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Overview

The space AH(M) of marked hyperbolic 3-manifold homotopy
equivalent to a compact 3-manifold with boundary M sits inside
the character variety

X (M) = Hom(π1(M),PSL2(C))//PSL2(C).

We study the dynamics of the action of Out(π1(M)) on both
AH(M) and X (M). The nature of the dynamics reflects the
topology of M.

The quotient
AI (M) = AH(M)/Out(π1(M))

may naturally be thought of as the moduli space of unmarked
hyperbolic 3-manifolds homotopy equivalent to M and its topology
reflects the dynamics of the action.
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2-dimensional warm-up

Let F be a closed orientable surface of genus g ≥ 2.

T (F ) = {(S, h) | S a hyperbolic surface,
h : F → S o.p. homeo}/ ∼
(S1, h1) ∼ (S2, h2) if there exists an o.p. homeo j : S1 → S2

such that j ◦ h1 is homotopic to h2.

S = H2/ΓS where ΓS ⊂ PSL2(R) = Isom+(H2) is discrete

(S, h) gives rise to a discrete, faithful representation
h∗ : π1(F )→ ΓS ⊂ PSL2(R) which is well-defined up to
conjugacy.

So, T (F ) embeds in

X2(F ) = Hom(π1(F ),PSL2(R))//PSL2(R))

In fact, T (F ) is an entire component of X2(F ).
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The action of Mod(F )

Mod(F ) is the group of (isotopy classes of) o.p. homeos of F .

Mod(F ) is identified with an index two subgroup of
Out(π1(F )).

Mod(F ) acts on T (F ) and on X2(F ).

If φ ∈ Mod(F ), then φ takes (S, h) ∈ T (F ) to (S, h ◦ φ−1)
and takes ρ ∈ X2(F ) to ρ ◦ (φ∗)

−1.

Mod(F ) acts properly discontinuously, but not freely, on T (F )
and its quotient is Moduli space

M(F ) = T (F )/Mod(F ).

which is an orbifold.

Conjecture: (Goldman) Mod(F ) acts ergodically on the
component of X2(F ) not corresponding to T (F ) or T (F̄ ).
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Augmented Teichmüller space

Augmented Teichmüller space T̂ (F ) is obtained by adding
marked noded surfaces to T (F ).

Elements of T̂ (F ) have the form (γ, {SR}R∈c(γ), h) where γ is
a multicurve on F , c(γ) is the collection of components of
F − γ, ∪SR is a finite area hyperbolic surface, and
h : F − γ → ∪SR is an o.p. homeo.

Equivalently, we may think of them as having the form
(γ, {ρR}R∈c(γ)) where each ρR : π1(R)→ PSL2(R) is a
discrete faithful representation such that each element of
ρR(π1(∂R)) is parabolic.
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The Deligne-Mumford compactification

The action of Mod(F ) on T (F ) extends continuously to an
action on T̂ (F ).

Its quotient
M̂(F ) = T̂ (F )/Mod(F )

is known as the Deligne-Mumford compactification of moduli
space.
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Kleinian surface groups

AH(F ) = { (N, h) | N hyperbolic 3−manifold
h : F → N homotopy equivalence}/ ∼
(N1, h1) ∼ (N2, h2) if there exists an o.p. homeo j : N1 → N2

such that j ◦ h1 is homotopic to h2.

N = H3/ΓN where ΓN ⊂ PSL2(C) = Isom+(H3) is discrete

(N, h) gives rise to a discrete, faithful representation
h∗ : π1(F )→ ΓN ⊂ PSL2(C) which is well-defined up to
conjugacy.

So, AH(F ) embeds in

X (F ) = Hom(π1(F ),PSL2(C))//PSL2(C))

AH(F ) is a closed subset of X (F ), but is not an entire
component.
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Topology of AH(F )

(Bers, Marden, Sullivan) The interior QF (F ) of AH(F ) is
parameterized as T (F )× T (F ).

T (F ) is identified with the diagonal in QF (F ).

(Brock-C-Minsky) Elements of AH(F ) have been classified,
but classification data is discontinuous, so does not yield a
parameterization.

(Brock-C-Minsky, Bromberg with Brock and Souto) AH(F ) is
the closure of its interior QF (F ).

(Bromberg,Magid) AH(F ) is not locally connected.
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Action of Mod(F ) on AH(F )

Mod(F ) acts on AH(F ) and on X (F ), again φ ∈ Mod(F )
takes ρ ∈ X (F ) to ρ ◦ (φ∗)

−1.

(Thurston) If φ is pseudo-Anosov, then φ has a fixed point
ρ ∈ AH(F ). Nρ is the cover of the hyperbolic 3-manifold
homeomorphic the mapping torus Mφ associated to the fibre
subgroup.

Therefore, Mod(F ) does not act properly discontinuously on
AH(F ) (or on X (F ).)

Let AI (F ) = AH(F )/Mod(F ) be the moduli space of
hyperbolic 3-manifolds homotopy equivalent to F .

(C-Storm) AI (F ) is not T1, i.e. there are points which are not
closed.
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The conjectural picture

Conjecture: If O ⊂ X (F ) is open, Mod(F )-invariant and Mod(F )
acts properly discontinuously on O, then O ⊂ QF (F ).

