On the topology of $\mathcal{H}(2)$

Duc-Manh Nguyen

Max-Planck-Institut für Mathematik Bonn, Germany

July 19, 2010

Nguyen, D-M Topology of $\mathcal{H}(2)$

イロト 不得 とくほ とくほとう

2

Translation surface

Definition

Translation surface is a flat surface with conical singularities such that the holonomy of any closed curve (which does not pass through the singularities) is a translation of \mathbb{R}^2 .

Basic properties

- Cone angles at singularities must belong to $2\pi\mathbb{N}$,
- A tangent vector at a regular point can be extended to a parallel vector field,
- Correspondence between a translation surface with a unitary parallel vector field and a holomorphic 1-form on a Riemann surface, zero of order k → singularity with cone angle (k + 1)2π.

Examples

• Flat tori (without singularities)

 Surfaces obtained from polygons by identifying sides which are parallel, and have the same length

Notations and terminologies

 $\mathcal{H}(2)$ is the moduli space of pairs (M, ω) where *M* is a Riemann surface of genus 2 and ω is a holomorphic 1-form on *M* having only one zero which is of order 2. Equivalently, $\mathcal{H}(2)$ is the moduli space of translation surfaces of genus 2 having only one singularity with cone angle 6π .

Remark

- The unique zero of ω must be a Weierstrass point of *M*.
- Every Riemann surface of gennus 2 is hyper-elliptic, and therefore has exactly 6 Weierstrass points.

ヘロト ヘアト ヘビト ヘビト

Notations and terminologies

We denote by $\mathcal{M}(2)$ the quotient $\mathcal{H}(2)/\mathbb{C}^*$ which is the set of pairs (M, W), where *M* is a Riemmann surface of genus 2, and *W* is a marked Weierstrass point of *M*.

A saddle connection on a translation surface is a geodesic segment joining two singularities, which may coincide. In the case of $\mathcal{H}(2)$, every saddle connection is a geodesic joining the unique singularity to itself.

(日)

Construction from parallelograms

We represent a parallelogram in \mathbb{R}^2 up to translation by a pair of complex numbers (z_1, z_2) such that $\text{Im}(z_1 \overline{z}_2) > 0$. Given three parallelograms P_1, P_2, P_3 represented by the pairs $(z_1, z_2), (z_2, z_3)$, and (z_3, z_4) respectively, we can construct a surface in $\mathcal{H}(2)$ by the following gluing:

ヘロト ヘアト ヘヨト

Construction from parallelograms

Proposition

Every surface in $\mathcal{H}(2)$ can be obtained from the previous construction.

Consequently, on every surface in $\mathcal{H}(2)$, there always exist a family of 6 saddle connections which decompose the surface into 3 parallelograms. We will call such families parallelogram decompositions of the surface.

くロト (過) (目) (日)

Construction from parallelograms

Question

- Which triples of parallelograms give the same surface in $\mathcal{H}(2)$?
- Given a surface in H(2), describe the set of parallelogram decompositions of this surface.

ヘロト ヘアト ヘビト ヘビト

ъ

Elementary moves

T-move: changing P_1

<ロト <回 > < 注 > < 注 > 、

æ

Elementary moves

S-move: permuting (P_1, P_2, P_3)

ヘロト 人間 とくほとくほとう

₹ 990

Elementary moves

R-move: changing P₂ and P₃

イロト 不得 とくほ とくほとう

æ

Elementary moves

Theorem

Two triples of parallelograms give rise to the same surface in $\mathcal{H}(2)$ if and only if one can be transformed to the other by a sequence of elementary moves.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Parallelogram decompositions

Given a surface Σ in $\mathcal{H}(2)$, we have elementary moves corresponding to T, S, R in the set of parallelogram decompositions. Those moves can be realized by homeomorphisms of the surface.

One can associate to each parallelogram decomposition of Σ a unique canonical basis of of $H_1(\Sigma, \mathbb{Z})$, then the actions of the corresponding homeomorphisms on $H_1(\Sigma, \mathbb{Z})$ in this basis given by the matrices T, S, and R.

Let Γ denote the group generated by T, S and R.

ヘロン 人間 とくほ とくほ とう

э.

The matrices T, S, R

$$T = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix};$$
$$S = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix};$$
$$R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Properties of Γ

- T and R commute, $S^2 = -Id$,
- Γ ⊊ Sp(4, ℤ), the action of Γ on (ℤ/2ℤ)⁴ \ {0} has two orbits, but the action of Sp(4, ℤ) is transitive.
- Γ is not normal in Sp(4, \mathbb{Z}).
- Γ contains $SL(2, \mathbb{Z})$ as a proper subgroup.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Jacobian locus

For $g \ge 1$, the Siegel upper half space \mathfrak{H}_g is the set of $g \times g$ complex symmetric matrices whose imaginary part is positive definite.

The Jacobian locus \mathfrak{J}_g is the subset of \mathfrak{H}_g consisting of period matrices associated to canonical homology bases of Riemann surfaces of genus g.

The moduli space \mathfrak{M}_g of Riemann surfaces of genus g can be identified with $\mathfrak{J}_g/\mathrm{Sp}(2g,\mathbb{Z})$.

ヘロン 人間 とくほ とくほ とう

Jacobian locus

- Case g = 1 : $\mathfrak{J}_1 = \mathfrak{H}_1 = \mathbb{H}$ the hyperbolic upper half plan.
- Case g = 2 : J₂ ⊊ B₂, the complement is a countable union of copies of B₁ × B₁.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Main result

Theorem

The space $\mathcal{M}(2)$, that is the set of pairs (Riemann surface of genus 2, distinguished Weierstrass point), can be identified with the quotient \mathfrak{J}_2/Γ .

(日)

프 > 프

Main result

Main ideas:

- Generalizing the notion of "parallelogram decomposition" by taking into account the action of the hyperelliptic involution on $\pi_1(M, W)$.
- A connectivity result on a subset of the set of simple closed curves on *M*.
- Hyperellipticity of Riemann surfaces of genus 2, and ⊖ function.

ヘロン 人間 とくほ とくほ とう

3

Corollary

We have $[Sp(4,\mathbb{Z}):\Gamma] = 6$.

Idea: there exists a map $\rho : \mathcal{M}(2) \longrightarrow \mathfrak{M}_2$ which is *generically* six to one.

Remark

Let $Mod_{0,6}$ denote the mapping class group of the sphere with 6 punctures. The fundamental group of $\mathcal{M}(2)$ is the subgroup of $Mod_{0,6}$ fixing a distinguished puncture.

The universal cover map factors through \mathfrak{J}_2 , therefore we have a surjective homomorphism from $\pi_1(\mathcal{M}(2))$ onto Γ (more precisely $\Gamma/\{\pm \mathrm{Id}\}$).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