
AdS geometry and Teichmüller theory
Some statements from AdS geometry

GH AdS manifolds

AdS geometry as a tool for Teichmüller theory

Jean-Marc Schlenker

Institut de Mathématiques de Toulouse
Université Toulouse III

http://www.math.univ-toulouse.fr/�schlenker

IMS
July 29, 2010

Jean-Marc Schlenker AdS geometry as a tool for Teichmüller theory



AdS geometry and Teichmüller theory
Some statements from AdS geometry

GH AdS manifolds

Goals of this talk

Advertise 3d AdS geometry as a tool for Teichmüller theory,

Explain basics of AdS geometry,

State some recent results obtained using AdS,

Examples of proofs,

Some open questions here and there.
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AdS geometry and Teichmüller theory
Some statements from AdS geometry

GH AdS manifolds

AdS
AdS vs hyperbolic
Thurston's Earthquake Thm

AdS3

Recall that
H3 = {x ∈ R3,1 | 〈x , x〉 = −1&x0 > 0} .

AdS3 = {x ∈ R2,2 | 〈x , x〉 = −1} .

Lorentz analog of H3 : complete, constant curvature −1.
From relativity : �Anti de Sitter�, model for gravity (no matter).
Lorentz analog of S3 : PSL(2,R) w/ Killing metric, isometry group, etc
Basic idea : hyperbolic and AdS 3-m�ds as tools for Teichmüller theory.
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AdS
AdS vs hyperbolic
Thurston's Earthquake Thm

Hyperbolic 3-manifolds and Teichmüller theory

Based (mostly) on quasifuchsian 3-manifolds. Examples of applications
include :

complex projective structures on surfaces,

complex earthquakes (McMullen),

the volume of the convex core of quasifuchsian manifolds is coarsely
equivalent to the Weil-Petersson distance between the metrics on its
boundary (Brock),

the renormalized volume as a Kähler potential for WP,

properties of the grafting map.

Not developed here.
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AdS 3-manifolds and Teichmüller theory

Some aspects :

earthquakes,

extensions of the earthquake �ow,

minimal Lagrangian di�eos.

AdS side involves physically relevant notions :

globally hyperbolic (GH) spaces (analogs of quasifuchsian),

�particles�,

multi-black holes,

maximal surfaces.

Notations : S closed surface of genus ≥ 2, T Teichmüller space.
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Measured laminations

WM = { weighted multicurves on S } : set of disjoint simple closed
curves, each with a positive weight.
WM is in�nite : simple closed curves on S can wrap around a lot.
Let (ci , li )i=1,··· ,n ∈ WM, the ci form a
lamination and the li de�ne a transverse

measure : gives a total weight to γ, trans-
verse to the ci .
This gives a topology to WM.
The completion of WM is the space of
measured laminationsML.

c c c
1

2 3

γ

Measured laminations can be pretty complicated.

ML ' R6g−6.

∂T 'ML/R>0 (Thurston).

T ×ML ' T ∗T .
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Thurston's Earthquake Thm

Start with a hyperbolic surface.
If w ∈ ML is a weighted curve and h ∈
T , El(w)(h) is obtained by realizing w as
a geodesic in h, cutting S open along w ,
turning the left-hand side by the weight,
and gluing back.
De�nes a homeomorphism

El(w) : T → T .

Extends by continuity to El : T ×ML → T (Thurston).
Thm (Thurston, Kerckho�). ∀h, h′ ∈ T ,∃!λ ∈ML, h′ = El(λ)(h).
Simple proof by Mess (1990) based on AdS geometry.
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De�nes a homeomorphism

El(w) : T → T .

Extends by continuity to El : T ×ML → T (Thurston).
Thm (Thurston, Kerckho�). ∀h, h′ ∈ T ,∃!λ ∈ML, h′ = El(λ)(h).
Simple proof by Mess (1990) based on AdS geometry.
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Extensions of the Earthquake Thm

Extension of the Earthquake Theorem :

to hyperbolic surfaces with cone sings of angle < π. (w/ Francesco
Bonsante.)

to hyperbolic surfaces with geodesic boundary : 2N earthquakes
sending h to h′. (w/ Bonsante, Kirill Krasnov).

