Dynamics of actions of outer automorphism groups on $\operatorname{PSL}_2(\mathbb{C})$ -character varieties

Dick Canary (joint work with Pete Storm)

University of Michigan

July 26, 2010

Overview

The space AH(M) of marked hyperbolic 3-manifold homotopy equivalent to a compact 3-manifold with boundary M sits inside the character variety

$$X(M) = Hom(\pi_1(M), PSL_2(\mathbf{C})) / / PSL_2(\mathbf{C}).$$

We study the dynamics of the action of $\operatorname{Out}(\pi_1(M))$ on both AH(M) and X(M). The nature of the dynamics reflects the topology of M.

The quotient

$$AI(M) = AH(M)/\mathrm{Out}(\pi_1(M))$$

may naturally be thought of as the moduli space of unmarked hyperbolic 3-manifolds homotopy equivalent to M and its topology reflects the dynamics of the action.

2-dimensional warm-up

- Let F be a closed orientable surface of genus $g \geq 2$.
- $\mathcal{T}(F) = \{(S, h) \mid S \text{ a hyperbolic surface,} h : F \to S \text{ o.p. homeo}\}/\sim$
- $(S_1, h_1) \sim (S_2, h_2)$ if there exists an o.p. homeo $j : S_1 \to S_2$ such that $j \circ h_1$ is homotopic to h_2 .
- $S=\mathbb{H}^2/\Gamma_S$ where $\Gamma_S\subset\mathrm{PSL}_2(\mathbb{R})=\mathrm{Isom}_+(\mathbb{H}^2)$ is discrete
- (S, h) gives rise to a discrete, faithful representation $h_*:\pi_1(F)\to \Gamma_S\subset \mathrm{PSL}_2(\mathbb{R})$ which is well-defined up to conjugacy.
- So, T(F) embeds in

$$X_2(F) = Hom(\pi_1(F), PSL_2(\mathbb{R})) / (PSL_2(\mathbb{R}))$$

• In fact, T(F) is an entire component of $X_2(F)$.

The action of Mod(F)

- Mod(F) is the group of (isotopy classes of) o.p. homeos of F.
- Mod(F) is identified with an index two subgroup of Out(π₁(F)).
- $\operatorname{Mod}(F)$ acts on $\mathcal{T}(F)$ and on $X_2(F)$.
- If $\phi \in \operatorname{Mod}(F)$, then ϕ takes $(S, h) \in \mathcal{T}(F)$ to $(S, h \circ \phi^{-1})$ and takes $\rho \in X_2(F)$ to $\rho \circ (\phi_*)^{-1}$.
- $\operatorname{Mod}(F)$ acts properly discontinuously, but not freely, on $\mathcal{T}(F)$ and its quotient is Moduli space

$$\mathcal{M}(F) = \mathcal{T}(F)/\mathrm{Mod}(F).$$

which is an orbifold.

• Conjecture: (Goldman) $\operatorname{Mod}(F)$ acts ergodically on the component of $X_2(F)$ not corresponding to $\mathcal{T}(F)$ or $\mathcal{T}(\bar{F})$.

Augmented Teichmüller space

- Augmented Teichmüller space $\widehat{T}(F)$ is obtained by adding marked noded surfaces to T(F).
- Elements of $\widehat{T}(F)$ have the form $(\gamma, \{S_R\}_{R \in c(\gamma)}, h)$ where γ is a multicurve on F, $c(\gamma)$ is the collection of components of $F \gamma$, $\cup S_R$ is a finite area hyperbolic surface, and $h: F \gamma \to \cup S_R$ is an o.p. homeo.
- Equivalently, we may think of them as having the form $(\gamma, \{\rho_R\}_{R \in c(\gamma)})$ where each $\rho_R : \pi_1(R) \to \mathrm{PSL}_2(\mathbb{R})$ is a discrete faithful representation such that each element of $\rho_R(\pi_1(\partial R))$ is parabolic.

The Deligne-Mumford compactification

- The action of $\operatorname{Mod}(F)$ on $\mathcal{T}(F)$ extends continuously to an action on $\widehat{\mathcal{T}}(F)$.
- Its quotient

$$\widehat{\mathcal{M}}(F) = \widehat{\mathcal{T}}(F)/Mod(F)$$

is known as the Deligne-Mumford compactification of moduli space.

