AdS geometry as a tool for Teichmüller theory

Jean-Marc Schlenker

Institut de Mathématiques de Toulouse Université Toulouse III http://www.math.univ-toulouse.fr/~schlenker

> IMS July 29, 2010

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Goals of this talk

• Advertise 3d AdS geometry as a tool for Teichmüller theory,

- Explain basics of AdS geometry,
- State some recent results obtained using AdS,
- Examples of proofs,
- Some open questions here and there.

・ロン ・四と ・ヨン ・ヨン

Goals of this talk

- Advertise 3d AdS geometry as a tool for Teichmüller theory,
- Explain basics of AdS geometry,
- State some recent results obtained using AdS,
- Examples of proofs,
- Some open questions here and there.

・ロン ・四と ・ヨン ・ヨン

Goals of this talk

- Advertise 3d AdS geometry as a tool for Teichmüller theory,
- Explain basics of AdS geometry,
- State some recent results obtained using AdS,
- Examples of proofs,
- Some open questions here and there.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Goals of this talk

- Advertise 3d AdS geometry as a tool for Teichmüller theory,
- Explain basics of AdS geometry,
- State some recent results obtained using AdS,
- Examples of proofs,
- Some open questions here and there.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Goals of this talk

- Advertise 3d AdS geometry as a tool for Teichmüller theory,
- Explain basics of AdS geometry,
- State some recent results obtained using AdS,
- Examples of proofs,
- Some open questions here and there.

Some statements from AdS geometry GH AdS manifolds AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS_3

Recall that

$$H^3 = \{x \in \mathbb{R}^{3,1} \mid \langle x, x
angle = -1\&x_0 > 0\} \; .$$

$$AdS_3 = \{ x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1 \} .$$

Lorentz analog of H^3 : complete, constant curvature -1. From relativity: "Anti de Sitter", model for gravity (no matter). Lorentz analog of S^3 : $PSL(2, \mathbb{R})$ w/ Killing metric, isometry group, etc Basic idea : hyperbolic and AdS 3-mflds as tools for Teichmüller theory.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Some statements from AdS geometry GH AdS manifolds AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS_3

Recall that

$$H^3 = \{x \in \mathbb{R}^{3,1} \mid \langle x, x
angle = -1\&x_0 > 0\} \;.$$

$AdS_3 = \{x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1\}$.

Lorentz analog of H^3 : complete, constant curvature -1. From relativity: "Anti de Sitter", model for gravity (no matter). Lorentz analog of S^3 : $PSL(2, \mathbb{R})$ w/ Killing metric, isometry group, etc Basic idea : hyperbolic and AdS 3-mflds as tools for Teichmüller theory.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Some statements from AdS geometry GH AdS manifolds AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS_3

Recall that

$$\mathcal{H}^3 = \{x \in \mathbb{R}^{3,1} \mid \langle x, x
angle = -1\&x_0 > 0\} \;.$$

$$AdS_3 = \{x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1\}$$
.

Lorentz analog of H^3 : complete, constant curvature -1.

From relativity : "Anti de Sitter", model for gravity (no matter). Lorentz analog of S^3 : *PSL*(2, \mathbb{R}) w/ Killing metric, isometry group, etc Basic idea : hyperbolic and AdS 3-mflds as tools for Teichmüller theory.

・ロト ・四ト ・ヨト ・ヨト

Some statements from AdS geometry GH AdS manifolds AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS_3

Recall that

$$H^3 = \{x \in \mathbb{R}^{3,1} \mid \langle x, x
angle = -1\&x_0 > 0\} \; .$$

$$AdS_3 = \{x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1\}$$
.

Lorentz analog of H^3 : complete, constant curvature -1. From relativity : "Anti de Sitter", model for gravity (no matter). Lorentz analog of S^3 : $PSL(2, \mathbb{R})$ w/ Killing metric, isometry group, etc. Basic idea : hyperbolic and AdS 3-mflds as tools for Teichmüller theory

・ロト ・聞 ・ ・ ヨ ・ ・ ヨ ・

Some statements from AdS geometry GH AdS manifolds AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS_3

Recall that

$$H^3 = \{x \in \mathbb{R}^{3,1} \mid \langle x, x
angle = -1\&x_0 > 0\} \; .$$

$$AdS_3 = \{x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1\}$$
.

Lorentz analog of H^3 : complete, constant curvature -1. From relativity: "Anti de Sitter", model for gravity (no matter). Lorentz analog of S^3 : $PSL(2, \mathbb{R})$ w/ Killing metric, isometry group, etc Basic idea: hyperbolic and AdS 3-mflds as tools for Teichmüller theory.

< 日 > (四 > (四 > (三 > (三 >))))

Some statements from AdS geometry GH AdS manifolds AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS_3

Recall that

$$H^3 = \{x \in \mathbb{R}^{3,1} \mid \langle x, x
angle = -1\&x_0 > 0\} \; .$$

$$AdS_3 = \{x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1\}$$
.

Lorentz analog of H^3 : complete, constant curvature -1. From relativity: "Anti de Sitter", model for gravity (no matter). Lorentz analog of S^3 : $PSL(2, \mathbb{R})$ w/ Killing metric, isometry group, etc Basic idea : hyperbolic and AdS 3-mflds as tools for Teichmüller theory.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Hyperbolic 3-manifolds and Teichmüller theory

Based (mostly) on quasifuchsian 3-manifolds. Examples of applications include :

- complex projective structures on surfaces,
- complex earthquakes (McMullen),
- the volume of the convex core of quasifuchsian manifolds is coarsely equivalent to the Weil-Petersson distance between the metrics on its boundary (Brock).
- the renormalized volume as a Kähler potential for WP,
- properties of the grafting map.

Not developed here.

(ロ) (四) (三) (三)

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Hyperbolic 3-manifolds and Teichmüller theory

Based (mostly) on quasifuchsian 3-manifolds. Examples of applications include :

- complex projective structures on surfaces,
- complex earthquakes (McMullen),
- the volume of the convex core of quasifuchsian manifolds is coarsely equivalent to the Weil-Petersson distance between the metrics on its boundary (Brock),
- the renormalized volume as a Kähler potential for WP,
- properties of the grafting map.

Not developed here.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Hyperbolic 3-manifolds and Teichmüller theory

Based (mostly) on quasifuchsian 3-manifolds. Examples of applications include :

- complex projective structures on surfaces,
- complex earthquakes (McMullen),
- the volume of the convex core of quasifuchsian manifolds is coarsely equivalent to the Weil-Petersson distance between the metrics on its boundary (Brock),
- the renormalized volume as a Kähler potential for WP,
- properties of the grafting map.

Not developed here.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Hyperbolic 3-manifolds and Teichmüller theory

Based (mostly) on quasifuchsian 3-manifolds. Examples of applications include :

- complex projective structures on surfaces,
- complex earthquakes (McMullen),
- the volume of the convex core of quasifuchsian manifolds is coarsely equivalent to the Weil-Petersson distance between the metrics on its boundary (Brock),
- the renormalized volume as a Kähler potential for WP,
- properties of the grafting map.

Not developed here.

< 日 > (四 > (四 > (三 > (三 >))))

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Hyperbolic 3-manifolds and Teichmüller theory

Based (mostly) on quasifuchsian 3-manifolds. Examples of applications include :

- complex projective structures on surfaces,
- complex earthquakes (McMullen),
- the volume of the convex core of quasifuchsian manifolds is coarsely equivalent to the Weil-Petersson distance between the metrics on its boundary (Brock),
- the renormalized volume as a Kähler potential for WP,
- properties of the grafting map.

Not developed here.

・ロト ・四ト ・ヨト ・ヨト

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Hyperbolic 3-manifolds and Teichmüller theory

Based (mostly) on quasifuchsian 3-manifolds. Examples of applications include :

- complex projective structures on surfaces,
- complex earthquakes (McMullen),
- the volume of the convex core of quasifuchsian manifolds is coarsely equivalent to the Weil-Petersson distance between the metrics on its boundary (Brock),
- the renormalized volume as a Kähler potential for WP,
- properties of the grafting map.

Not developed here.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Hyperbolic 3-manifolds and Teichmüller theory

Based (mostly) on quasifuchsian 3-manifolds. Examples of applications include :

- complex projective structures on surfaces,
- complex earthquakes (McMullen),
- the volume of the convex core of quasifuchsian manifolds is coarsely equivalent to the Weil-Petersson distance between the metrics on its boundary (Brock),
- the renormalized volume as a Kähler potential for WP,
- properties of the grafting map.

Not developed here.

(D) (A) (A) (A)

AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS 3-manifolds and Teichmüller theory

Some aspects :

- earthquakes,
- extensions of the earthquake flow,
- minimal Lagrangian diffeos.

AdS side involves physically relevant notions :

- globally hyperbolic (GH) spaces (analogs of quasifuchsian),
- "particles",
- multi-black holes,
- maximal surfaces.

Notations : S closed surface of genus \geq 2, ${\mathcal T}$ Teichmüller space.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS 3-manifolds and Teichmüller theory

Some aspects :

- earthquakes,
- extensions of the earthquake flow,
- minimal Lagrangian diffeos.

AdS side involves physically relevant notions :

- globally hyperbolic (GH) spaces (analogs of quasifuchsian),
- "particles",
- multi-black holes,
- maximal surfaces.

Notations : S closed surface of genus \geq 2, ${\mathcal T}$ Teichmüller space.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS 3-manifolds and Teichmüller theory

Some aspects :

- earthquakes,
- extensions of the earthquake flow,
- minimal Lagrangian diffeos.

AdS side involves physically relevant notions :

- globally hyperbolic (GH) spaces (analogs of quasifuchsian),
- "particles",
- multi-black holes,
- maximal surfaces.

Notations : S closed surface of genus \geq 2, ${\mathcal T}$ Teichmüller space.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS 3-manifolds and Teichmüller theory

Some aspects :

- earthquakes,
- extensions of the earthquake flow,
- minimal Lagrangian diffeos.

AdS side involves physically relevant notions :

- globally hyperbolic (GH) spaces (analogs of quasifuchsian),
- "particles",
- multi-black holes,
- maximal surfaces.

Notations : S closed surface of genus \geq 2, ${\mathcal T}$ Teichmüller space.

・ロン ・四と ・ヨン ・ヨン

AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS 3-manifolds and Teichmüller theory

Some aspects :

- earthquakes,
- extensions of the earthquake flow,
- minimal Lagrangian diffeos.

AdS side involves physically relevant notions :

- globally hyperbolic (GH) spaces (analogs of quasifuchsian),
- "particles",
- multi-black holes,
- maximal surfaces.

Notations : S closed surface of genus \geq 2, ${\mathcal T}$ Teichmüller space.

・ロン ・四と ・ヨン ・ヨン

AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS 3-manifolds and Teichmüller theory

Some aspects :

- earthquakes,
- extensions of the earthquake flow,
- minimal Lagrangian diffeos.

