic points.)
A. No, in general. "Lift" each of $U, P, Q, \sigma \in \operatorname{Out}\left(F_{n}\right)$ to the poly autos $\widehat{U}, \widehat{P}, \widehat{Q}, \widehat{\sigma}$ of $\mathbb{C}^{2^{n}-1}$ and call $\operatorname{POut}\left(F_{n}\right)=\langle\widehat{U}, \widehat{P}, \widehat{Q}, \widehat{\sigma}\rangle$.

Automorphisms of $V_{F_{n}}$

Q. Does $\operatorname{Out}\left(F_{n}\right)$-action on $V_{F_{n}}$ extend to ambient space $\mathbb{C}^{2^{n}-1}$? (Does action on quotient ring $\mathbb{Z}\left[\mathcal{H}_{n}\right] / \mathcal{I}_{n}$ extend to an action on $\mathbb{Z}\left[\mathcal{H}_{n}\right]$?) If yes,

- Would allow for use of the machinery of polynomial autos of affine space.
- Would simplify dynamical study greatly. (E.g., would allow for the computation and class, of periodic points.)
A. No, in general. "Lift" each of $U, P, Q, \sigma \in \operatorname{Out}\left(F_{n}\right)$ to the poly autos $\widehat{U}, \widehat{P}, \widehat{Q}, \widehat{\sigma}$ of $\mathbb{C}^{2^{n}-1}$ and call $\operatorname{POut}\left(F_{n}\right)=\langle\widehat{U}, \widehat{P}, \widehat{Q}, \widehat{\sigma}\rangle$.

Theorem (McCool)

This "lifting" induces an epimorphism

$$
\Phi_{n}: \operatorname{POut}\left(F_{n}\right) \rightarrow \operatorname{Out}\left(F_{n}\right)
$$

which is an isomorphism only for $n \leq 3$.

Structure of POut $\left(F_{n}\right)$

- For $n=2,3$, the $\operatorname{Out}\left(F_{n}\right)$ on $V_{F_{n}}$ extends into ambient space.
- McCool shows this by producing a member of $\operatorname{ker} \Phi_{n}, n>3$.
- very little additional info is known about $\operatorname{ker} \Phi_{n}, n>3$.

Structure of $\operatorname{POut}\left(F_{n}\right)$

- For $n=2,3$, the $\operatorname{Out}\left(F_{n}\right)$ on $V_{F_{n}}$ extends into ambient space.
- McCool shows this by producing a member of $\operatorname{ker} \Phi_{n}, n>3$.
- very little additional info is known about $\operatorname{ker} \Phi_{n}, n>3$.

Theorem (Brown)

For $n \in \mathbb{N}$, POut $\left(F_{n}\right)$ acts on $\mathbb{C}^{2^{n}-1}$ as volume preserving integer poly autos which leave invariant $V_{F_{n}}$ and restrict to volume preserving $\operatorname{Out}\left(F_{n}\right)$ action on $V_{F_{n}}$.

Structure of $\operatorname{POut}\left(F_{n}\right)$

- For $n=2,3$, the $\operatorname{Out}\left(F_{n}\right)$ on $V_{F_{n}}$ extends into ambient space.
- McCool shows this by producing a member of $\operatorname{ker} \Phi_{n}, n>3$.
- very little additional info is known about $\operatorname{ker} \Phi_{n}, n>3$.

Theorem (Brown)

For $n \in \mathbb{N}$, POut $\left(F_{n}\right)$ acts on $\mathbb{C}^{2^{n}-1}$ as volume preserving integer poly autos which leave invariant $V_{F_{n}}$ and restrict to volume preserving $\operatorname{Out}\left(F_{n}\right)$ action on $V_{F_{n}}$.
Essentially, for $\theta \in \operatorname{POut}\left(F_{n}\right),|\operatorname{Jac}(\widehat{\theta})| \equiv 1$ everywhere.

Structure of $\operatorname{POut}\left(F_{n}\right)$

- For $n=2,3$, the $\operatorname{Out}\left(F_{n}\right)$ on $V_{F_{n}}$ extends into ambient space.
- McCool shows this by producing a member of $\operatorname{ker} \Phi_{n}, n>3$.
- very little additional info is known about $\operatorname{ker} \Phi_{n}, n>3$.

Theorem (Brown)

For $n \in \mathbb{N}, \operatorname{POut}\left(F_{n}\right)$ acts on $\mathbb{C}^{2^{n}-1}$ as volume preserving integer poly autos which leave invariant $V_{F_{n}}$ and restrict to volume preserving $\operatorname{Out}\left(F_{n}\right)$ action on $V_{F_{n}}$.
Essentially, for $\theta \in \operatorname{POut}\left(F_{n}\right),|\operatorname{Jac}(\widehat{\theta})| \equiv 1$ everywhere.