The proof of the 1st statement is equivalent to an extension of the Mess
parameterization for GH AdS manifolds with �particles� : cone
singularities along time-like lines, θ < π. The analoguous quasifuchsian
statement holds : Bers-type theorem for quasifuchsian manifolds with
cone singularities of θ < π along in�nite lines (Lecuire, Moroianu, S.).
The 2nd statement is based on multi-black holes : like globally hyperbolic
manifolds, based on a complete, non-compact surface. AdS analogs of
Schottky m�ds.
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Dynamics of earthquakes

Thm (Bonsante, S.). Let λ, µ ∈ML that �ll S . Then Er (λ) ◦ Er (µ) has
a �xed point on T .
Uniqueness ?
See talk by Francesco.
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A cyclic extension of the earthquake �ow

For λ ∈ML �xed, El(λ) de�nes an action of R on T , by
(t, h) 7→ El(tλ)(h). Analog of horocyclic �ow.
We de�ne (w/ Bonsante & Gabriele Mon-
dello) an �extension� : equivalently

for c ∈ T , Cc : S1 × T → T ,

an action D of S1 on T × T .

3 (related) de�nitions based on

GH AdS 3-m�ds,

minimal Lagrangian maps,

holomorphic quadratic di�erentials.
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Properties of the cyclic �ow

Some properties :

Limits to the earthquake �ow : if tnh
∗
n → λ then

Dtn (h, h∗n)→ El(λ/2)(h).

Extension of the earthquake thm :

∀θ ∈ S1 \ {0},∀h, h′ ∈ T ,∃!c ∈ T ,Cc(θ, h) = h′ .

Has a complex extension, which limits to McMullen's complex
earthquakes.

Extends to a S1 action on the universal Teichmüller space.

The extension of the Earthquake Thm follows from a recent result of
Barbot, Béguin and Zeghib on constant Gauss curvature foliations of AdS
manifolds.
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The universal Teichmüller space

A homeo of S1 is quasi-symmetric if it is the boundary of a
quasi-conformal di�eo of the disk.
Def. TU = space of quasi-symmetric orientation-preserving homeos of
S1, up to PSL(2,R).
Let ρ0 ∈ T , then any ρ ∈ T is conjugated to ρ0 by a quasi-conformal
di�eo φ. Moreover ∂φ is unique. Therefore all T embed in TU .
Question : canonical quasi-conformal extension(s) to the disk of a
quasi-symmetric homeo ?
Conj (Schoen). Any quasi-symmetric homeo of S1 has a unique
quasi-conformal harmonic extension to the disk.
Uniqueness. Partial results on existence. True for closed surfaces.
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quasi-symmetric homeo ?
Conj (Schoen). Any quasi-symmetric homeo of S1 has a unique
quasi-conformal harmonic extension to the disk.
Uniqueness. Partial results on existence. True for closed surfaces.
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Extensions of quasi-symmetric homeos

Def. a di�eo φ : H2 → H2 is minimal Lagrangian i� it is area-preserving
and its graph is minimal in H2 × H2.
φ is min Lagrangian i� φ = v ◦ u−1, where u, v : D → H2 are harmonic
maps with opposite Hopf di�erentials. �Squares� of harmonic map.
Thm (Bonsante, S). any quasi-symmetric homeo h of S1 has a unique
extension as a quasi-conformal minimal Lagrangian di�eo of H2.
Known (Schoen, Labourie 1992) for closed surfaces. Also when h has
small dilation (Aiyama, Akutagawa, Wan 2000).
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AdS3 as a Lorentz analog of H3

AdS3 = {x ∈ R2,2 | 〈x , x〉 = −1} .

Constant curvature −1, π1(AdS3) = Z.
Conformal model, in a cylinder.

Projective model, in a quadric.

Space-like, time-like, light-like
directions. Time-like geodesics are
closed of length 2π.

Totally geodesic space-like planes
' H2.

Isom(AdS3) = O(2, 2).

Boundary at ∞ with
Lorentz-conformal structure.

Space−like

Time−like

Light−like
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AdS3 as a Lorentz analog of S3

Recall : S3 = SU(2) ' SO(3), and Isom(S3) = O(4) ' O(3)× O(3).
AdS3 = PSL(2,R) with its Killing metric. Left and right actions of
PSL(2,R), identi�es Isom0(AdS3) = PSL(2,R)× PSL(2,R) (up to index
2).

Geometrically :

∂∞AdS3 is foliated by 2 families of
lines.