AdS side involves physically relevant notions :

- globally hyperbolic (GH) spaces (analogs of quasifuchsian),
- "particles",
- multi-black holes,
- maximal surfaces.

Notations : S closed surface of genus \geq 2, ${\mathcal T}$ Teichmüller space.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS 3-manifolds and Teichmüller theory

Some aspects :

- earthquakes,
- extensions of the earthquake flow,
- minimal Lagrangian diffeos.

AdS side involves physically relevant notions :

- globally hyperbolic (GH) spaces (analogs of quasifuchsian),
- "particles",
- multi-black holes,
- maximal surfaces.

Notations : S closed surface of genus \geq 2, ${\mathcal T}$ Teichmüller space.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

AdS 3-manifolds and Teichmüller theory

Some aspects :

- earthquakes,
- extensions of the earthquake flow,
- minimal Lagrangian diffeos.

AdS side involves physically relevant notions :

- globally hyperbolic (GH) spaces (analogs of quasifuchsian),
- "particles",
- multi-black holes,
- maximal surfaces.

Notations : S closed surface of genus \geq 2, \mathcal{T} Teichmüller space.

Thurston's Earthquake Thm

Measured laminations

 $\mathcal{WM} = \{ \text{ weighted multicurves on } S \}$: set of disjoint simple closed curves, each with a positive weight.

・ロト ・日本・ ・ヨト・ ・ヨト・

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Measured laminations

 $\mathcal{WM} = \{ \text{ weighted multicurves on S } \} : \text{set of disjoint simple closed curves, each with a positive weight.}$

 \mathcal{WM} is infinite : simple closed curves on S can wrap around a lot.

Let $(c_i, l_i)_{i=1,\dots,n} \in \mathcal{WM}$, the c_i form a *lamination* and the l_i define a *transverse* measure : gives a total weight to γ , transverse to the c_i .

This gives a topology to \mathcal{WM}_+

The completion of WM is the space of measured laminations ML.

Measured laminations can be pretty complicated.

• $\mathcal{ML}\simeq \mathbb{R}^{6g-6}$

- $\partial \mathcal{T} \simeq \mathcal{ML} / \mathbb{R}_{>0}$ (Thurston).
- $\mathcal{T} \times \mathcal{ML} \simeq T^*\mathcal{T}$

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Measured laminations

 $\mathcal{WM} = \{ \text{ weighted multicurves on S } \} : \text{set of disjoint simple closed curves, each with a positive weight.}$

 \mathcal{WM} is infinite : simple closed curves on S can wrap around a lot. Let $(c_i, l_i)_{i=1, \dots, n} \in \mathcal{WM}$, the c_i form a *lamination* and the l_i define a *transverse*

measure : gives a total weight to γ , transverse to the c_i . This gives a topology to WM. The completion of WM is the space of

・ コ ト ・ 日 ト ・ 日 ト ・ 日 ト

ivieasured laminations can be pretty comp

• $\mathcal{ML}\simeq \mathbb{R}^{6g-6}$

- $\partial \mathcal{T} \simeq \mathcal{ML} / \mathbb{R}_{>0}$ (Thurston).
- $\mathcal{T} imes \mathcal{ML} \simeq T^* \mathcal{T}$

Thurston's Earthquake Thm

Measured laminations

 $\mathcal{WM} = \{ \text{ weighted multicurves on } S \}$: set of disjoint simple closed curves, each with a positive weight.

 \mathcal{WM} is infinite : simple closed curves on S can wrap around a lot. Let $(c_i, l_i)_{i=1, \cdots, n} \in \mathcal{WM}$, the c_i form a lamination and the li define a transverse measure : gives a total weight to γ , transverse to the c_i .

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Measured laminations

 $\mathcal{WM} = \{ \text{ weighted multicurves on S } \}$: set of disjoint simple closed curves, each with a positive weight.

 \mathcal{WM} is infinite : simple closed curves on S can wrap around a lot.

Let $(c_i, l_i)_{i=1,\dots,n} \in \mathcal{WM}$, the c_i form a

lamination and the l_i define a *transverse*

measure : gives a total weight to γ , transverse to the c_i .

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

This gives a topology to \mathcal{WM} .

The completion of WM is the space of *measured laminations* ML. Vleasured laminations can be pretty complicated

• $\mathcal{ML}\simeq \mathbb{R}^{6g-6}$

- $\partial \mathcal{T} \simeq \mathcal{ML}/\mathbb{R}_{>0}$ (Thurston).
- $\mathcal{T} imes \mathcal{ML} \simeq T^* \mathcal{T}$

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Measured laminations

 $\mathcal{WM} = \{ \text{ weighted multicurves on S } \}$: set of disjoint simple closed curves, each with a positive weight.

 \mathcal{WM} is infinite : simple closed curves on S can wrap around a lot.

Let $(c_i, l_i)_{i=1,\dots,n} \in \mathcal{WM}$, the c_i form a

lamination and the l_i define a transverse

measure : gives a total weight to γ , transverse to the c_i .

This gives a topology to \mathcal{WM} .

The completion of \mathcal{WM} is the space of *measured laminations* \mathcal{ML} .

Measured laminations can be pretty complicated.

• $\mathcal{ML}\simeq \mathbb{R}^{6g-6}$

- $\partial \mathcal{T} \simeq \mathcal{ML}/\mathbb{R}_{>0}$ (Thurston).
- $\mathcal{T} imes \mathcal{ML} \simeq T^* \mathcal{T}$

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Thurston's Earthquake Thm

Measured laminations

 $\mathcal{WM} = \{ \text{ weighted multicurves on } S \}$: set of disjoint simple closed curves, each with a positive weight.

 \mathcal{WM} is infinite : simple closed curves on S can wrap around a lot.

Let $(c_i, l_i)_{i=1, \cdots, n} \in \mathcal{WM}$, the c_i form a

lamination and the li define a transverse

measure : gives a total weight to γ , transverse to the c_i .

・ロト ・四ト ・ヨト ・ヨト

This gives a topology to \mathcal{WM} .

The completion of \mathcal{WM} is the space of

measured laminations \mathcal{ML} . Measured laminations can be pretty complicated.

Thurston's Earthquake Thm

Measured laminations

 $\mathcal{WM} = \{ \text{ weighted multicurves on } S \}$: set of disjoint simple closed curves, each with a positive weight.

 \mathcal{WM} is infinite : simple closed curves on S can wrap around a lot.

Let $(c_i, l_i)_{i=1, \cdots, n} \in \mathcal{WM}$, the c_i form a

lamination and the li define a transverse

measure : gives a total weight to γ , transverse to the c_i .

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

This gives a topology to \mathcal{WM} .

The completion of \mathcal{WM} is the space of

measured laminations \mathcal{ML} . Measured laminations can be pretty complicated.

•
$$\mathcal{ML} \simeq \mathbb{R}^{6g-6}$$
.

Thurston's Earthquake Thm

Measured laminations

 $\mathcal{WM} = \{ \text{ weighted multicurves on } S \}$: set of disjoint simple closed curves, each with a positive weight.

 \mathcal{WM} is infinite : simple closed curves on S can wrap around a lot.

Let $(c_i, l_i)_{i=1, \cdots, n} \in \mathcal{WM}$, the c_i form a

lamination and the li define a transverse

measure : gives a total weight to γ , transverse to the c_i .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

This gives a topology to \mathcal{WM} .

The completion of \mathcal{WM} is the space of

measured laminations \mathcal{ML} . Measured laminations can be pretty complicated.

•
$$\mathcal{ML} \simeq \mathbb{R}^{6g-6}$$
.

- $\partial \mathcal{T} \simeq \mathcal{ML} / \mathbb{R}_{>0}$ (Thurston).
Thurston's Earthquake Thm

Measured laminations

 $\mathcal{WM} = \{ \text{ weighted multicurves on } S \}$: set of disjoint simple closed curves, each with a positive weight.

 \mathcal{WM} is infinite : simple closed curves on S can wrap around a lot.

Let $(c_i, l_i)_{i=1,\dots,n} \in \mathcal{WM}$, the c_i form a

lamination and the l_i define a *transverse*

measure : gives a total weight to γ , transverse to the c_i .

(D) (A) (A)

This gives a topology to \mathcal{WM} .

The completion of \mathcal{WM} is the space of

measured laminations \mathcal{ML} . Measured laminations can be pretty complicated.

•
$$\mathcal{ML}\simeq\mathbb{R}^{6g-6}$$

•
$$\partial \mathcal{T} \simeq \mathcal{ML}/\mathbb{R}_{>0}$$
 (Thurston).

•
$$\mathcal{T} \times \mathcal{ML} \simeq T^* \mathcal{T}$$
.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Thurston's Earthquake Thm

Start with a hyperbolic surface.

If $w \in \mathcal{ML}$ is a weighted curve and $h \in \mathcal{T}$, $E_l(w)(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w, turning the left-hand side by the weight, and gluing back.

Defines a homeomorphism

(ロ) (四) (三) (三)

 $E_l(w):\mathcal{T}\to\mathcal{T}$.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Thurston's Earthquake Thm

Start with a hyperbolic surface. If $w \in \mathcal{ML}$ is a weighted curve and $h \in \mathcal{T}$, $E_l(w)(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w. turning the left-hand side by the weight. and gluing back. Defines a homeomorphism

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 $E_l(w):\mathcal{T}
ightarrow\mathcal{T}$.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Thurston's Earthquake Thm

Start with a hyperbolic surface. If $w \in \mathcal{ML}$ is a weighted curve and $h \in \mathcal{T}$, $E_l(w)(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w, turning the left-hand side by the weight, and gluing back. Defines a homeomorphism

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 $E_l(w):\mathcal{T}
ightarrow\mathcal{T}$.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Thurston's Earthquake Thm

Start with a hyperbolic surface. If $w \in \mathcal{ML}$ is a weighted curve and $h \in \mathcal{T}$, $E_l(w)(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w, turning the left-hand side by the weight, and gluing back. Defines a homeomorphism

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 $E_l(w):\mathcal{T}\to\mathcal{T}$

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Thurston's Earthquake Thm

Start with a hyperbolic surface. If $w \in \mathcal{ML}$ is a weighted curve and $h \in \mathcal{T}$, $E_l(w)(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w, turning the left-hand side by the weight, and gluing back.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Defines a homeomorphism

 $E_l(w):\mathcal{T}
ightarrow\mathcal{T}$.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Thurston's Earthquake Thm

Start with a hyperbolic surface. If $w \in \mathcal{ML}$ is a weighted curve and $h \in \mathcal{T}$, $E_l(w)(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w, turning the left-hand side by the weight, and gluing back.

(ロ) (四) (三) (三)

Defines a homeomorphism

$$E_l(w):\mathcal{T}\to\mathcal{T}$$
.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Thurston's Earthquake Thm

Start with a hyperbolic surface. If $w \in \mathcal{ML}$ is a weighted curve and $h \in \mathcal{T}$, $E_l(w)(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w, turning the left-hand side by the weight, and gluing back.