Theorem (Brown)

Let $F_{n}=\pi_{1}(S)$ for a compact surface S, and call $\operatorname{PMCG}(S)$ the pre-image of $\operatorname{MCG}(S)$ under Φ_{n}. Then $\operatorname{PMCG}(S)$ acts as unit Jacobian polynomial automorphisms on $\mathbb{C}^{2^{n}-1}$ which restrict to the $\operatorname{MCG}(S)$ action on $V_{F_{n}}$.

Structure of $k e r \Phi_{4}$

What can we say about the structure of $\operatorname{ker} \Phi_{n}$? Consider $n=4$.

Structure of $k e r \Phi_{4}$

What can we say about the structure of $\operatorname{ker} \Phi_{n}$? Consider $n=4$.
Theorem (Brown)
$\operatorname{ker} \Phi_{4}=\left\langle\widehat{K}_{1}, \widehat{K}_{2}, \widehat{K}_{3} \mid \widehat{K}_{1}^{2}=\widehat{K}_{2}^{2}=\widehat{K}_{3}^{2}=1\right\rangle$, the universal rank-3 Coxeter group.

Structure of $k e r \Phi_{4}$

What can we say about the structure of $\operatorname{ker} \Phi_{n}$? Consider $n=4$.

Theorem (Brown)

$\operatorname{ker} \Phi_{4}=\left\langle\widehat{K}_{1}, \widehat{K}_{2}, \widehat{K}_{3} \mid \widehat{K}_{1}^{2}=\widehat{K}_{2}^{2}=\widehat{K}_{3}^{2}=1\right\rangle$, the universal rank-3 Coxeter group.
In the Nielsen presentation, there are 18 non-inner relations. Of these, 3 do not evaluate to 1 in $\operatorname{POut}\left(F_{n}\right)$:

$$
R_{1}=\left[Q^{-1} P Q P Q^{-1}, U^{-1}\right], \quad R_{2}=U^{-1} Q U^{-1} Q^{-1} U\left(Q U Q^{-1} P\right)^{2}, \quad R_{3}=(P Q)^{n-1} .
$$

Structure of $k e r \Phi_{4}$

What can we say about the structure of $\operatorname{ker} \Phi_{n}$? Consider $n=4$.

Theorem (Brown)

$\operatorname{ker} \Phi_{4}=\left\langle\widehat{K}_{1}, \widehat{K}_{2}, \widehat{K}_{3} \mid \widehat{K}_{1}^{2}=\widehat{K}_{2}^{2}=\widehat{K}_{3}^{2}=1\right\rangle$, the universal rank-3 Coxeter group.

In the Nielsen presentation, there are 18 non-inner relations. Of these, 3 do not evaluate to 1 in $\operatorname{POut}\left(F_{n}\right)$:

$$
R_{1}=\left[Q^{-1} P Q P Q^{-1}, U^{-1}\right], \quad R_{2}=U^{-1} Q U^{-1} Q^{-1} U\left(Q U Q^{-1} P\right)^{2}, \quad R_{3}=(P Q)^{n-1} .
$$

For the case where $n=4$, one can show directly that $\widehat{R}_{3}=(P Q)^{3}$ is an involution of \mathbb{C}^{15}, but that \widehat{R}_{1} and \widehat{R}_{2} are of infinite order.

Structure of $\operatorname{ker} \Phi_{4}$

What can we say about the structure of $\operatorname{ker} \Phi_{n}$? Consider $n=4$.

Theorem (Brown)

$\operatorname{ker} \Phi_{4}=\left\langle\widehat{K}_{1}, \widehat{K}_{2}, \widehat{K}_{3} \mid \widehat{K}_{1}^{2}=\widehat{K}_{2}^{2}=\widehat{K}_{3}^{2}=1\right\rangle$, the universal rank-3 Coxeter group.

In the Nielsen presentation, there are 18 non-inner relations. Of these, 3 do not evaluate to 1 in $\operatorname{POut}\left(F_{n}\right)$:

$$
R_{1}=\left[Q^{-1} P Q P Q^{-1}, U^{-1}\right], \quad R_{2}=U^{-1} Q U^{-1} Q^{-1} U\left(Q U Q^{-1} P\right)^{2}, \quad R_{3}=(P Q)^{n-1} .
$$

For the case where $n=4$, one can show directly that $\widehat{R}_{3}=(P Q)^{3}$ is an involution of \mathbb{C}^{15}, but that \widehat{R}_{1} and \widehat{R}_{2} are of infinite order. However, let $K_{3}=R_{3}$, and $K_{i}=R_{i} R_{3}, i=1,2$. Then $\widehat{K}_{1}, \widehat{K}_{2}, \widehat{K}_{3}$ are all involutions.

