On the topology of $\mathcal{H}(2)$

Duc-Manh Nguyen

Max-Planck-Institut für Mathematik

Bonn, Germany
July 19, 2010

Translation surface

Definition

Translation surface is a flat surface with conical singularities such that the holonomy of any closed curve (which does not pass through the singularities) is a translation of \mathbb{R}^{2}.

Basic properties

- Cone angles at singularities must belong to $2 \pi \mathbb{N}$,
- A tangent vector at a regular point can be extended to a parallel vector field,
- Correspondence between a translation surface with a unitary parallel vector field and a holomorphic 1 -form on a Riemann surface, zero of order $k \longleftrightarrow$ singularity with cone angle $(k+1) 2 \pi$.

Examples

- Flat tori (without singularities)

- Surfaces obtained from polygons by identifying sides which are parallel, and have the same length

Notations and terminologies

$\mathcal{H}(2)$ is the moduli space of pairs (M, ω) where M is a Riemann surface of genus 2 and ω is a holomorphic 1 -form on M having only one zero which is of order 2. Equivalently, $\mathcal{H}(2)$ is the moduli space of translation surfaces of genus 2 having only one singularity with cone angle 6π.

Remark

- The unique zero of ω must be a Weierstrass point of M.
- Every Riemann surface of gennus 2 is hyper-elliptic, and therefore has exactly 6 Weierstrass points.

Notations and terminologies

We denote by $\mathcal{M}(2)$ the quotient $\mathcal{H}(2) / \mathbb{C}^{*}$ which is the set of pairs (M, W), where M is a Riemmann surface of genus 2 , and W is a marked Weierstrass point of M.

A saddle connection on a translation surface is a geodesic segment joining two singularities, which may coincide. In the case of $\mathcal{H}(2)$, every saddle connection is a geodesic joining the unique singularity to itself.

Construction from parallelograms

We represent a parallelogram in \mathbb{R}^{2} up to translation by a pair of complex numbers $\left(z_{1}, z_{2}\right)$ such that $\operatorname{Im}\left(z_{1} \bar{z}_{2}\right)>0$.
Given three parallelograms $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ represented by the pairs $\left(z_{1}, z_{2}\right),\left(z_{2}, z_{3}\right)$, and $\left(z_{3}, z_{4}\right)$ respectively, we can construct a surface in $\mathcal{H}(2)$ by the following gluing:

Construction from parallelograms

Proposition

Every surface in $\mathcal{H}(2)$ can be obtained from the previous construction.

Consequently, on every surface in $\mathcal{H}(2)$, there always exist a family of 6 saddle connections which decompose the surface into 3 parallelograms. We will call such families parallelogram decompositions of the surface.

Construction from parallelograms

Question

- Which triples of parallelograms give the same surface in $\mathcal{H}(2)$?
- Given a surface in $\mathcal{H}(2)$, describe the set of parallelogram decompositions of this surface.

Elementary moves

T-move: changing P_{1}

Elementary moves

S-move: permuting $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\right)$

Elementary moves

R-move: changing P_{2} and P_{3}

Elementary moves

Theorem

Two triples of parallelograms give rise to the same surface in $\mathcal{H}(2)$ if and only if one can be transformed to the other by a sequence of elementary moves.

Parallelogram decompositions

Given a surface Σ in $\mathcal{H}(2)$, we have elementary moves corresponding to T, S, R in the set of parallelogram decompositions. Those moves can be realized by homeomorphisms of the surface.

One can associate to each parallelogram decomposition of Σ a unique canonical basis of of $H_{1}(\Sigma, \mathbb{Z})$, then the actions of the corresponding homeomorphisms on $H_{1}(\Sigma, \mathbb{Z})$ in this basis given by the matrices T, S, and R.

Let Γ denote the group generated by T, S and R.

The matrices T, S, R

$$
\begin{aligned}
T & =\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
S & =\left(\begin{array}{cccc}
0 & 1 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right) \\
R & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Properties of Γ

- T and R commute, $S^{2}=-\mathrm{Id}$,
- $\Gamma \subsetneq \operatorname{Sp}(4, \mathbb{Z})$, the action of Γ on $(\mathbb{Z} / \mathbb{Z})^{4} \backslash\{0\}$ has two orbits, but the action of $\operatorname{Sp}(4, \mathbb{Z})$ is transitive.
- Γ is not normal in $\mathrm{Sp}(4, \mathbb{Z})$.
- \lceil contains $\operatorname{SL}(2, \mathbb{Z})$ as a proper subgroup.

Jacobian locus

For $g \geqslant 1$, the Siegel upper half space \mathfrak{H}_{g} is the set of $g \times g$ complex symmetric matrices whose imaginary part is positive definite.

The Jacobian locus \mathfrak{J}_{g} is the subset of \mathfrak{H}_{g} consisting of period matrices associated to canonical homology bases of Riemann surfaces of genus g.

The moduli space \mathfrak{M}_{g} of Riemann surfaces of genus g can be identified with $\mathfrak{J}_{g} / \operatorname{Sp}(2 g, \mathbb{Z})$.

Jacobian locus

- Case $g=1$: $\mathfrak{J}_{1}=\mathfrak{H}_{1}=\mathbb{H}$ the hyperbolic upper half plan.
- Case $g=2: \mathfrak{J}_{2} \subsetneq \mathfrak{H}_{2}$, the complement is a countable union of copies of $\mathfrak{H}_{1} \times \mathfrak{H}_{1}$.

Main result

Theorem

The space $\mathcal{M}(2)$, that is the set of pairs (Riemann surface of genus 2, distinguished Weierstrass point), can be identified with the quotient $\mathfrak{J}_{2} / \Gamma$.

Main result

Main ideas:

- Generalizing the notion of "parallelogram decomposition" by taking into account the action of the hyperelliptic involution on $\pi_{1}(M, W)$.
- A connectivity result on a subset of the set of simple closed curves on M.
- Hyperellipticity of Riemann surfaces of genus 2 , and Θ function.

Corollary

Corollary

We have $[\mathrm{Sp}(4, \mathbb{Z}): \Gamma]=6$.
Idea: there exists a map $\rho: \mathcal{M}(2) \longrightarrow \mathfrak{M}_{2}$ which is generically six to one.

Remark

Let $\operatorname{Mod}_{0,6}$ denote the mapping class group of the sphere with 6 punctures. The fundamental group of $\mathcal{M}(2)$ is the subgroup of $\operatorname{Mod}_{0,6}$ fixing a distinguished puncture.

The universal cover map factors through \mathfrak{J}_{2}, therefore we have a surjective homomorphism from $\pi_{1}(\mathcal{M}(2))$ onto Γ (more precisely $\Gamma /\{ \pm \mathrm{Id}\})$.