Defines a homeomorphism

$$E_l(w):\mathcal{T}\to\mathcal{T}$$
.

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Thurston's Earthquake Thm

Start with a hyperbolic surface. If $w \in \mathcal{ML}$ is a weighted curve and $h \in \mathcal{T}$, $E_l(w)(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w, turning the left-hand side by the weight, and gluing back.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Defines a homeomorphism

$$E_l(w):\mathcal{T}
ightarrow\mathcal{T}$$
 .

AdS AdS vs hyperbolic Thurston's Earthquake Thm

Thurston's Earthquake Thm

Start with a hyperbolic surface. If $w \in \mathcal{ML}$ is a weighted curve and $h \in \mathcal{T}$, $E_l(w)(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w, turning the left-hand side by the weight, and gluing back.

(D) (A) (A)

Defines a homeomorphism

$$E_l(w):\mathcal{T}\to\mathcal{T}$$
.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

(ロ) (四) (三) (三)

Extensions of the Earthquake Thm

Extension of the Earthquake Theorem :

- to hyperbolic surfaces with cone sings of angle < π. (w/ Francesco Bonsante.)
- to hyperbolic surfaces with geodesic boundary : 2^N earthquakes sending *h* to *h*'. (w/ Bonsante, Kirill Krasnov).

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Extensions of the Earthquake Thm

Extension of the Earthquake Theorem :

- to hyperbolic surfaces with cone sings of angle $<\pi.$ (w/ Francesco Bonsante.)
- to hyperbolic surfaces with geodesic boundary : 2^N earthquakes sending h to h'. (w/ Bonsante, Kirill Krasnov).

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

・ロン ・四と ・ヨン ・ヨン

Extensions of the Earthquake Thm

Extension of the Earthquake Theorem :

- to hyperbolic surfaces with cone sings of angle < π. (w/ Francesco Bonsante.)
- to hyperbolic surfaces with geodesic boundary : 2^N earthquakes sending h to h'. (w/ Bonsante, Kirill Krasnov).

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Extensions of the Earthquake Thm

Extension of the Earthquake Theorem :

- to hyperbolic surfaces with cone sings of angle < π. (w/ Francesco Bonsante.)
- to hyperbolic surfaces with geodesic boundary : 2^N earthquakes sending h to h'. (w/ Bonsante, Kirill Krasnov).

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

・ロト ・四ト ・ヨト ・ヨト

Extensions of the Earthquake Thm

Extension of the Earthquake Theorem :

- to hyperbolic surfaces with cone sings of angle < π. (w/ Francesco Bonsante.)
- to hyperbolic surfaces with geodesic boundary : 2^N earthquakes sending h to h'. (w/ Bonsante, Kirill Krasnov).

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

・ロト ・四ト ・ヨト ・ヨト

Extensions of the Earthquake Thm

Extension of the Earthquake Theorem :

- to hyperbolic surfaces with cone sings of angle < π. (w/ Francesco Bonsante.)
- to hyperbolic surfaces with geodesic boundary : 2^N earthquakes sending h to h'. (w/ Bonsante, Kirill Krasnov).

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

イロト イヨト イヨト イヨト

Dynamics of earthquakes

Thm (Bonsante, S.). Let $\lambda, \mu \in \mathcal{ML}$ that fill S. Then $E_r(\lambda) \circ E_r(\mu)$ has a fixed point on \mathcal{T} .

Uniqueness? See talk by Francesco.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

Dynamics of earthquakes

Thm (Bonsante, S.). Let $\lambda, \mu \in \mathcal{ML}$ that fill S. Then $E_r(\lambda) \circ E_r(\mu)$ has a fixed point on \mathcal{T} . Uniqueness?

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

Dynamics of earthquakes

Thm (Bonsante, S.). Let $\lambda, \mu \in \mathcal{ML}$ that fill S. Then $E_r(\lambda) \circ E_r(\mu)$ has a fixed point on \mathcal{T} . Uniqueness? See talk by Francesco.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

A cyclic extension of the earthquake flow

For $\lambda \in \mathcal{ML}$ fixed, $E_l(\lambda)$ defines an action of \mathbb{R} on \mathcal{T} , by $(t, h) \mapsto E_l(t\lambda)(h)$. Analog of horocyclic flow.

We define (w/ Bonsante & Gabriele Mondello) an "extension" : equivalently

- for $c \in \mathcal{T}$, $C_c : S^1 \times \mathcal{T} \to \mathcal{T}$
- ullet an action D of S^1 on $\mathcal{T} imes \mathcal{T}$
- 3 (related) definitions based on
 - GH AdS 3-mflds,
 - minimal Lagrangian maps,
 - holomorphic quadratic differentials.

(ロ) (四) (三) (三)

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

A cyclic extension of the earthquake flow

For $\lambda \in \mathcal{ML}$ fixed, $E_l(\lambda)$ defines an action of \mathbb{R} on \mathcal{T} , by $(t,h) \mapsto E_l(t\lambda)(h)$. Analog of horocyclic flow. We define (w/ Bonsante & Gabriele Mon-dello) an "extension" : equivalently

- for $c \in \mathcal{T}$, $C_c : S^1 \times \mathcal{T} \to \mathcal{T}$
- an action D of S^1 on $\mathcal{T} \times \mathcal{T}$.
- 3 (related) definitions based on
 - GH AdS 3-mflds,
 - minimal Lagrangian maps,
 - holomorphic quadratic differentials.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

A cyclic extension of the earthquake flow

For $\lambda \in \mathcal{ML}$ fixed, $E_l(\lambda)$ defines an action of \mathbb{R} on \mathcal{T} , by $(t, h) \mapsto E_l(t\lambda)(h)$. Analog of horocyclic flow. We define (w/ Bonsante & Gabriele Mondello) an "extension" : equivalently

- for $c \in \mathcal{T}$, $C_c : S^1 \times \mathcal{T} \to \mathcal{T}$,
- ullet an action D of S^1 on $\mathcal{T} imes \mathcal{T}$.
- 3 (related) definitions based on
 - GH AdS 3-mflds,
 - minimal Lagrangian maps,
 - holomorphic quadratic differentials.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

A cyclic extension of the earthquake flow

For $\lambda \in \mathcal{ML}$ fixed, $E_l(\lambda)$ defines an action of \mathbb{R} on \mathcal{T} , by $(t,h) \mapsto E_l(t\lambda)(h)$. Analog of horocyclic flow. We define (w/ Bonsante & Gabriele Mondello) an "extension" : equivalently

- for $c \in \mathcal{T}$, $C_c : S^1 \times \mathcal{T} \to \mathcal{T}$,
- an action D of S^1 on $\mathcal{T} \times \mathcal{T}$.
- 3 (related) definitions based on
 - GH AdS 3-mflds,
 - minimal Lagrangian maps,
 - holomorphic quadratic differentials.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

A cyclic extension of the earthquake flow

For $\lambda \in \mathcal{ML}$ fixed, $E_l(\lambda)$ defines an action of \mathbb{R} on \mathcal{T} , by $(t, h) \mapsto E_l(t\lambda)(h)$. Analog of horocyclic flow. We define (w/ Bonsante & Gabriele Mondello) an "extension" : equivalently

- for $c \in \mathcal{T}$, $C_c : S^1 \times \mathcal{T} \to \mathcal{T}$,
- an action D of S^1 on $\mathcal{T} \times \mathcal{T}$.
- 3 (related) definitions based on
 - GH AdS 3-mflds,
 - minimal Lagrangian maps,
 - holomorphic quadratic differentials.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

A cyclic extension of the earthquake flow

For $\lambda \in \mathcal{ML}$ fixed, $E_l(\lambda)$ defines an action of \mathbb{R} on \mathcal{T} , by $(t,h) \mapsto E_l(t\lambda)(h)$. Analog of horocyclic flow. We define (w/ Bonsante & Gabriele Mon-dello) an "extension" : equivalently

- for $c \in \mathcal{T}$, $C_c : S^1 \times \mathcal{T} \to \mathcal{T}$,
- an action D of S^1 on $\mathcal{T} \times \mathcal{T}$.
- 3 (related) definitions based on
 - GH AdS 3-mflds,
 - minimal Lagrangian maps,
 - holomorphic quadratic differentials.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

A cyclic extension of the earthquake flow

For $\lambda \in \mathcal{ML}$ fixed, $E_l(\lambda)$ defines an action of \mathbb{R} on \mathcal{T} , by $(t,h) \mapsto E_l(t\lambda)(h)$. Analog of horocyclic flow. We define (w/ Bonsante & Gabriele Mon-dello) an "extension" : equivalently

- for $c \in \mathcal{T}$, $C_c : S^1 \times \mathcal{T} \to \mathcal{T}$,
- an action D of S^1 on $\mathcal{T} \times \mathcal{T}$.
- 3 (related) definitions based on
 - GH AdS 3-mflds,
 - minimal Lagrangian maps,

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

holomorphic quadratic differentials.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

A cyclic extension of the earthquake flow

For $\lambda \in \mathcal{ML}$ fixed, $E_l(\lambda)$ defines an action of \mathbb{R} on \mathcal{T} , by $(t,h) \mapsto E_l(t\lambda)(h)$. Analog of horocyclic flow. We define (w/ Bonsante & Gabriele Mon-dello) an "extension" : equivalently

- for $c \in \mathcal{T}$, $C_c : S^1 \times \mathcal{T} \to \mathcal{T}$,
- an action D of S^1 on $\mathcal{T} \times \mathcal{T}$.
- 3 (related) definitions based on
 - GH AdS 3-mflds,
 - minimal Lagrangian maps,
 - holomorphic quadratic differentials.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

・ロン ・四と ・ヨン ・ヨン

Properties of the cyclic flow

Some properties :

- Limits to the earthquake flow : if $t_n h_n^* \to \lambda$ then $D_{t_n}(h, h_n^*) \to E_l(\lambda/2)(h)$.
- Extension of the earthquake thm :

 $\forall \theta \in S^1 \setminus \{0\}, \forall h, h' \in \mathcal{T}, \exists ! c \in \mathcal{T}, C_c(\theta, h) = h'$.

- Has a complex extension, which limits to McMullen's complex earthquakes.
- Extends to a S^1 action on the universal Teichmüller space.

The extension of the Earthquake Thm follows from a recent result of Barbot. Béguin and Zeghib on constant Gauss curvature foliations of AdS manifolds.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

・ロット (四) (日) (日)

Properties of the cyclic flow

Some properties :

- Limits to the earthquake flow : if $t_n h_n^* \to \lambda$ then $D_{t_n}(h, h_n^*) \to E_l(\lambda/2)(h)$.
- Extension of the earthquake thm :

 $\forall \theta \in S^1 \setminus \{0\}, \forall h, h' \in \mathcal{T}, \exists ! c \in \mathcal{T}, C_c(\theta, h) = h'$.