Generators of $\operatorname{ker} \Phi_{4}$

Let $F_{4}=\langle A, B, C, D\rangle$, so that

$$
\begin{aligned}
\mathcal{H}_{4} & =\left\{\operatorname{tr}_{A}, \operatorname{tr}_{B}, \operatorname{tr}_{C}, \operatorname{tr}_{D}, \operatorname{tr}_{A B}, \ldots, \operatorname{tr}_{B C D}, \operatorname{tr}_{A B C D}\right\} \\
& =\{1, m, n, o, p, \ldots, y, z\}
\end{aligned}
$$

as coordinates of \mathbb{C}^{15}.

Generators of $\operatorname{ker} \Phi_{4}$

Let $F_{4}=\langle A, B, C, D\rangle$, so that

$$
\begin{aligned}
\mathcal{H}_{4} & =\left\{\operatorname{tr}_{A}, \operatorname{tr}_{B}, \operatorname{tr}_{C}, \operatorname{tr}_{D}, \operatorname{tr}_{A B}, \ldots, \operatorname{tr}_{B C D}, \operatorname{tr}_{A B C D}\right\} \\
& =\{1, m, n, o, p, \ldots, y, z\}
\end{aligned}
$$

as coordinates of \mathbb{C}^{15}. Then

Structure of $\operatorname{ker} \Phi_{n}$

Showing there are no other relations among the $\widehat{K}_{i}, i=1,2,3$, is tricky, but amounts to constructing the geometric representation that defines the Coxeter group explicitly. This is done by restricting these autos to an appropriate invariant vector space in \mathbb{C}^{15}.

Structure of $\operatorname{ker} \Phi_{n}$

Showing there are no other relations among the $\widehat{K}_{i}, i=1,2,3$, is tricky, but amounts to constructing the geometric representation that defines the Coxeter group explicitly. This is done by restricting these autos to an appropriate invariant vector space in \mathbb{C}^{15}.

Theorem (Brown)

For $n>4$, $\operatorname{ker} \Phi_{n}$ is rank-3 with all generators of infinite order.

Notes

Remark (Other embeddings)

Constructing $\operatorname{POut}\left(F_{n}\right)$ via other CS-embeddings into \mathbb{C}^{m} does not lead to an action by volume preserving automorphisms.

Notes

Remark (Other embeddings)

Constructing $\operatorname{POut}\left(F_{n}\right)$ via other CS-embeddings into \mathbb{C}^{m} does not lead to an action by volume preserving automorphisms. GAMA embeds $V_{F_{n}} \subset \mathbb{C}^{m}, m=\frac{n\left(n^{2}+5\right)}{6}$ using only Horowitz generators of basic words of word-length 3 or less (with rational coefficients). Here one can show that \widehat{U} has nonconstant Jacobian which degenerates along a line.

Notes

Remark (Other embeddings)

Constructing $\operatorname{POut}\left(F_{n}\right)$ via other CS-embeddings into \mathbb{C}^{m} does not lead to an action by volume preserving automorphisms. GAMA embeds
$V_{F_{n}} \subset \mathbb{C}^{m}, m=\frac{n\left(n^{2}+5\right)}{6}$ using only Horowitz generators of basic words of word-length 3 or less (with rational coefficients). Here one can show that \widehat{U} has nonconstant Jacobian which degenerates along a line.

Remark (New reps of subgroups of Out $\left(F_{n}\right)$ and $M C G(S)$)

Let $p \in V_{F_{n}}$ be periodic under $\operatorname{POut}\left(F_{n}\right)$. Then $\operatorname{POut}\left(F_{n}\right)_{p}$ is a finite index subgroup.

Notes

Remark (Other embeddings)

Constructing $\operatorname{POut}\left(F_{n}\right)$ via other CS-embeddings into \mathbb{C}^{m} does not lead to an action by volume preserving automorphisms. GAMA embeds
$V_{F_{n}} \subset \mathbb{C}^{m}, m=\frac{n\left(n^{2}+5\right)}{6}$ using only Horowitz generators of basic words of word-length 3 or less (with rational coefficients). Here one can show that \widehat{U} has nonconstant Jacobian which degenerates along a line.

