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O(n,R) with (reduced) coordinate ring R[O(n,R)]/I.

C

C C R R C



Geometry, Topology and Dynamics of Character Varieties Workshop 2010 2-d'

&

$

%

Reductive Lie groups

• Let K be a compact Lie group =⇒ real algebraic subgroup of
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Reductive Lie groups

• Let K be a compact Lie group =⇒ real algebraic subgroup of

O(n,R) with (reduced) coordinate ring R[O(n,R)]/I.

• Let G = KC be the complex zeros of I, called the

complexification of K, =⇒ is a complex affine subgroup of

O(n,C) with coordinate ring C[G] = R[K] ⊗R C.

• Any complex affine group G which arises in this fashion is

called reductive.
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homeomorphism Rr(G) ∼= G×r.
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• The conjugation action of G on Rr(G) is regular; that is,

G × Rr(G) → Rr(G) is given by polynomials.
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G-Character Variety of Fr.

• Let Fr = 〈x1, ..., xr〉 be a free group of rank r.

• We call the set Rr(G) = Hom(Fr, G) the G-representation

variety of Fr.

• The evaluation map, ρ 7→ (ρ(x1), ..., ρ(xr)), gives a

homeomorphism Rr(G) ∼= G×r.

• Since G is a smooth affine variety, Rr(G) is likewise a smooth

affine variety.

• The conjugation action of G on Rr(G) is regular; that is,

G × Rr(G) → Rr(G) is given by polynomials.

• In particular, the action is (g, ρ) 7→ gρg−1 or equivalently

(g, (ρ(x1), ..., ρ(xr))) 7→
(
gρ(x1)g

−1, ..., gρ(xr)g
−1

)
.
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• Since Rr(G) is an affine variety, its coordinate ring C[Rr(G)] is

finitely generated and reduced
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• Since Rr(G) is an affine variety, its coordinate ring C[Rr(G)] is

finitely generated and reduced =⇒ the ring of invariants

C[Rr(G)]G is finitely generated and reduced.
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• Since Rr(G) is an affine variety, its coordinate ring C[Rr(G)] is

finitely generated and reduced =⇒ the ring of invariants

C[Rr(G)]G is finitely generated and reduced.

• Thus Xr(G) = Specmax

(

C[Rr(G)]G
)
, called the G-character

variety of Fr, is a singular affine variety (irreducible if G is

irreducible).
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• Since Rr(G) is an affine variety, its coordinate ring C[Rr(G)] is

finitely generated and reduced =⇒ the ring of invariants

C[Rr(G)]G is finitely generated and reduced.

• Thus Xr(G) = Specmax

(

C[Rr(G)]G
)
, called the G-character

variety of Fr, is a singular affine variety (irreducible if G is

irreducible).

• Xr(G) parametrizes orbits of representations whose orbit is

closed.

• There is a related space Xr(K) = Hom(Fr, K)/K, called the

K-character space of Fr. This space is always Hausdorff since

all orbits of compact groups are closed.

• In both cases we consider the topology induced by an ambient

affine space of minimal dimension.
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A Topology Theorem

Theorem 0.1 (Florentino & L-, 2008). Let K be a compact Lie

group. Then Xr(KC) strongly deformation retracts onto Xr(K). In

particular, they have the same homotopy type.
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Theorem 0.1 (Florentino & L-, 2008). Let K be a compact Lie

group. Then Xr(KC) strongly deformation retracts onto Xr(K). In

particular, they have the same homotopy type.

If we consider the more general situation with respect to an arbitrary

finitely generated group Γ and the respective moduli

XΓ(G) = Hom(Γ, G)//G and XΓ(K) = Hom(Γ, K)/K, one naturally

wonders if they are also are homotopy equivalent.
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Theorem 0.1 (Florentino & L-, 2008). Let K be a compact Lie

group. Then Xr(KC) strongly deformation retracts onto Xr(K). In

particular, they have the same homotopy type.

If we consider the more general situation with respect to an arbitrary

finitely generated group Γ and the respective moduli

XΓ(G) = Hom(Γ, G)//G and XΓ(K) = Hom(Γ, K)/K, one naturally

wonders if they are also are homotopy equivalent.

• If Γ is the fundamental group of a closed surface and G = SL(2,C)

Wentworth, Daskalopoulos, and Wilkin (2008) show

Pt (XΓ(G)) = Pt (XΓ(K)) + CΓ(t), where CΓ 6= 0.
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Theorem 0.1 (Florentino & L-, 2008). Let K be a compact Lie

group. Then Xr(KC) strongly deformation retracts onto Xr(K). In

particular, they have the same homotopy type.

If we consider the more general situation with respect to an arbitrary

finitely generated group Γ and the respective moduli
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wonders if they are also are homotopy equivalent.