- Has a complex extension, which limits to McMullen's complex earthquakes.
- Extends to a S^1 action on the universal Teichmüller space.

The extension of the Earthquake Thm follows from a recent result of Barbot, Béguin and Zeghib on constant Gauss curvature foliations of AdS manifolds.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

< 日 > (四 > (四 > (三 > (三 >))))

Properties of the cyclic flow

Some properties :

- Limits to the earthquake flow : if $t_n h_n^* \to \lambda$ then $D_{t_n}(h, h_n^*) \to E_l(\lambda/2)(h)$.
- Extension of the earthquake thm :

 $\forall \theta \in S^1 \setminus \{0\}, \forall h, h' \in \mathcal{T}, \exists ! c \in \mathcal{T}, C_c(\theta, h) = h'$.

- Has a complex extension, which limits to McMullen's complex earthquakes.
- Extends to a S^1 action on the universal Teichmüller space.

The extension of the Earthquake Thm follows from a recent result of Barbot, Béguin and Zeghib on constant Gauss curvature foliations of AdS manifolds.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Properties of the cyclic flow

Some properties :

- Limits to the earthquake flow : if $t_n h_n^* \to \lambda$ then $D_{t_n}(h, h_n^*) \to E_l(\lambda/2)(h)$.
- Extension of the earthquake thm :

$$\forall \theta \in S^1 \setminus \{0\}, \forall h, h' \in \mathcal{T}, \exists ! c \in \mathcal{T}, C_c(\theta, h) = h'$$
.

- Has a complex extension, which limits to McMullen's complex earthquakes.
- Extends to a S¹ action on the universal Teichmüller space.

The extension of the Earthquake Thm follows from a recent result of Barbot, Béguin and Zeghib on constant Gauss curvature foliations of AdS manifolds.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Properties of the cyclic flow

Some properties :

- Limits to the earthquake flow : if $t_n h_n^* \to \lambda$ then $D_{t_n}(h, h_n^*) \to E_l(\lambda/2)(h)$.
- Extension of the earthquake thm :

$$\forall \theta \in S^1 \setminus \{0\}, \forall h, h' \in \mathcal{T}, \exists ! c \in \mathcal{T}, C_c(\theta, h) = h'$$
.

- Has a complex extension, which limits to McMullen's complex earthquakes.
- Extends to a S¹ action on the universal Teichmüller space.

The extension of the Earthquake Thm follows from a recent result of Barbot, Béguin and Zeghib on constant Gauss curvature foliations of AdS manifolds.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

・ロト ・四ト ・ヨト ・ヨト

Properties of the cyclic flow

Some properties :

- Limits to the earthquake flow : if $t_n h_n^* \to \lambda$ then $D_{t_n}(h, h_n^*) \to E_l(\lambda/2)(h)$.
- Extension of the earthquake thm :

$$\forall \theta \in S^1 \setminus \{0\}, \forall h, h' \in \mathcal{T}, \exists ! c \in \mathcal{T}, C_c(\theta, h) = h'$$
.

- Has a complex extension, which limits to McMullen's complex earthquakes.
- Extends to a S^1 action on the universal Teichmüller space.

The extension of the Earthquake Thm follows from a recent result of Barbot, Béguin and Zeghib on constant Gauss curvature foliations of AdS manifolds.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

(ロ) (部) (注) (注)

The universal Teichmüller space

A homeo of S^1 is *quasi-symmetric* if it is the boundary of a quasi-conformal diffeo of the disk.

Def. \mathcal{T}_U = space of quasi-symmetric orientation-preserving homeos of S^1 , up to $PSL(2, \mathbb{R})$.

Let $\rho_0 \in \mathcal{T}$, then any $\rho \in \mathcal{T}$ is conjugated to ρ_0 by a quasi-conformal diffeo ϕ . Moreover $\partial \phi$ is unique. Therefore all \mathcal{T} embed in \mathcal{T}_U . Question : canonical quasi-conformal extension(s) to the disk of a quasi-symmetric homeo?

Conj (Schoen). Any quasi-symmetric homeo of *S*¹ has a unique quasi-conformal harmonic extension to the disk.

Uniqueness. Partial results on existence. True for closed surfaces.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The universal Teichmüller space

A homeo of S^1 is *quasi-symmetric* if it is the boundary of a quasi-conformal diffeo of the disk.

Def. \mathcal{T}_U = space of quasi-symmetric orientation-preserving homeos of S^1 , up to $PSL(2, \mathbb{R})$.

Let $\rho_0 \in \mathcal{T}$, then any $\rho \in \mathcal{T}$ is conjugated to ρ_0 by a quasi-conformal diffeo ϕ . Moreover $\partial \phi$ is unique. Therefore all \mathcal{T} embed in \mathcal{T}_U . Question : canonical quasi-conformal extension(s) to the disk of a quasi-symmetric homeo?

Conj (Schoen). Any quasi-symmetric homeo of S^1 has a unique quasi-conformal harmonic extension to the disk.

Uniqueness. Partial results on existence. True for closed surfaces.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The universal Teichmüller space

A homeo of S^1 is *quasi-symmetric* if it is the boundary of a quasi-conformal diffeo of the disk.

Def. \mathcal{T}_U = space of quasi-symmetric orientation-preserving homeos of S^1 , up to $PSL(2, \mathbb{R})$.

Let $\rho_0 \in \mathcal{T}$, then any $\rho \in \mathcal{T}$ is conjugated to ρ_0 by a quasi-conformal diffeo ϕ . Moreover $\partial \phi$ is unique. Therefore all \mathcal{T} embed in \mathcal{T}_U .

Question : canonical quasi-conformal extension(s) to the disk of a quasi-symmetric homeo?

Conj (Schoen). Any quasi-symmetric homeo of S^1 has a unique quasi-conformal harmonic extension to the disk.

Uniqueness. Partial results on existence. True for closed surfaces.
Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

・ロト ・日本・ ・ヨト・ ・ヨト・

The universal Teichmüller space

A homeo of S^1 is *quasi-symmetric* if it is the boundary of a quasi-conformal diffeo of the disk.

Def. \mathcal{T}_U = space of quasi-symmetric orientation-preserving homeos of S^1 , up to $PSL(2, \mathbb{R})$.

Let $\rho_0 \in \mathcal{T}$, then any $\rho \in \mathcal{T}$ is conjugated to ρ_0 by a quasi-conformal diffeo ϕ . Moreover $\partial \phi$ is unique. Therefore all \mathcal{T} embed in \mathcal{T}_U . Question : canonical quasi-conformal extension(s) to the disk of a quasi-symmetric homeo?

Conj (Schoen). Any quasi-symmetric homeo of *S*¹ has a unique quasi-conformal harmonic extension to the disk.

Uniqueness. Partial results on existence. True for closed surfaces.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

The universal Teichmüller space

A homeo of S^1 is *quasi-symmetric* if it is the boundary of a quasi-conformal diffeo of the disk.

Def. \mathcal{T}_U = space of quasi-symmetric orientation-preserving homeos of S^1 , up to $PSL(2, \mathbb{R})$.

Let $\rho_0 \in \mathcal{T}$, then any $\rho \in \mathcal{T}$ is conjugated to ρ_0 by a quasi-conformal diffeo ϕ . Moreover $\partial \phi$ is unique. Therefore all \mathcal{T} embed in \mathcal{T}_U . Question : canonical quasi-conformal extension(s) to the disk of a quasi-symmetric homeo?

Conj (Schoen). Any quasi-symmetric homeo of S^1 has a unique quasi-conformal harmonic extension to the disk.

Uniqueness. Partial results on existence. True for closed surfaces.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

The universal Teichmüller space

A homeo of S^1 is *quasi-symmetric* if it is the boundary of a quasi-conformal diffeo of the disk.

Def. \mathcal{T}_U = space of quasi-symmetric orientation-preserving homeos of S^1 , up to $PSL(2, \mathbb{R})$.

Let $\rho_0 \in \mathcal{T}$, then any $\rho \in \mathcal{T}$ is conjugated to ρ_0 by a quasi-conformal diffeo ϕ . Moreover $\partial \phi$ is unique. Therefore all \mathcal{T} embed in \mathcal{T}_U . Question : canonical quasi-conformal extension(s) to the disk of a quasi-symmetric homeo?

Conj (Schoen). Any quasi-symmetric homeo of S^1 has a unique quasi-conformal harmonic extension to the disk.

Uniqueness. Partial results on existence. True for closed surfaces.

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Extensions of quasi-symmetric homeos

Def. a diffeo $\phi: H^2 \rightarrow H^2$ is *minimal Lagrangian* iff it is area-preserving and its graph is minimal in $H^2 \times H^2$.

 ϕ is min Lagrangian iff $\phi = v \circ u^{-1}$, where $u, v : D \to H^2$ are harmonic maps with opposite Hopf differentials. "Squares" of harmonic map. **Thm** (Bonsante, S). any quasi-symmetric homeo *h* of S^1 has a unique extension as a quasi-conformal minimal Lagrangian diffeo of H^2 . Known (Schoen, Labourie 1992) for closed surfaces. Also when *h* has small dilation (Aiyama, Akutagawa, Wan 2000).

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

・ロト ・日本・ ・ヨト・ ・ヨト・

Extensions of quasi-symmetric homeos

Def. a diffeo $\phi: H^2 \to H^2$ is minimal Lagrangian iff it is area-preserving and its graph is minimal in $H^2 \times H^2$. ϕ is min Lagrangian iff $\phi = v \circ u^{-1}$, where $u, v : D \to H^2$ are harmonic maps with opposite Hopf differentials. "Squares" of harmonic map. **Thm** (Bonsante, S). any quasi-symmetric homeo *h* of S^1 has a unique extension as a quasi-conformal minimal Lagrangian diffeo of H^2 . Known (Schoen, Labourie 1992) for closed surfaces. Also when *h* has small dilation (Aiyama, Akutagawa, Wan 2000).

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

Extensions of quasi-symmetric homeos

Def. a diffeo $\phi: H^2 \to H^2$ is minimal Lagrangian iff it is area-preserving and its graph is minimal in $H^2 \times H^2$. ϕ is min Lagrangian iff $\phi = v \circ u^{-1}$, where $u, v : D \to H^2$ are harmonic maps with opposite Hopf differentials. "Squares" of harmonic map. **Thm** (Bonsante, S). any quasi-symmetric homeo h of S¹ has a unique extension as a quasi-conformal minimal Lagrangian diffeo of H^2 .

Known (Schoen, Labourie 1992) for closed surfaces. Also when *h* has small dilation (Aiyama, Akutagawa, Wan 2000).