Remark (New reps of subgroups of Out $\left(F_{n}\right)$ and $M C G(S)$)

Let $p \in V_{F_{n}}$ be periodic under $\operatorname{POut}\left(F_{n}\right)$. Then $\operatorname{POut}\left(F_{n}\right)_{p}$ is a finite index subgroup. The resulting tangent linear representation is a rep into $S L\left(2^{n}-1, \mathbb{C}\right)$ which restricts to a rep of $\operatorname{Out}\left(F_{n}\right)_{p}$ into $S L(3 n-3, \mathbb{C})$ (at least off of the singular set).

Notes

Application (Dynamics)

One can construct a pseudo-Anosov auto of a surface group corresponding to a high genus surface by lifting one from a lower genus surface via a covering map. [GD'03]

Notes

Application (Dynamics)

One can construct a pseudo-Anosov auto of a surface group corresponding to a high genus surface by lifting one from a lower genus surface via a covering map. [GD'03]
A covering $\rho: S \rightarrow T$ induces $\rho_{*}: \pi_{1}(S) \hookrightarrow \pi_{1}(T)$ which induces $\bar{\rho}: V_{\pi_{1}(T)} \hookrightarrow V_{\pi_{1}(S)}$, an embedding.

Notes

Application (Dynamics)

One can construct a pseudo-Anosov auto of a surface group corresponding to a high genus surface by lifting one from a lower genus surface via a covering map. [GD'03]
A covering $\rho: S \rightarrow T$ induces $\rho_{*}: \pi_{1}(S) \hookrightarrow \pi_{1}(T)$ which induces $\bar{\rho}: V_{\pi_{1}(T)} \hookrightarrow V_{\pi_{1}(S)}$, an embedding.
Mapping classes which commute with ρ agree on $\bar{p}\left(V_{\pi_{1}(T)}\right) \subset V_{\pi_{1}(S)}$.

Notes

Application (Dynamics)

One can construct a pseudo-Anosov auto of a surface group corresponding to a high genus surface by lifting one from a lower genus surface via a covering map. [GD'03]
A covering $\rho: S \rightarrow T$ induces $\rho_{*}: \pi_{1}(S) \hookrightarrow \pi_{1}(T)$ which induces $\bar{\rho}: V_{\pi_{1}(T)} \hookrightarrow V_{\pi_{1}(S)}$, an embedding. Mapping classes which commute with ρ agree on $\bar{p}\left(V_{\pi_{1}(T)}\right) \subset V_{\pi_{1}(S)}$.

- this makes the hunt for periodic points easier.

Notes

Application (Dynamics)

One can construct a pseudo-Anosov auto of a surface group corresponding to a high genus surface by lifting one from a lower genus surface via a covering map. [GD'03]
A covering $\rho: S \rightarrow T$ induces $\rho_{*}: \pi_{1}(S) \hookrightarrow \pi_{1}(T)$ which induces $\bar{\rho}: V_{\pi_{1}(T)} \hookrightarrow V_{\pi_{1}(S)}$, an embedding.
Mapping classes which commute with ρ agree on $\bar{p}\left(V_{\pi_{1}(T)}\right) \subset V_{\pi_{1}(S)}$.

- this makes the hunt for periodic points easier.
- The dynamical type of a fixed point is known along the tangent directions of the embedding.

Notes

Application (Dynamics)

One can construct a pseudo-Anosov auto of a surface group corresponding to a high genus surface by lifting one from a lower genus surface via a covering map. [GD'03]
A covering $\rho: S \rightarrow T$ induces $\rho_{*}: \pi_{1}(S) \hookrightarrow \pi_{1}(T)$ which induces $\bar{\rho}: V_{\pi_{1}(T)} \hookrightarrow V_{\pi_{1}(S)}$, an embedding.
Mapping classes which commute with ρ agree on $\bar{p}\left(V_{\pi_{1}(T)}\right) \subset V_{\pi_{1}(S)}$.

- this makes the hunt for periodic points easier.
- The dynamical type of a fixed point is known along the tangent directions of the embedding.
- Can use POut to calculate the dynamical type along the normal directions.

Notes

Application (More Dynamics)

[Bellon-Viallet] For a polynomial endomorphism f of C^{m}, define the algebraic entropy

$$
d_{f}=\log \lim _{n \rightarrow \infty}\left(\operatorname{deg} f^{n}\right)^{\frac{1}{n}}
$$

as the asympt exp growth rate of the degree.

- Measures the growth in per. points of f and approx. top. entropy.
- Calculated this for SU(2)-char. var. of a punct. torus (some real points of $V_{F_{2}}$. [TAMS'06]
- Hadari: The algebraic entropy of an element in $\operatorname{POut}\left(F_{n}\right)$ is the same as that of the corresponding element in $\operatorname{Out}\left(F_{n}\right)$.