• If Γ is the fundamental group of a closed surface and G = SL(2,C)

Wentworth, Daskalopoulos, and Wilkin (2008) show

Pt (XΓ(G)) = Pt (XΓ(K)) + CΓ(t), where CΓ 6= 0.

• If Γ is free abelian and G = GL(n,C) the answer is affirmative.
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A Topology Theorem

Theorem 0.1 (Florentino & L-, 2008). Let K be a compact Lie

group. Then Xr(KC) strongly deformation retracts onto Xr(K). In

particular, they have the same homotopy type.

If we consider the more general situation with respect to an arbitrary

finitely generated group Γ and the respective moduli

XΓ(G) = Hom(Γ, G)//G and XΓ(K) = Hom(Γ, K)/K, one naturally

wonders if they are also are homotopy equivalent.

• If Γ is the fundamental group of a closed surface and G = SL(2,C)

Wentworth, Daskalopoulos, and Wilkin (2008) show

Pt (XΓ(G)) = Pt (XΓ(K)) + CΓ(t), where CΓ 6= 0.

• If Γ is free abelian and G = GL(n,C) the answer is affirmative.

• In “The topology of the moduli space of G-valued quivers” we

obtain group theoretic conditions on Γ to ensure XΓ(G) and XΓ(K)

are homotopy equivalent.
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A really cool corollary.
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A really cool corollary.

Corollary 0.2. The Poincaré polynomial for Xr(SL(2,C)) is

Pt(Xr) = 1 + t −
t(1 + t3)r

1 − t4
+

t3

2

(
(1 + t)r

1 − t2
−

(1 − t)r

1 + t2

)

.
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A really cool corollary.

Corollary 0.2. The Poincaré polynomial for Xr(SL(2,C)) is

Pt(Xr) = 1 + t −
t(1 + t3)r

1 − t4
+

t3

2

(
(1 + t)r

1 − t2
−

(1 − t)r

1 + t2

)

.

Proof. In 2008 T. Baird established using methods of equivariant

cohomology (in his PhD thesis) that the Poincaré polynomial for

Xr(SU(2)) ∼= SU(2)×r/SU(2) is Pt above.
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A really cool corollary.

Corollary 0.2. The Poincaré polynomial for Xr(SL(2,C)) is

Pt(Xr) = 1 + t −
t(1 + t3)r

1 − t4
+

t3

2

(
(1 + t)r

1 − t2
−

(1 − t)r

1 + t2

)

.

Proof. In 2008 T. Baird established using methods of equivariant

cohomology (in his PhD thesis) that the Poincaré polynomial for

Xr(SU(2)) ∼= SU(2)×r/SU(2) is Pt above.

Observe that this means Pt(X1) = 1 = Pt(X2) and Pt(X3) = 1 + t6.



Geometry, Topology and Dynamics of Character Varieties Workshop 2010 7'

&

$

%

Another Topology Theorem

Theorem 0.3. If K is a connected and simply connected compact

Lie group, then both Xr(KC) and Xr(K) are simply connected.
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Another Topology Theorem

Theorem 0.3. If K is a connected and simply connected compact

Lie group, then both Xr(KC) and Xr(K) are simply connected.

Proof. Since K is assumed to be connected and simply connected,

Rr(K) ∼= Kr is simply connected as well. Bredon has shown that a

path connected K-space X has the property that X → X/K

induces a surjection on fundamental groups. We conclude that

Xr(K) = Rr(K)/K is simply connected. By Theorem 0.1, Xr(KC)

is likewise simply connected.

C
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Another Topology Theorem

Theorem 0.3. If K is a connected and simply connected compact

Lie group, then both Xr(KC) and Xr(K) are simply connected.

Proof. Since K is assumed to be connected and simply connected,

Rr(K) ∼= Kr is simply connected as well. Bredon has shown that a

path connected K-space X has the property that X → X/K

induces a surjection on fundamental groups. We conclude that

Xr(K) = Rr(K)/K is simply connected. By Theorem 0.1, Xr(KC)

is likewise simply connected.

In particular, Xr(SL(n,C)) and Xr(SU(n)) are simply connected.
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Another cool corollary

Corollary 0.4. For m ≥ 2 or m = 0,

πm(Xr(GL(n,C))) ∼= πm(Xr(U(n))) ∼= πm(Xr(SU(n))) ∼= πm(Xr(SL(n,C))),

and

π1(Xr(GL(n,C))) ∼= π1(Xr(U(n))) ∼= Z

⊕r.
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Another cool corollary

Corollary 0.4. For m ≥ 2 or m = 0,

πm(Xr(GL(n,C))) ∼= πm(Xr(U(n))) ∼= πm(Xr(SU(n))) ∼= πm(Xr(SL(n,C))),

and

π1(Xr(GL(n,C))) ∼= π1(Xr(U(n))) ∼= Z

⊕r.