Extensions of the Earthquake thm Fixed points of compositions of earthquakes A cyclic extension of the Earthquake flow Extensions of quasi-symmetric homeomorphisms of S¹

Extensions of quasi-symmetric homeos

Def. a diffeo $\phi : H^2 \to H^2$ is minimal Lagrangian iff it is area-preserving and its graph is minimal in $H^2 \times H^2$. ϕ is min Lagrangian iff $\phi = v \circ u^{-1}$, where $u, v : D \to H^2$ are harmonic maps with opposite Hopf differentials. "Squares" of harmonic map. **Thm** (Bonsante, S). any quasi-symmetric homeo h of S^1 has a unique extension as a quasi-conformal minimal Lagrangian diffeo of H^2 . Known (Schoen, Labourie 1992) for closed surfaces. Also when h has small dilation (Aiyama, Akutagawa, Wan 2000).

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of H^3

$$AdS_3 = \{x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1\}$$
.

Constant curvature -1, $\pi_1(AdS_3) = \mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.
- Space-like, time-like, light-like directions. Time-like geodesics are closed of length 2π.
- Totally geodesic space-like planes $\simeq H^2$.
- $lsom(AdS_3) = O(2,2)$
- Boundary at ∞ with Lorentz-conformal structure

・ロン ・四 と ・ ヨ と ・ ヨ と

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of H^3

$$AdS_3 = \{x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1\}$$
.

Constant curvature -1, $\pi_1(AdS_3) = \mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.
- Space-like, time-like, light-like directions. Time-like geodesics are closed of length 2π.
- Totally geodesic space-like planes $\simeq H^2$.
- $lsom(AdS_3) = O(2,2)$
- Boundary at ∞ with Lorentz-conformal structure

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of H^3

$$AdS_3 = \{x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1\}$$
.

Constant curvature -1, $\pi_1(AdS_3) = \mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.
- Space-like, time-like, light-like directions. Time-like geodesics are closed of length 2π.
- Totally geodesic space-like planes $\simeq H^2$.
- $lsom(AdS_3) = O(2,2)$
- Boundary at ∞ with Lorentz-conformal structure

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of H^3

$$AdS_3 = \{x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1\}$$
.

Constant curvature -1, $\pi_1(AdS_3) = \mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.
- Space-like, time-like, light-like directions. Time-like geodesics are closed of length 2π.
- Totally geodesic space-like planes $\simeq H^2$.
- $lsom(AdS_3) = O(2,2)$
- Boundary at ∞ with Lorentz-conformal structure

Jean-Marc Schlenker

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of H^3

$$AdS_3 = \{x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1\}$$
.

Constant curvature -1, $\pi_1(AdS_3) = \mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.
- Space-like, time-like, light-like directions. Time-like geodesics are closed of length 2π.
- Totally geodesic space-like planes $\simeq H^2$.
- $lsom(AdS_3) = O(2,2)$
- Boundary at ∞ with Lorentz-conformal structure.

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of H^3

$$AdS_3 = \{x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1\}$$
.

Constant curvature -1, $\pi_1(AdS_3) = \mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.
- Space-like, time-like, light-like directions. Time-like geodesics are closed of length 2π.
- Totally geodesic space-like planes $\simeq H^2$.
- $Isom(AdS_3) = O(2,2).$
- Boundary at ∞ with Lorentz-conformal structure.

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of H^3

$$AdS_3 = \{x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1\}$$
.

Constant curvature -1, $\pi_1(AdS_3) = \mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.
- Space-like, time-like, light-like directions. Time-like geodesics are closed of length 2π.
- Totally geodesic space-like planes $\simeq H^2$.
- $Isom(AdS_3) = O(2,2).$
- Boundary at ∞ with Lorentz-conformal structure.

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of S^3

Recall : $S^3 = SU(2) \simeq SO(3)$, and $Isom(S^3) = O(4) \simeq O(3) \times O(3)$.

 $AdS_3 = PSL(2, \mathbb{R})$ with its Killing metric. Left and right actions of $PSL(2, \mathbb{R})$, identifies $Isom_0(AdS_3) = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$ (up to index 2).

Geometrically :

- $\partial_{\infty}AdS_3$ is foliated by 2 families of lines.
- Thus $\partial_\infty AdS_3 \simeq \mathbb{R}P^1 imes \mathbb{R}P^1$,
- Isometries act projectively on each family,
- Space-like curves in ∂_∞AdS₃ are graphs of functions ℝP¹ → ℝP¹.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of S^3

Recall : $S^3 = SU(2) \simeq SO(3)$, and $Isom(S^3) = O(4) \simeq O(3) \times O(3)$. $AdS_3 = PSL(2, \mathbb{R})$ with its Killing metric. Left and right actions of $PSL(2, \mathbb{R})$, identifies $Isom_0(AdS_3) = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$ (up to index 2).

Geometrically :

- ∂_∞AdS₃ is foliated by 2 families of lines.
- Thus $\partial_\infty AdS_3 \simeq \mathbb{R}P^1 imes \mathbb{R}P^1$,
- Isometries act projectively on each family,
- Space-like curves in ∂_∞AdS₃ are graphs of functions ℝP¹ → ℝP¹.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of S^3

Recall : $S^3 = SU(2) \simeq SO(3)$, and $Isom(S^3) = O(4) \simeq O(3) \times O(3)$. $AdS_3 = PSL(2, \mathbb{R})$ with its Killing metric. Left and right actions of $PSL(2, \mathbb{R})$, identifies $Isom_0(AdS_3) = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$ (up to index 2).

Geometrically :

- $\partial_{\infty} AdS_3$ is foliated by 2 families of lines.
- Thus $\partial_\infty AdS_3\simeq \mathbb{R}P^1 imes \mathbb{R}P^1$,
- Isometries act projectively on each family,
- Space-like curves in ∂_∞AdS₃ are graphs of functions ℝP¹ → ℝP¹.

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of S^3

Recall : $S^3 = SU(2) \simeq SO(3)$, and $Isom(S^3) = O(4) \simeq O(3) \times O(3)$. $AdS_3 = PSL(2, \mathbb{R})$ with its Killing metric. Left and right actions of $PSL(2, \mathbb{R})$, identifies $Isom_0(AdS_3) = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$ (up to index 2).

- $\partial_{\infty} AdS_3$ is foliated by 2 families of lines.
- Thus $\partial_\infty AdS_3\simeq \mathbb{R}P^1 imes \mathbb{R}P^1$,
- Isometries act projectively on each family,
- Space-like curves in ∂_∞AdS₃ are graphs of functions ℝP¹ → ℝP¹

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of S^3

Recall : $S^3 = SU(2) \simeq SO(3)$, and $Isom(S^3) = O(4) \simeq O(3) \times O(3)$. $AdS_3 = PSL(2, \mathbb{R})$ with its Killing metric. Left and right actions of $PSL(2, \mathbb{R})$, identifies $Isom_0(AdS_3) = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$ (up to index 2).

- ∂_∞AdS₃ is foliated by 2 families of lines.
- Thus $\partial_{\infty}AdS_3 \simeq \mathbb{R}P^1 \times \mathbb{R}P^1$,
- Isometries act projectively on each family,
- Space-like curves in $\partial_{\infty}AdS_3$ are graphs of functions $\mathbb{R}P^1 \to \mathbb{R}P^1$

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of S^3

Recall : $S^3 = SU(2) \simeq SO(3)$, and $Isom(S^3) = O(4) \simeq O(3) \times O(3)$. $AdS_3 = PSL(2, \mathbb{R})$ with its Killing metric. Left and right actions of $PSL(2, \mathbb{R})$, identifies $Isom_0(AdS_3) = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$ (up to index 2).

- $\partial_{\infty}AdS_3$ is foliated by 2 families of lines.
- Thus $\partial_\infty AdS_3 \simeq \mathbb{R}P^1 imes \mathbb{R}P^1$,
- Isometries act projectively on each family,
- Space-like curves in ∂_∞AdS₃ are graphs of functions ℝP¹ → ℝP¹.

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of S^3

Recall : $S^3 = SU(2) \simeq SO(3)$, and $Isom(S^3) = O(4) \simeq O(3) \times O(3)$. $AdS_3 = PSL(2, \mathbb{R})$ with its Killing metric. Left and right actions of $PSL(2, \mathbb{R})$, identifies $Isom_0(AdS_3) = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$ (up to index 2).

- $\partial_{\infty}AdS_3$ is foliated by 2 families of lines.
- Thus $\partial_\infty AdS_3 \simeq \mathbb{R}P^1 imes \mathbb{R}P^1$,
- Isometries act projectively on each family,
- Space-like curves in $\partial_{\infty}AdS_3$ are graphs of functions $\mathbb{R}P^1 \to \mathbb{R}P^1$

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

AdS_3 as a Lorentz analog of S^3

Recall : $S^3 = SU(2) \simeq SO(3)$, and $Isom(S^3) = O(4) \simeq O(3) \times O(3)$. $AdS_3 = PSL(2, \mathbb{R})$ with its Killing metric. Left and right actions of $PSL(2, \mathbb{R})$, identifies $Isom_0(AdS_3) = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$ (up to index 2).

${\sf Geometrically} :$

- $\partial_{\infty}AdS_3$ is foliated by 2 families of lines.
- Thus $\partial_\infty AdS_3 \simeq \mathbb{R}P^1 imes \mathbb{R}P^1$,
- Isometries act projectively on each family,
- Space-like curves in ∂_∞AdS₃ are graphs of functions ℝP¹ → ℝP¹.

AdS₃ GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Globally hyperbolic AdS manifolds

Def. an AdS mfld *M* is maximal globally hyperbolic if

- it contains a closed, space-like surface S,
- any inextendible time-like curve intersects S exactly once,
- it is maximal (for inclusion) under those properties.

Then $M \simeq S \times \mathbb{R}$, and $M = \Omega/\rho(\pi_1 S)$, where $\Omega \subset AdS_3$. GH AdS mflds are strongly reminiscent of quasifuchsian hyperbolic mflds, but in a way more relevant to Teichmüller theory (Mess).

(ロ) (部) (注) (注)

AdS₃ GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Globally hyperbolic AdS manifolds

Def. an AdS mfld *M* is maximal globally hyperbolic if

- it contains a closed, space-like surface S,
- any inextendible time-like curve intersects S exactly once,
- it is maximal (for inclusion) under those properties.

Then $M \simeq S \times \mathbb{R}$, and $M = \Omega/\rho(\pi_1 S)$, where $\Omega \subset AdS_3$. GH AdS mflds are strongly reminiscent of quasifuchsian hyperbolic mflds, but in a way more relevant to Teichmüller theory (Mess).

・ロト ・日本 ・モート ・モート

AdS₃ GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Globally hyperbolic AdS manifolds

Def. an AdS mfld *M* is maximal globally hyperbolic if

- it contains a closed, space-like surface S,
- any inextendible time-like curve intersects S exactly once,
- it is maximal (for inclusion) under those properties.

Then $M \simeq S \times \mathbb{R}$, and $M = \Omega/\rho(\pi_1 S)$, where $\Omega \subset AdS_3$. GH AdS mflds are strongly reminiscent of quasifuchsian hyperbolic mflds, but in a way more relevant to Teichmüller theory (Mess).