Thus ∂∞AdS3 ' RP1 × RP1,

Isometries act projectively on each
family,

Space-like curves in ∂∞AdS3 are
graphs of functions RP1 → RP1.
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Globally hyperbolic AdS manifolds

Def. an AdS m�d M is maximal globally hyperbolic if

it contains a closed, space-like surface S ,

any inextendible time-like curve intersects S exactly once,

it is maximal (for inclusion) under those properties.

Then M ' S × R, and M = Ω/ρ(π1S), where Ω ⊂ AdS3.
GH AdS m�ds are strongly reminiscent of quasifuchsian hyperbolic m�ds,
but in a way more relevant to Teichmüller theory (Mess).
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GHMC AdS vs quasifuchsian

M has a �limit set� ΛΓ, which is a Jordan
curve. ΛΓ = ∂Ω ∩ ∂∞AdS3.
M has a �convex core�, C (M) =
CH(ΛΓ)/Γ.
It has two boundary components, both
with hyperbolic induced metricsm±, bent
along measured laminations l± that �ll
(Mess).
Question (Mess). can any m± be uni-
quely realized ?
Existence seems to hold (Boubacar
Diallo, in progress). Uniqueness ?
Thm (Bonsante, S.) Any l−, l+ that �ll
can be realized. Uniqueness ?

Ω

ΛΓ
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CH(ΛΓ)/Γ.
It has two boundary components, both
with hyperbolic induced metricsm±, bent
along measured laminations l± that �ll
(Mess).
Question (Mess). can any m± be uni-
quely realized ?
Existence seems to hold (Boubacar
Diallo, in progress). Uniqueness ?
Thm (Bonsante, S.) Any l−, l+ that �ll
can be realized. Uniqueness ?
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A Bers-type parametrization

Given a GHMC AdS m�d M, ρ : Γ→ SO(2, 2) ' PSL(2,R)× PSL(2,R).
So, (ρL, ρR) : Γ→ PSL(2,R).
Thm (Mess).

ρL, ρR have maximal Euler number.

The map GH → T × T is a homeomorphism.

The hyperbolic metrics cL, cR corresponding to ρL, ρR are analogs of the
conformal metrics at in�nity.
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Proof of the Earthquake Thm

m± are related to cl , cr by earthquakes
along l±. The Earthquake thm follows
from this by simple arguments.

Fix cl , cr . By Mess' thm, there are
unique m±, l±.

cr = Er (l+) ◦ El(l+)−1(cl)

El(l+)−1 = Er (l+),

so Er (l+) ◦ El(l+)−1 = Er (2l+).

Thus cr = Er (2l+)(cl), and
similarly cr = El(2l−)(cl).

Uniqueness follows from the same
argument.
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E (   )+ r
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l l
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The existence of �xed points of El(λ) ◦ El(µ) follow similarly from
prescribing l−, l+.
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Maximal surfaces in AdS

Let Σ ⊂ AdS3 be a space-like graph. We call :

I the induced metric, J its complex structure,

B the shape operator, BX = −∇XN,

E the identity.

Def. hL, hR = I ((E ± JB)·, (E ± JB)·).
Prop (Krasnov, S.). if Σ has principal curvatures |ki | < 1 then hL, hR are
hyperbolic metrics. If hL, hR are complete, we obtain φ : H2 → H2.
Related to the left/right representations for GH m�ds.
Prop. Σ is maximal i� φ is min Lagrangian. It is quasi-conformal i�
|ki | < 1 uniformly.
Prop. If in addition ∂∞Σ is the graph of a quasi-symmetric homeo
⊂ ∂∞AdS3 ' RP1 × RP1, then hL, hR are complete and ∂∞Σ is the
graph of φ.
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graph of φ.
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Statement on maximal surfaces

Thm B (Bonsante,S). let Γ ⊂ ∂∞AdS3 be the graph of a
quasi-symmetric homeo. Then there exists a unique maximal surface
Σ ⊂ AdS3 with |ki | < 1 uniformly such that ∂∞Σ = Γ.
Thm A follows through the correspondance with min Lagrangian maps.
Thm B has a partial extension to higher dimensions (existence).
The key step in the proof of Thm B are compactness estimates for
maximal surfaces in AdSn, using results of Barnik (1984).
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Questions

AdS geometry and its applications to Teichmüller theory remains
relatively open.

Open questions on the boundary of the convex core of GH m�ds,
and applications to earthquakes.

Use AdS to prove Schoen's conjecture on harmonic extensions ?

Extend to AdS setting various results known for quasifuchsian
m�ds ?

Other questions and applications, not yet discovered ? ?
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The end

Thanks for your attention !
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