Remarks: (1) One can fairly easily show that O cannot intersect
∂AH(F ), using the fact that geometrically finite hyperbolic
3-manifolds with cusps are dense in ∂AH(F ).

(2) Work of Tan-Wong-Zhang and Cantat provides evidence for
this conjecture in the case that F is a once punctured torus.
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A Deligne-Mumford compactification of AI (F )

One can form an augmented deformation space ÂH(F ) by
adding points of the form (γ, {ρR}R∈c(γ)) where again γ is a
multicurve and each ρR : π1(R)→ PSL2(C) is a discrete
faithful representation such that each element of ρR(π1(∂R))
is parabolic.

The action of Mod(F ) extends continuously to an action on

ÂH(F ).

(C-Storm) ÂI (F ) = ÂH(F )/Mod(F ) is sequentially compact.

Notice that T̂ (F ) ⊂ ÂH(F ), so M̂(F ) ⊂ ÂI (F ).
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Deformation spaces of hyperbolic 3-manifolds

Let M be a compact hyperbolizable 3-manifold with
non-empty boundary.

For simplicity, assume that ∂M contains no tori.

AH(M) = { (N, h) | N hyperbolic 3−manifold
h : M → N homotopy equivalence}/ ∼
N = H3/ΓN where ΓN ⊂ PSL2(C) = Isom+(H3) is discrete

(N, h) gives rise to a discrete, faithful representation
h∗ : π1(M)→ ΓN ⊂ PSL2(C) which is well-defined up to
conjugacy.

So, AH(M) embeds in

X (M) = Hom(π1(M),PSL2(C))//PSL2(C))

AH(M) is a closed subset of X (M), but is not an entire
component.
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The action of Out(π1(M)) on X (M)

Let Out(π1(M)) = Aut(π1(M))/Inn(π1(M)).

Out(π1(M)) acts on X (M) preserving AH(M) (as before, φ
takes ρ to ρ ◦ φ−1).

It is an immediate consequence of the classical deformation
theory of Kleinian groups that Out(π1(M)) acts properly
discontinuously on the interior int(AH(M)) of AH(M).

Let AI (M) = AH(M)/Out(π1(M)) be the deformation space
of unmarked hyperbolic 3-manifolds homotopy equivalent to
M.

(C-Storm) AI (M) is T1 if and only if M is not an untwisted
interval bundle, i.e. M 6= F × [0, 1] for a compact surface F .
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Essential annuli in 3-manifold

An essential annulus in M is an embedded annulus A ⊂ M
such that ∂A ⊂ ∂M, π1(A) injects into π1(M) and A cannot
be homotoped (rel ∂A) into ∂M.

An essential annulus is primitive if π1(A) is a maximal
abelian subgroup of π1(M).

M is acylindrical if it contains no essential annuli.

(Johannson) Out(π1(M)) is finite if and only if M is
acylindrical.
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Domains of discontinuity for Out(π1(M))

Out(π1(M)) acts properly discontinuously on X (M) if and
only if M is acylindrical.

Question: When does Out(π1(M)) act properly
discontinuously on AH(M)?

Corollary: (C-Storm) Out(π1(M)) act properly
discontinuously on AH(M) if and only if M contains no
primitive essential annuli. Moreover, AI (M) is Hausdorff if
and only if M contains no primitive essential annuli.

This corollary follows from the following results:
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The main results

Theorem 1: (C-Storm) If M contains a primitive essential
annulus, then Out(π1(M)) does not act properly discontinuously
on AH(M). Moreover, AI (M) is not Hausdorff.

Theorem 2: (C-Storm) If M contains no primitive essential
annuli, then Out(π1(M)) acts properly discontinuously on an open
neighborhood W (M) of AH(M) in X (M). Moreover, AI (M) is
Hausdorff.
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A generalization of Theorem 2

Theorem 3: If M has incompressible boundary and is not an
interval bundle, then there exists an open subset W (M) of X (M)
such that

1 W (M) is invariant under Out(π1(M)),

2 Out(π1(M)) acts properly discontinuously on W (M),

3 int(AH(M)) ⊂W (M), and

4 W (M) ∩ ∂AH(M) is non-empty.

Remark: In the case that M is a handlebody, Yair Minsky showed
that the set of primitive stable representations is a subset of
AH(M) with all these properties.
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Twisted interval bundles

Theorem 3: (Michelle Lee) If M is a twisted interval bundle, then
there exists an open subset W (M) of X (M) such that

1 W is invariant under Out(π1(M)),

2 Out(π1(M)) acts properly discontinuously on W (M),

3 int(AH(M)) ⊂W (M), and

4 W (M) ∩ ∂AH(M) is non-empty.

Remark: Lee’s technique of proof is necessarily quite different than
that of Canary-Storm. Her work is inspired by work of Minsky.
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A corollary of Lee’s work

Corollary: (Michelle Lee) If M has incompressible boundary, then
there exists an open subset W of X (M) such that

1 W is invariant under Out(π1(M)),

2 Out(π1(M)) acts properly discontinuously on W ,

3 int(AH(M)) ⊂W , and

4 W ∩ ∂AH(M) is non-empty.

if and only if M is not an untwisted interval bundle.
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