・ロト ・日本 ・モート ・モート

AdS₃ GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Globally hyperbolic AdS manifolds

Def. an AdS mfld *M* is maximal globally hyperbolic if

- it contains a closed, space-like surface S,
- any inextendible time-like curve intersects S exactly once,
- it is maximal (for inclusion) under those properties.

Then $M \simeq S \times \mathbb{R}$, and $M = \Omega/\rho(\pi_1 S)$, where $\Omega \subset AdS_3$. GH AdS mflds are strongly reminiscent of quasifuchsian hyperbolic mflds, but in a way more relevant to Teichmüller theory (Mess).

AdS₃ GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Globally hyperbolic AdS manifolds

Def. an AdS mfld *M* is maximal globally hyperbolic if

- it contains a closed, space-like surface S,
- any inextendible time-like curve intersects S exactly once,
- it is maximal (for inclusion) under those properties.

Then $M \simeq S \times \mathbb{R}$, and $M = \Omega/\rho(\pi_1 S)$, where $\Omega \subset AdS_3$. GH AdS mflds are strongly reminiscent of quasifuchsian hyperbolic mflds, but in a way more relevant to Teichmüller theory (Mess).

・ロト ・日本・ ・日本・

AdS₃ GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Globally hyperbolic AdS manifolds

Def. an AdS mfld M is maximal globally hyperbolic if

- it contains a closed, space-like surface S,
- any inextendible time-like curve intersects S exactly once,
- it is maximal (for inclusion) under those properties.

Then $M \simeq S \times \mathbb{R}$, and $M = \Omega/\rho(\pi_1 S)$, where $\Omega \subset AdS_3$. GH AdS mflds are strongly reminiscent of quasifuchsian hyperbolic mflds, but in a way more relevant to Teichmüller theory (Mess).

AdS3 GH manifolds **GH vs quasifuchsian** Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

GHMC AdS vs quasifuchsian

AdS3 GH manifolds **GH vs quasifuchsian** Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

GHMC AdS vs quasifuchsian

M has a "limit set" Λ_{Γ} , which is a Jordan curve. $\Lambda_{\Gamma} = \partial \Omega \cap \partial_{\infty} AdS_3$.

M has a "convex core", C(M) = CH(Λ_Γ)/Γ.

It has two boundary components, both with hyperbolic induced metrics m_{\pm} , bent along measured laminations l_{\pm} that fill (Mess).

Question (Mess). can any m_{\pm} be uniquely realized?

Existence seems to hold (Boubacar Diallo, in progress). *Uniqueness*?

Thm (Bonsante, S.) Any *I*_, *I*₊ that fican be realized. *Uniqueness* ?

AdS3 GH manifolds **GH vs quasifuchsian** Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

GHMC AdS vs quasifuchsian

M has a "limit set" Λ_{Γ} , which is a Jordan curve. $\Lambda_{\Gamma} = \partial \Omega \cap \partial_{\infty} A dS_3$. M has a "convex core", C(M) $CH(\Lambda_{\Gamma})/\Gamma$.

can be realized. *Uniqueness*?

AdS3 GH manifolds **GH vs quasifuchsian** Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

GHMC AdS vs quasifuchsian

M has a "limit set" Λ_{Γ} , which is a Jordan curve. $\Lambda_{\Gamma} = \partial \Omega \cap \partial_{\infty} AdS_3$. *M* has a "convex core", $C(M) = CH(\Lambda_{\Gamma})/\Gamma$. It has two boundary components, both with hyperbolic induced metrics m_{\pm} , bent along measured laminations l_{\pm} that fill (Mess). Question (Mess). can any m_{\pm} be uni-

quely realized? Existence seems to hold (Boubaca Diallo, in progress). *Uniqueness?* **Thm** (Bonsante, S.) Any *I*_, *I*₊ that fil

< 日 > (四 > (四 > (三 > (三 >))))

AdS3 GH manifolds **GH vs quasifuchsian** Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

GHMC AdS vs quasifuchsian

M has a "limit set" Λ_{Γ} , which is a Jordan curve. $\Lambda_{\Gamma} = \partial \Omega \cap \partial_{\infty} AdS_3$. *M* has a "convex core", $C(M) = CH(\Lambda_{\Gamma})/\Gamma$. It has two boundary components, both with hyperbolic induced metrics m_{\pm} , bent along measured laminations l_{\pm} that fill

(Mess).

Question (Mess). can any m_{\pm} be uniquely realized?

Existence seems to hold (Boubacar Diallo, in progress). *Uniqueness*? **Thm** (Bonsante, S.) Any *I*₋, *I*₊ that fill can be realized. *Uniqueness*?

AdS3 GH manifolds **GH vs quasifuchsian** Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

GHMC AdS vs quasifuchsian

M has a "limit set" Λ_{Γ} , which is a Jordan curve. $\Lambda_{\Gamma} = \partial \Omega \cap \partial_{\infty} AdS_3$. *M* has a "convex core", $C(M) = CH(\Lambda_{\Gamma})/\Gamma$. It has two boundary components, both with hyperbolic induced metrics m_{\pm} , bent along measured laminations l_{\pm} that fill (Mess).

Question (Mess). can any m_{\pm} be uniquely realized?

Existence seems to hold (Boubacar Diallo, in progress). *Uniqueness*?

Thm (Bonsante, S.) Any *I*₋, *I*₊ that fill can be realized. *Uniqueness* ?

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

GHMC AdS vs quasifuchsian

M has a "limit set" Λ_{Γ} , which is a Jordan curve. $\Lambda_{\Gamma} = \partial \Omega \cap \partial_{\infty} AdS_3$. *M* has a "convex core", $C(M) = CH(\Lambda_{\Gamma})/\Gamma$. It has two boundary components, both with hyperbolic induced metrics m_{\pm} , bent along measured laminations l_{\pm} that fill (Mess). **Question** (Mess). can any m_{\pm} be uniquely realized ? Existence seems to hold (Boubacar

Diallo, in progress). Uniqueness?

Thm (Bonsante, S.) Any I_- , I_+ that fill, can be realized. *Uniqueness*?

AdS3 GH manifolds **GH vs quasifuchsian** Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

A Bers-type parametrization

Given a GHMC AdS mfld $M, \rho: \Gamma \to SO(2,2) \simeq PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R}).$

So, $(\rho_L, \rho_R) : \Gamma \to PSL(2, \mathbb{R})$. Thm (Mess).

- ρ_L, ρ_R have maximal Euler number.
- The map $GH \rightarrow T \times T$ is a homeomorphism.

The hyperbolic metrics c_L , c_R corresponding to ρ_L , ρ_R are analogs of the conformal metrics at infinity.
AdS3 GH manifolds **GH vs quasifuchsian** Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

A Bers-type parametrization

Given a GHMC AdS mfld M, $\rho : \Gamma \to SO(2,2) \simeq PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R})$. So, $(\rho_L, \rho_R) : \Gamma \to PSL(2,\mathbb{R})$. Thm (Mess).

- ρ_L, ρ_R have maximal Euler number.
- The map $GH \rightarrow \mathcal{T} \times \mathcal{T}$ is a homeomorphism.

The hyperbolic metrics c_L , c_R corresponding to ρ_L , ρ_R are analogs of the conformal metrics at infinity.

Ad53 GH manifolds **GH vs quasifuchsian** Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

A Bers-type parametrization

Given a GHMC AdS mfld M, $\rho : \Gamma \to SO(2,2) \simeq PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R})$. So, $(\rho_L, \rho_R) : \Gamma \to PSL(2,\mathbb{R})$. Thm (Mess).

- ρ_L, ρ_R have maximal Euler number.
- The map $GH \rightarrow \mathcal{T} \times \mathcal{T}$ is a homeomorphism.

The hyperbolic metrics c_L , c_R corresponding to ρ_L , ρ_R are analogs of the conformal metrics at infinity.

AdS3 GH manifolds **GH vs quasifuchsian** Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

A Bers-type parametrization

Given a GHMC AdS mfld M, $\rho : \Gamma \to SO(2,2) \simeq PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R})$. So, $(\rho_L, \rho_R) : \Gamma \to PSL(2,\mathbb{R})$. Thm (Mess).

- ρ_L, ρ_R have maximal Euler number.
- The map $GH \rightarrow T \times T$ is a homeomorphism.

The hyperbolic metrics c_L , c_R corresponding to ρ_L , ρ_R are analogs of the conformal metrics at infinity.

AdS3 GH manifolds **GH vs quasifuchsian** Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

A Bers-type parametrization

Given a GHMC AdS mfld M, $\rho : \Gamma \to SO(2,2) \simeq PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R})$. So, $(\rho_L, \rho_R) : \Gamma \to PSL(2,\mathbb{R})$. Thm (Mess).

- ρ_L, ρ_R have maximal Euler number.
- The map $GH \to \mathcal{T} \times \mathcal{T}$ is a homeomorphism.

The hyperbolic metrics c_L , c_R corresponding to ρ_L , ρ_R are analogs of the conformal metrics at infinity.

イロト イヨト イヨト イヨト

AdS3 GH manifolds **GH vs quasifuchsian** Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

A Bers-type parametrization

Given a GHMC AdS mfld M, $\rho : \Gamma \to SO(2,2) \simeq PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R})$. So, $(\rho_L, \rho_R) : \Gamma \to PSL(2,\mathbb{R})$. Thm (Mess).

- ρ_L, ρ_R have maximal Euler number.
- The map $GH \rightarrow \mathcal{T} \times \mathcal{T}$ is a homeomorphism.

The hyperbolic metrics c_L , c_R corresponding to ρ_L , ρ_R are analogs of the conformal metrics at infinity.

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Proof of the Earthquake Thm

 m_{\pm} are related to c_l, c_r by earthquakes along l_{\pm} . The Earthquake thm follows from this by simple arguments.

- Fix c_l, c_r . By Mess' thm, there are unique m_{\pm}, l_{\pm} .
- $c_r = E_r(l_+) \circ E_l(l_+)^{-1}(c_l)$
- $E_l(l_+)^{-1} = E_r(l_+),$
- so $E_r(l_+) \circ E_l(l_+)^{-1} = E_r(2l_+)$.
- Thus $c_r = E_r(2l_+)(c_l)$, and similarly $c_r = E_l(2l_-)(c_l)$.
- Uniqueness follows from the same argument.

The existence of fixed points of $E_l(\lambda) \circ E_l(\mu)$ follow similarly from prescribing l_-, l_+ .

Jean-Marc Schlenker AdS geo

AdS geometry as a tool for Teichmüller theory

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Proof of the Earthquake Thm

 m_{\pm} are related to c_l, c_r by earthquakes along l_{\pm} . The Earthquake thm follows from this by simple arguments.

