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Let M be a compact, orientable 3-manifold.

AH(M) = {ρ : π1(M) → PSL(2,C) | ρ discrete, faithful}/PSL(2,C)

AH(M) inherits a topology as a subset of the character variety

X(M) = Hom(π1(M), PSL(2,C))//PSL(2,C)

If P ⊂ ∂M is a collection of annuli and tori

AH(M,P ) = {ρ ∈ AH(M) | ρ(g) parabolic for all g ∈ P}
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Marked hyperbolic 3-manifolds

AH(M) = {ρ : π1(M) → PSL(2,C) | ρ discrete, faithful}/PSL(2,C)

ρ ∈ AH(M)  Nρ = H
3/ρ(π1(M))

M = S × I
fρ

homotopy
equivalence

Nρ

AH(M) is the set of marked hyperbolic 3-manifolds homotopy
equivalent to M
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The interior of AH(M)

Theorem (Ahlfors, Bers, Kra, Marden, Maskit, Sullivan, Thurston)

When ∂M is incompressible, the interior of AH(M):

consists of geometrically finite, minimally parabolic representations

components are enumerated by marked homeomorphism types of
3-manifolds homotopy equivalent to M

the component associated to M ′ is parameterized by the
Teichmüller space of ∂M ′

Corollary

Each component of the interior is homeomorphic to an open ball

Example:
int(AH(S × I)) ∼= T (S)× T (S)
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Bumponomics

Theorem (Brock, Bromberg, Kim, Kleineidam, Lecuire, Namazi,
Ohshika, Souto, Thurston)

AH(M) = int(AH(M))

(i.e., every hyperbolic manifold is the algebraic limit of geometrically
finite manifolds)

Components of the interior of AH(M)
can bump:
(Anderson, Canary, McCullough)

The interior of AH(S × I) self-bumps:
(McMullen, Bromberg, Holt)
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The punctured torus

Theorem (Bromberg)

Let T̂ denote the punctured torus. Then AH(T̂ × I, ∂T̂ × I) is not
locally connected.

T̂ × I

∂T̂ × I

fρ
Nρ

Generated by David
Dumas

(www.math.uic.edu/∼ddumas/)

Depends on Minsky’s classification of punctured torus groups
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AH(S × I) is not locally connected

Theorem (M)

For any closed genus g ≥ 2 surface S, AH(S × I) is not locally
connected.

Theorem (M)

Let M be a hyperbolizable 3-manifold with incompressible boundary
containing a primitive essential annulus A and suppose (T̂ × I, ∂T̂ × I)
is pared homeomorphic to one of the components (M ′, A) of M −A.
Then AH(M) is not locally connected.

M ′ A

M

L
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A
T̂

Φ
−−−−→ AH(T̂ , ∂T̂ )

Local model for AH(T̂ , ∂T̂ ) [Bromberg]

Local model for (a dense subset of) AH(M)

Define a map AM
Π
−→ A

T̂
by restricting representations

AM not locally connected since A
T̂
not locally connected

Complex length estimates from Filling Theorem show Φ(AM) not
locally connected. Density implies AH(M) not locally connected.
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Local model for AH(T̂ , ∂T̂ )

b

Given σ with extra
parabolic

σ(b) =

(

1 2
0 1

)

extend
−−−−→

PSfrag
c

construct manifold
with rank 2 cusp

σw(c) =

(

1 w

0 1

)

fill
−→

fill along c

A
T̂
= {(σ,w) | σw geometrically finite or w = ∞}

Φ(σ,w) =

{

filling of H3/σw if w 6= ∞

σ if w = ∞

Theorem (Bromberg)

Φ extends to a local homeomorphism A
T̂
→ AH(T̂ , ∂T̂ ).



Hyperbolic Dehn filling

NN̂
(

1 2
0 1

)

,

(

1 w

0 1

)

fill

Theorem (Hodgson-Kerckhoff, Bromberg, Brock-Bromberg, M)

Let L > 1, ε > 0. There exists K such that if |w| > K, then

the hyperbolic Dehn filling of N̂ exists

the complex length, l + iθ, of the core curve, γ, of the solid filling
torus satisfies

∣

∣

∣

∣

l −
4πIm(w)

|w|2

∣

∣

∣

∣

≤
16(2π)3(Im(w))2

|w|4

∣

∣

∣

∣

θ −
4πRe(w)

|w|2

∣

∣

∣

∣

≤
10(2π)3(Im(w))2

|w|4

there exists an L-biLipschitz diffeomorphism

N̂ − {ε− thin part about cusp} → N − {ε− thin part about γ}
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Local model for (most of) AH(M)

ab

Given σ with two

extra parabolics

σ(a) and σ(b)

extend
−−−−→ c1 c2

cusps parametrized

by wi ∈ C

fill
−→

fill along c1 and c2

AM = {(σ,w1, w2) | σw1,w2 geometrically finite or w1 = w2 = ∞}

Φ(σ,w1, w2) =

{

filling of H3/σw1,w2 if (w1, w2) 6= (∞,∞)

σ if (w1, w2) = (∞,∞)

Theorem (Bromberg)

For any (σ,∞,∞), there is a neighborhood U in AM such that
Φ|U : U → Φ(U) ⊂ AH(M) is a homeomorphism.
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From one model to another

Define Π : AM → A
T̂
by (σ,w1, w2) 7→ (σ|

π1(T̂ ), w1)

a
a

b

b σ σπ1(T̂ ), w1, w2) −→ , w1)((

... ...AM
Π
−→ A

T̂

Cn

Lemma

There exists a point (σ0,∞,∞) ∈ U ⊂ AM , subsets Π−1(Cn) ⊂ U , and
some δ > 0 such that for any (σ,w1, w2) ∈ Π−1(Cn) and
(σ′, w′

1, w
′
2) ∈ U −Π−1(Cn)

|w1 − w′
1| > δ
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AH(M) is not locally connected

... ...

... ...

Π↓

AM

A
T̂

Cn

Bn = Π−1(Cn)

p

AH(M)

Φ
−→

Φ(Bn)

Filling Theorem implies complex length of γ in Φ(σ,w1, w2) is
approximately

ℓ+ iθ ≈
4πIm(w1)

|w1|2
+ i

4πRe(w1)

|w1|2

For all but finitely many n, Φ(Bn) and Φ(U −Bn) are disjoint

Density ⇒ AH(M) is not locally connected.
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Future Directions

Replace punctured torus with four-punctured sphere

At which points is AH(M) locally connected?



Thank you

Thank you for listening!

Slides and preprints are available at:

www.math.umd.edu/∼magid/