Kleinian surface groups

- $AH(F) = \{ (N, h) \mid N \text{ hyperbolic } 3 \text{manifold } h : F \to N \text{ homotopy equivalence} \} / \sim$
- $(N_1, h_1) \sim (N_2, h_2)$ if there exists an o.p. homeo $j: N_1 \rightarrow N_2$ such that $j \circ h_1$ is homotopic to h_2 .
- $N=\mathbb{H}^3/\Gamma_N$ where $\Gamma_N\subset\mathrm{PSL}_2(\mathbb{C})=\mathrm{Isom}_+(\mathbb{H}^3)$ is discrete
- (N,h) gives rise to a discrete, faithful representation $h_*:\pi_1(F)\to \Gamma_N\subset \mathrm{PSL}_2(\mathbb{C})$ which is well-defined up to conjugacy.
- So, AH(F) embeds in

$$X(F) = Hom(\pi_1(F), \mathrm{PSL}_2(\mathbb{C}))//\mathrm{PSL}_2(\mathbb{C}))$$

• AH(F) is a closed subset of X(F), but is not an entire component.

Topology of AH(F)

- (Bers, Marden, Sullivan) The interior QF(F) of AH(F) is parameterized as $\mathcal{T}(F) \times \mathcal{T}(F)$.
- T(F) is identified with the diagonal in QF(F).
- (Brock-C-Minsky) Elements of AH(F) have been classified, but classification data is discontinuous, so does not yield a parameterization.
- (Brock-C-Minsky, Bromberg with Brock and Souto) AH(F) is the closure of its interior QF(F).
- (Bromberg, Magid) AH(F) is not locally connected.

Action of Mod(F) on AH(F)

- $\operatorname{Mod}(F)$ acts on AH(F) and on X(F), again $\phi \in \operatorname{Mod}(F)$ takes $\rho \in X(F)$ to $\rho \circ (\phi_*)^{-1}$.
- (Thurston) If ϕ is pseudo-Anosov, then ϕ has a fixed point $\rho \in AH(F)$. N_{ρ} is the cover of the hyperbolic 3-manifold homeomorphic the mapping torus M_{ϕ} associated to the fibre subgroup.
- Therefore, Mod(F) does not act properly discontinuously on AH(F) (or on X(F).)
- Let AI(F) = AH(F)/Mod(F) be the moduli space of hyperbolic 3-manifolds homotopy equivalent to F.
- (C-Storm) AI(F) is not T_1 , i.e. there are points which are not closed.

The conjectural picture

Conjecture: If $\mathcal{O} \subset X(F)$ is open, $\operatorname{Mod}(F)$ -invariant and $\operatorname{Mod}(F)$ acts properly discontinuously on \mathcal{O} , then $\mathcal{O} \subset QF(F)$.

Remarks: (1) One can fairly easily show that \mathcal{O} cannot intersect $\partial AH(F)$, using the fact that geometrically finite hyperbolic 3-manifolds with cusps are dense in $\partial AH(F)$.

(2) Work of Tan-Wong-Zhang and Cantat provides evidence for this conjecture in the case that F is a once punctured torus.

A Deligne-Mumford compactification of AI(F)

- One can form an augmented deformation space $\widehat{AH}(F)$ by adding points of the form $(\gamma, \{\rho_R\}_{R \in c(\gamma)})$ where again γ is a multicurve and each $\rho_R : \pi_1(R) \to \mathrm{PSL}_2(\mathbb{C})$ is a discrete faithful representation such that each element of $\rho_R(\pi_1(\partial R))$ is parabolic.
- The action of Mod(F) extends continuously to an action on $\widehat{AH}(F)$.
- (C-Storm) $\widehat{AI}(F) = \widehat{AH}(F)/\mathrm{Mod}(F)$ is sequentially compact.
- Notice that $\widehat{\mathcal{T}}(F) \subset \widehat{AH}(F)$, so $\widehat{\mathcal{M}}(F) \subset \widehat{AI}(F)$.

Deformation spaces of hyperbolic 3-manifolds

- Let *M* be a compact hyperbolizable 3-manifold with non-empty boundary.
- ullet For simplicity, assume that ∂M contains no tori.
- $AH(M) = \{ (N, h) \mid N \text{ hyperbolic } 3 \text{manifold } h : M \to N \text{ homotopy equivalence} \} / \sim$
- $N = \mathbb{H}^3/\Gamma_N$ where $\Gamma_N \subset \mathrm{PSL}_2(\mathbb{C}) = \mathrm{Isom}_+(\mathbb{H}^3)$ is discrete
- (N,h) gives rise to a discrete, faithful representation $h_*:\pi_1(M)\to \Gamma_N\subset \mathrm{PSL}_2(\mathbb{C})$ which is well-defined up to conjugacy.
- So, AH(M) embeds in

$$X(M) = Hom(\pi_1(M), \mathrm{PSL}_2(\mathbb{C})) / / \mathrm{PSL}_2(\mathbb{C}))$$

• AH(M) is a closed subset of X(M), but is not an entire component.