- Fix c_l, c_r . By Mess' thm, there are unique m_{\pm}, l_{\pm} .
- $c_r = E_r(l_+) \circ E_l(l_+)^{-1}(c_l)$
- $E_l(l_+)^{-1} = E_r(l_+),$
- so $E_r(l_+) \circ E_l(l_+)^{-1} = E_r(2l_+)$.
- Thus $c_r = E_r(2l_+)(c_l)$, and similarly $c_r = E_l(2l_-)(c_l)$.
- Uniqueness follows from the same argument.

The existence of fixed points of $E_l(\lambda) \circ E_l(\mu)$ follow similarly from prescribing l_-, l_+ .

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Proof of the Earthquake Thm

 m_{\pm} are related to c_l, c_r by earthquakes along l_{\pm} . The Earthquake thm follows from this by simple arguments.

- Fix c_l, c_r . By Mess' thm, there are unique m_{\pm}, l_{\pm} .
- $c_r = E_r(l_+) \circ E_l(l_+)^{-1}(c_l)$
- $E_l(l_+)^{-1} = E_r(l_+),$
- so $E_r(l_+) \circ E_l(l_+)^{-1} = E_r(2l_+)$.
- Thus $c_r = E_r(2l_+)(c_l)$, and similarly $c_r = E_l(2l_-)(c_l)$.
- Uniqueness follows from the same argument.

The existence of fixed points of $E_l(\lambda) \circ E_l(\mu)$ follow similarly from prescribing l_-, l_+ .

AdS geometry as a tool for Teichmüller theory

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Proof of the Earthquake Thm

 m_{\pm} are related to c_l, c_r by earthquakes along l_{\pm} . The Earthquake thm follows from this by simple arguments.

- Fix c_l, c_r . By Mess' thm, there are unique m_{\pm}, l_{\pm} .
- $c_r = E_r(l_+) \circ E_l(l_+)^{-1}(c_l)$
- $E_l(l_+)^{-1} = E_r(l_+)$
- so $E_r(l_+) \circ E_l(l_+)^{-1} = E_r(2l_+)$
- Thus $c_r = E_r(2l_+)(c_l)$, and similarly $c_r = E_l(2l_-)(c_l)$.
- Uniqueness follows from the same argument.

The existence of fixed points of $E_l(\lambda) \circ E_l(\mu)$ follow similarly from prescribing l_-, l_+ .

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Proof of the Earthquake Thm

 m_{\pm} are related to c_l, c_r by earthquakes along l_{\pm} . The Earthquake thm follows from this by simple arguments.

- Fix c_l, c_r . By Mess' thm, there are unique m_{\pm}, l_{\pm} .
- $c_r = E_r(l_+) \circ E_l(l_+)^{-1}(c_l)$
- $E_l(l_+)^{-1} = E_r(l_+)$,
- so $E_r(l_+) \circ E_l(l_+)^{-1} = E_r(2l_+)$
- Thus $c_r = E_r(2l_+)(c_l)$, and similarly $c_r = E_l(2l_-)(c_l)$.
- Uniqueness follows from the same argument.

The existence of fixed points of $E_l(\lambda) \circ E_l(\mu)$ follow similarly from prescribing l_-, l_+ .

Jean-Marc Schlenker AdS geometry as a tool for Teichmüller theory

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Proof of the Earthquake Thm

 m_{\pm} are related to c_l, c_r by earthquakes along l_{\pm} . The Earthquake thm follows from this by simple arguments.

- Fix c_l, c_r . By Mess' thm, there are unique m_{\pm}, l_{\pm} .
- $c_r = E_r(l_+) \circ E_l(l_+)^{-1}(c_l)$
- $E_l(l_+)^{-1} = E_r(l_+),$
- so $E_r(I_+) \circ E_l(I_+)^{-1} = E_r(2I_+).$
- Thus $c_r = E_r(2l_+)(c_l)$, and similarly $c_r = E_l(2l_-)(c_l)$.
- Uniqueness follows from the same argument.

The existence of fixed points of $E_I(\lambda) \circ E_I(\mu)$ follow similarly from prescribing l_-, l_+ .

Jean-Marc Schlenker AdS ge

AdS geometry as a tool for Teichmüller theory

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Proof of the Earthquake Thm

 m_{\pm} are related to c_l, c_r by earthquakes along l_{\pm} . The Earthquake thm follows from this by simple arguments.

- Fix c_l, c_r . By Mess' thm, there are unique m_{\pm}, l_{\pm} .
- $c_r = E_r(l_+) \circ E_l(l_+)^{-1}(c_l)$
- $E_l(l_+)^{-1} = E_r(l_+),$
- so $E_r(I_+) \circ E_l(I_+)^{-1} = E_r(2I_+).$
- Thus $c_r = E_r(2I_+)(c_l)$, and similarly $c_r = E_l(2I_-)(c_l)$.
 - Uniqueness follows from the same argument. existence of fixed points of $E_l(\lambda)\circ E_l(\mu)$ follow similarly

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Proof of the Earthquake Thm

 m_{\pm} are related to c_l, c_r by earthquakes along l_{\pm} . The Earthquake thm follows from this by simple arguments.

- Fix c_l, c_r . By Mess' thm, there are unique m_{\pm}, l_{\pm} .
- $c_r = E_r(l_+) \circ E_l(l_+)^{-1}(c_l)$
- $E_l(l_+)^{-1} = E_r(l_+),$
- so $E_r(I_+) \circ E_l(I_+)^{-1} = E_r(2I_+).$
- Thus $c_r = E_r(2l_+)(c_l)$, and similarly $c_r = E_l(2l_-)(c_l)$.
- Uniqueness follows from the same argument.

The existence of fixed points of $E_I(\lambda) \circ E_I(\mu)$ follow similarly from prescribing l_-, l_+ .

AdS 3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Proof of the Earthquake Thm

 m_{\pm} are related to c_l, c_r by earthquakes along l_{\pm} . The Earthquake thm follows from this by simple arguments.

- Fix c_l, c_r . By Mess' thm, there are unique m_{\pm}, l_{\pm} .
- $c_r = E_r(l_+) \circ E_l(l_+)^{-1}(c_l)$
- $E_l(l_+)^{-1} = E_r(l_+),$
- so $E_r(I_+) \circ E_l(I_+)^{-1} = E_r(2I_+).$
- Thus $c_r = E_r(2l_+)(c_l)$, and similarly $c_r = E_l(2l_-)(c_l)$.
- Uniqueness follows from the same argument.

The existence of fixed points of $E_l(\lambda) \circ E_l(\mu)$ follow similarly from prescribing l_-, l_+ .

Jean-Marc Schlenker

AdS geometry as a tool for Teichmüller theory

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Maximal surfaces in AdS

Let $\Sigma \subset \textit{AdS}_3$ be a space-like graph. We call :

- I the induced metric, J its complex structure,
- *B* the shape operator, $BX = -\nabla_X N$,
- E the identity.

Def. $h_L, h_R = I((E \pm JB), (E \pm JB)).$

Prop (Krasnov, S.). if Σ has principal curvatures $|k_i| < 1$ then h_L, h_R are hyperbolic metrics. If h_L, h_R are complete, we obtain $\phi : H^2 \to H^2$. Related to the left/right representations for GH mflds.

Prop. Σ is *maximal* iff ϕ is min Lagrangian. It is quasi-conformal iff $|k_i| < 1$ uniformly.

Prop. If in addition $\partial_{\infty}\Sigma$ is the graph of a quasi-symmetric homeo $\subset \partial_{\infty}AdS_3 \simeq \mathbb{R}P^1 \times \mathbb{R}P^1$, then h_L, h_R are complete and $\partial_{\infty}\Sigma$ is the graph of ϕ .

AdS 3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Maximal surfaces in AdS

Let $\Sigma \subset \textit{AdS}_3$ be a space-like graph. We call :

- I the induced metric, J its complex structure,
- *B* the shape operator, $BX = -\nabla_X N$,
- E the identity.

Def. $h_L, h_R = I((E \pm JB), (E \pm JB)).$

Prop (Krasnov, S.). if Σ has principal curvatures $|k_i| < 1$ then h_L, h_R are hyperbolic metrics. If h_L, h_R are complete, we obtain $\phi : H^2 \to H^2$. Related to the left/right representations for GH mflds.

Prop. Σ is *maximal* iff ϕ is min Lagrangian. It is quasi-conformal iff $|k_i| < 1$ uniformly.

Prop. If in addition $\partial_{\infty}\Sigma$ is the graph of a quasi-symmetric homeo $\subset \partial_{\infty}AdS_3 \simeq \mathbb{R}P^1 \times \mathbb{R}P^1$, then h_L, h_R are complete and $\partial_{\infty}\Sigma$ is the graph of ϕ .

・ロト ・四ト ・ヨト ・ヨト

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Maximal surfaces in AdS

Let $\Sigma \subset AdS_3$ be a space-like graph. We call :

- I the induced metric, J its complex structure,
- B the shape operator, $BX = -\nabla_X N$,

• E the identity.

Def. $h_L, h_R = I((E \pm JB), (E \pm JB)).$

Prop (Krasnov, S.). if Σ has principal curvatures $|k_i| < 1$ then h_L, h_R are hyperbolic metrics. If h_L, h_R are complete, we obtain $\phi : H^2 \to H^2$. Related to the left/right representations for GH mflds.

Prop. Σ is *maximal* iff ϕ is min Lagrangian. It is quasi-conformal iff $|k_i| < 1$ uniformly.

Prop. If in addition $\partial_{\infty}\Sigma$ is the graph of a quasi-symmetric homeo $\subset \partial_{\infty}AdS_3 \simeq \mathbb{R}P^1 \times \mathbb{R}P^1$, then h_L, h_R are complete and $\partial_{\infty}\Sigma$ is the graph of ϕ .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Maximal surfaces in AdS

Let $\Sigma \subset AdS_3$ be a space-like graph. We call :

- I the induced metric, J its complex structure,
- B the shape operator, $BX = -\nabla_X N$,
- E the identity.

Def. $h_L, h_R = I((E \pm JB), (E \pm JB)).$

Prop (Krasnov, S.). if Σ has principal curvatures $|k_i| < 1$ then h_L, h_R are hyperbolic metrics. If h_L, h_R are complete, we obtain $\phi : H^2 \to H^2$. Related to the left/right representations for GH mflds.

Prop. Σ is *maximal* iff ϕ is min Lagrangian. It is quasi-conformal iff $|k_i| < 1$ uniformly.

Prop. If in addition $\partial_{\infty}\Sigma$ is the graph of a quasi-symmetric homeo $\subset \partial_{\infty}AdS_3 \simeq \mathbb{R}P^1 \times \mathbb{R}P^1$, then h_L, h_R are complete and $\partial_{\infty}\Sigma$ is the graph of ϕ .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

AdS 3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Maximal surfaces in AdS

Let $\Sigma \subset AdS_3$ be a space-like graph. We call :

- I the induced metric, J its complex structure,
- B the shape operator, $BX = -\nabla_X N$,
- E the identity.

Def. $h_L, h_R = I((E \pm JB), (E \pm JB)).$

Prop (Krasnov, S.). if Σ has principal curvatures $|k_i| < 1$ then h_L , h_R are hyperbolic metrics. If h_L , h_R are complete, we obtain $\phi : H^2 \to H^2$. Related to the left/right representations for GH mflds.

Prop. Σ is *maximal* iff ϕ is min Lagrangian. It is quasi-conformal iff $|k_l| < 1$ uniformly.

Prop. If in addition $\partial_{\infty}\Sigma$ is the graph of a quasi-symmetric homeo $\subset \partial_{\infty}AdS_3 \simeq \mathbb{R}P^1 \times \mathbb{R}P^1$, then h_L, h_R are complete and $\partial_{\infty}\Sigma$ is the graph of ϕ .

・ロト ・四ト ・ヨト ・ヨト

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Maximal surfaces in AdS

Let $\Sigma \subset AdS_3$ be a space-like graph. We call :

- I the induced metric, J its complex structure,
- B the shape operator, $BX = -\nabla_X N$,
- E the identity.

Def. h_L , $h_R = I((E \pm JB) \cdot, (E \pm JB) \cdot)$. **Prop** (Krasnov, S.). if Σ has principal curvatures $|k_i| < 1$ then h_L , h_R are hyperbolic metrics. If h_L , h_R are complete, we obtain $\phi: H^2 \to H^2$. Related to the left/right representations for GH mflds. **Prop**. Σ is maximal iff ϕ is min Lagrangian. It is quasi-conformal iff $|k_i| < 1$ uniformly. **Prop**. If in addition $\partial_{\infty}\Sigma$ is the graph of a quasi-symmetric homeo $\subset \partial_{\infty}AdS_3 \simeq \mathbb{R}P^1 \times \mathbb{R}P^1$, then h_L , h_R are complete and $\partial_{\infty}\Sigma$ is the graph of ϕ .

・ロト ・日本・ ・ヨト・ ・ヨト・

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Maximal surfaces in AdS

Let $\Sigma \subset AdS_3$ be a space-like graph. We call :

- I the induced metric, J its complex structure,
- B the shape operator, $BX = -\nabla_X N$,
- E the identity.

Def. h_L , $h_R = I((E \pm JB) \cdot, (E \pm JB) \cdot)$. **Prop** (Krasnov, S.). if Σ has principal curvatures $|k_i| < 1$ then h_L , h_R are hyperbolic metrics. If h_L , h_R are complete, we obtain $\phi : H^2 \to H^2$. Related to the left/right representations for GH mflds. **Prop**. Σ is maximal iff ϕ is min Lagrangian. It is quasi-conformal iff $|k_i| < 1$ uniformly. **Prop**. If in addition $\partial_{\infty}\Sigma$ is the graph of a quasi-symmetric homeo $\subset \partial_{\infty}AdS_3 \simeq \mathbb{R}P^1 \times \mathbb{R}P^1$, then h_L , h_R are complete and $\partial_{\infty}\Sigma$ is the

graph of ϕ_{+} .

< 日 > (四 > (四 > (三 > (三 >))))

AdS 3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Maximal surfaces in AdS

Let $\Sigma \subset AdS_3$ be a space-like graph. We call :

- I the induced metric, J its complex structure,
- B the shape operator, $BX = -\nabla_X N$,
- E the identity.

Def. $h_L, h_R = I((E \pm JB), (E \pm JB))$.

Prop (Krasnov, S.). if Σ has principal curvatures $|k_i| < 1$ then h_L, h_R are hyperbolic metrics. If h_L, h_R are complete, we obtain $\phi : H^2 \to H^2$. Related to the left/right representations for GH mflds.

Prop. Σ is *maximal* iff ϕ is min Lagrangian. It is quasi-conformal iff $|k_i| < 1$ uniformly. **Prop**. If in addition $\partial_{\infty}\Sigma$ is the graph of a quasi-symmetric homeo $\subset \partial_{\infty}AdS_3 \simeq \mathbb{R}P^1 \times \mathbb{R}P^1$, then h_L, h_R are complete and $\partial_{\infty}\Sigma$ is the graph of ϕ .

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

AdS 3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Maximal surfaces in AdS

Let $\Sigma \subset AdS_3$ be a space-like graph. We call :

- I the induced metric, J its complex structure,
- B the shape operator, $BX = -\nabla_X N$,
- E the identity.

Def. $h_L, h_R = I((E \pm JB), (E \pm JB))$.

Prop (Krasnov, S.). if Σ has principal curvatures $|k_i| < 1$ then h_L, h_R are hyperbolic metrics. If h_L, h_R are complete, we obtain $\phi : H^2 \to H^2$. Related to the left/right representations for GH mflds.

Prop. Σ is *maximal* iff ϕ is min Lagrangian. It is quasi-conformal iff $|k_i| < 1$ uniformly.

Prop. If in addition $\partial_{\infty}\Sigma$ is the graph of a quasi-symmetric homeo $\subset \partial_{\infty}AdS_3 \simeq \mathbb{R}P^1 \times \mathbb{R}P^1$, then h_L, h_R are complete and $\partial_{\infty}\Sigma$ is the graph of ϕ .

・ロト ・四ト ・ヨト ・ヨト

AdS 3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Maximal surfaces in AdS

Let $\Sigma \subset \textit{AdS}_3$ be a space-like graph. We call :

- I the induced metric, J its complex structure,
- B the shape operator, $BX = -\nabla_X N$,
- E the identity.

Def. $h_L, h_R = I((E \pm JB), (E \pm JB))$.

Prop (Krasnov, S.). if Σ has principal curvatures $|k_i| < 1$ then h_L, h_R are hyperbolic metrics. If h_L, h_R are complete, we obtain $\phi : H^2 \to H^2$. Related to the left/right representations for GH mflds.

Prop. Σ is *maximal* iff ϕ is min Lagrangian. It is quasi-conformal iff $|k_i| < 1$ uniformly.

Prop. If in addition $\partial_{\infty}\Sigma$ is the graph of a quasi-symmetric homeo $\subset \partial_{\infty}AdS_3 \simeq \mathbb{R}P^1 \times \mathbb{R}P^1$, then h_L, h_R are complete and $\partial_{\infty}\Sigma$ is the graph of ϕ .

・ロト ・四ト ・ヨト ・ヨト

Ad53 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Statement on maximal surfaces

Thm B (Bonsante,S). let $\Gamma \subset \partial_{\infty} AdS_3$ be the graph of a quasi-symmetric homeo. Then there exists a unique maximal surface $\Sigma \subset AdS_3$ with $|k_i| < 1$ uniformly such that $\partial_{\infty} \Sigma = \Gamma$.

Thm A follows through the correspondance with min Lagrangian maps. Thm B has a partial extension to higher dimensions (existence). The key step in the proof of Thm B are compactness estimates for maximal surfaces in *AdS_n*, using results of Barnik (1984).

・ロト ・日本・ ・ヨト・ ・ヨト・

Ad53 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Statement on maximal surfaces

Thm B (Bonsante,S). let $\Gamma \subset \partial_{\infty} AdS_3$ be the graph of a quasi-symmetric homeo. Then there exists a unique maximal surface $\Sigma \subset AdS_3$ with $|k_i| < 1$ uniformly such that $\partial_{\infty} \Sigma = \Gamma$. Thm A follows through the correspondance with min Lagrangian maps. Thm B has a partial extension to higher dimensions (existence). The key step in the proof of Thm B are compactness estimates for maximal surfaces in AdS_n , using results of Barnik (1984).

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Ad53 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Statement on maximal surfaces

Thm B (Bonsante,S). let $\Gamma \subset \partial_{\infty} AdS_3$ be the graph of a quasi-symmetric homeo. Then there exists a unique maximal surface $\Sigma \subset AdS_3$ with $|k_i| < 1$ uniformly such that $\partial_{\infty} \Sigma = \Gamma$. Thm A follows through the correspondance with min Lagrangian maps. Thm B has a partial extension to higher dimensions (existence). The key step in the proof of Thm B are compactness estimates for maximal surfaces in AdS_n , using results of Barnik (1984).

・ロト ・四ト ・ヨト ・ヨト

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Statement on maximal surfaces

Thm B (Bonsante,S). let $\Gamma \subset \partial_{\infty} AdS_3$ be the graph of a quasi-symmetric homeo. Then there exists a unique maximal surface $\Sigma \subset AdS_3$ with $|k_i| < 1$ uniformly such that $\partial_{\infty} \Sigma = \Gamma$. Thm A follows through the correspondance with min Lagrangian maps. Thm B has a partial extension to higher dimensions (existence). The key step in the proof of Thm B are compactness estimates for maximal surfaces in AdS_n , using results of Barnik (1984).

・ロト ・四ト ・ヨト ・ヨト

AdS 3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Questions

AdS geometry and its applications to Teichmüller theory remains relatively open.

- Open questions on the boundary of the convex core of GH mflds, and applications to earthquakes.
- Use AdS to prove Schoen's conjecture on harmonic extensions?
- Extend to AdS setting various results known for quasifuchsian mflds?
- Other questions and applications, not yet discovered??

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

AdS 3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Questions

AdS geometry and its applications to Teichmüller theory remains relatively open.

- Open questions on the boundary of the convex core of GH mflds, and applications to earthquakes.
- Use AdS to prove Schoen's conjecture on harmonic extensions?
- Extend to AdS setting various results known for quasifuchsian mflds?
- Other questions and applications, not yet discovered??

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

AdS 3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Questions

AdS geometry and its applications to Teichmüller theory remains relatively open.

- Open questions on the boundary of the convex core of GH mflds, and applications to earthquakes.
- Use AdS to prove Schoen's conjecture on harmonic extensions?
- Extend to AdS setting various results known for quasifuchsian mflds?
- Other questions and applications, not yet discovered??

AdS 3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Questions

AdS geometry and its applications to Teichmüller theory remains relatively open.

- Open questions on the boundary of the convex core of GH mflds, and applications to earthquakes.
- Use AdS to prove Schoen's conjecture on harmonic extensions?
- Extend to AdS setting various results known for quasifuchsian mflds?
- Other questions and applications, not yet discovered??

・ロト ・日本・ ・ヨト・ ・ヨト・

AdS 3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Questions

AdS geometry and its applications to Teichmüller theory remains relatively open.

- Open questions on the boundary of the convex core of GH mflds, and applications to earthquakes.
- Use AdS to prove Schoen's conjecture on harmonic extensions?
- Extend to AdS setting various results known for quasifuchsian mflds?
- Other questions and applications, not yet discovered??

AdS3 GH manifolds GH vs quasifuchsian Proof of the Earthquake Thm Minimal Lagrangian maps and maximal surfaces

Thanks for your attention !

Jean-Marc Schlenker AdS geometry as a tool for Teichmüller theory