The action of $Out(\pi_1(M))$ on X(M)

- Let $Out(\pi_1(M)) = Aut(\pi_1(M)) / Inn(\pi_1(M))$.
- $\operatorname{Out}(\pi_1(M))$ acts on X(M) preserving AH(M) (as before, ϕ takes ρ to $\rho \circ \phi^{-1}$).
- It is an immediate consequence of the classical deformation theory of Kleinian groups that $\operatorname{Out}(\pi_1(M))$ acts properly discontinuously on the interior $\operatorname{int}(AH(M))$ of AH(M).
- Let $AI(M) = AH(M)/\mathrm{Out}(\pi_1(M))$ be the deformation space of unmarked hyperbolic 3-manifolds homotopy equivalent to M.
- (C-Storm) AI(M) is T_1 if and only if M is not an untwisted interval bundle, i.e. $M \neq F \times [0,1]$ for a compact surface F.

Essential annuli in 3-manifold

- An **essential annulus** in M is an embedded annulus $A \subset M$ such that $\partial A \subset \partial M$, $\pi_1(A)$ injects into $\pi_1(M)$ and A cannot be homotoped (rel ∂A) into ∂M .
- An essential annulus is **primitive** if $\pi_1(A)$ is a maximal abelian subgroup of $\pi_1(M)$.
- *M* is **acylindrical** if it contains no essential annuli.
- (Johannson) $\operatorname{Out}(\pi_1(M))$ is finite if and only if M is acylindrical.

Domains of discontinuity for $Out(\pi_1(M))$

- $\operatorname{Out}(\pi_1(M))$ acts properly discontinuously on X(M) if and only if M is acylindrical.
- Question: When does $Out(\pi_1(M))$ act properly discontinuously on AH(M)?
- Corollary: (C-Storm) $\operatorname{Out}(\pi_1(M))$ act properly discontinuously on AH(M) if and only if M contains no primitive essential annuli. Moreover, AI(M) is Hausdorff if and only if M contains no primitive essential annuli.
- This corollary follows from the following results:

The main results

Theorem 1: (C-Storm) If M contains a primitive essential annulus, then $\operatorname{Out}(\pi_1(M))$ does not act properly discontinuously on AH(M). Moreover, AI(M) is not Hausdorff.

Theorem 2: (C-Storm) If M contains no primitive essential annuli, then $\operatorname{Out}(\pi_1(M))$ acts properly discontinuously on an open neighborhood W(M) of AH(M) in X(M). Moreover, AI(M) is Hausdorff.

A generalization of Theorem 2

Theorem 3: If M has incompressible boundary and is not an interval bundle, then there exists an open subset W(M) of X(M) such that

- **1** W(M) is invariant under $Out(\pi_1(M))$,
- ② $\operatorname{Out}(\pi_1(M))$ acts properly discontinuously on W(M),
- int $(AH(M)) \subset W(M)$, and
- $W(M) \cap \partial AH(M)$ is non-empty.

Remark: In the case that M is a handlebody, Yair Minsky showed that the set of primitive stable representations is a subset of AH(M) with all these properties.

Twisted interval bundles

Theorem 3: (Michelle Lee) If M is a twisted interval bundle, then there exists an open subset W(M) of X(M) such that

- W is invariant under $Out(\pi_1(M))$,
- ② $\operatorname{Out}(\pi_1(M))$ acts properly discontinuously on W(M),
- int $(AH(M)) \subset W(M)$, and
- $W(M) \cap \partial AH(M)$ is non-empty.

Remark: Lee's technique of proof is necessarily quite different than that of Canary-Storm. Her work is inspired by work of Minsky.

A corollary of Lee's work

Corollary: (Michelle Lee) If M has incompressible boundary, then there exists an open subset W of X(M) such that

- **1** W is invariant under $Out(\pi_1(M))$,
- $ext{ Out}(\pi_1(M))$ acts properly discontinuously on W,
- int $(AH(M)) \subset W$, and
- $W \cap \partial AH(M)$ is non-empty.

if and only if M is not an untwisted interval bundle.