Proof.

Xr(SU(n)) → Xr(U(n))
det
→

(
S1

)r
:= Tr.

is a fibration. We compute the long exact homotopy sequence:

· · · → πm(Xr(SU(n))) → πm(Xr(U(n))) → πm(Tr) → · · · → π0(Tr) → 1.

Using the fact that S1 has a contractible universal cover which

implies πm(Tr) = 1 for m ≥ 2, one calculates in these cases

πm(Xr(U(n))) ∼= πm(Xr(SU(n))). ¤
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Singularities

Lemma 0.5 (Singular Equivalence). Let [ρ] ∈ Xr(SL(n,C)) and let

[ψ] ∈ Xr(SU(n)). Then

1. [ρ] ∈ Xr(SL(n,C))sing if and only if [ρ] ∈ Xr(GL(n,C))sing

2. [ψ] ∈ Xr(SU(n))sing if and only if [ψ] ∈ Xr(U(n))sing

C

C C C

C C C C C
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Singularities

Lemma 0.5 (Singular Equivalence). Let [ρ] ∈ Xr(SL(n,C)) and let

[ψ] ∈ Xr(SU(n)). Then

1. [ρ] ∈ Xr(SL(n,C))sing if and only if [ρ] ∈ Xr(GL(n,C))sing

2. [ψ] ∈ Xr(SU(n))sing if and only if [ψ] ∈ Xr(U(n))sing

Proof. First let [ρ] ∈ Xr(SL(n,C)). One can show that central

multiplication mapping Xr(SL(n,C)) × (C∗)r → Xr(GL(n,C)) is an

étale equivalence and such mappings preserve tangent spaces, we

conclude

T[ρ](Xr(GL(n,C))) ∼= T[ρ](Xr(SL(n,C))×(C∗)r) ∼= T[ρ](Xr(SL(n,C)))⊕Cr.

¤
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Main Theorem

• For SL(n,C) and GL(n,C) irreducible representations do not

admit any proper (non-trivial) invariant subspaces.

• Denote the set of reducible representations by Xr(G)red.
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Main Theorem

• For SL(n,C) and GL(n,C) irreducible representations do not

admit any proper (non-trivial) invariant subspaces.

• Denote the set of reducible representations by Xr(G)red.

Theorem 0.6. Let r, n ≥ 2. Let G be SL(n,C) or GL(n,C) and K

be SU(n) or U(n). Then Xr(G)red = Xr(G)sing and

Xr(K)red = Xr(K)sing if and only if (r, n) 6= (2, 2).
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C C
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Main Theorem

• For SL(n,C) and GL(n,C) irreducible representations do not

admit any proper (non-trivial) invariant subspaces.

• Denote the set of reducible representations by Xr(G)red.

Theorem 0.6. Let r, n ≥ 2. Let G be SL(n,C) or GL(n,C) and K

be SU(n) or U(n). Then Xr(G)red = Xr(G)sing and

Xr(K)red = Xr(K)sing if and only if (r, n) 6= (2, 2).

Heusener and Porti, studying PSL(2,C), proved some of this theorem for

n = 2; their work was motivational. Also, a new paper of Sikora

addresses some of the tools we use to prove this theorem in a new paper

titled “Character Varieties”. Lastly, similar results with respect to

gl(n,C)r//GL(n,C) have been proved by LeBruyn.
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Sketch of Proof
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Sketch of Proof

1. The singular equivalence theorem (the previous lemma) tells

that the result is true for G = SL(n,C) if it is true for

G = GL(n,C).
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Sketch of Proof

1. The singular equivalence theorem (the previous lemma) tells

that the result is true for G = SL(n,C) if it is true for

G = GL(n,C).

2. Xr(K)red = Xr(K)sing if and only if Xr(KC)red = Xr(KC)sing.

Proof.

(a) Xr(K) ⊂ Xr(KC)

(b) K-reducible K-representations are KC-reducible (obvious)

(c) KC-reducible K-representations are K-reducible (not

obvious)

(d) dimR T[ρ]Xr(K) = dimC T[ρ]Xr(KC) (by definition)

(e) dimR Xr(K) = dimC Xr(KC)
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It remains to prove the result for G = GL(n,C).

C
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It remains to prove the result for G = GL(n,C).

3. (a) Define Ur,n ⊂ Xr(GL(n,C))red by Ur,n =

{[ρ1 ⊕ ρ2] ∈ Xr(GL(n,C)) : ρi : Fr → GL(ni,C) are irreducible} ,

where we consider all possible decompositions n = n1 + n2,

with ni > 0.

C
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3. (a) Define Ur,n ⊂ Xr(GL(n,C))red by Ur,n =

{[ρ1 ⊕ ρ2] ∈ Xr(GL(n,C)) : ρi : Fr → GL(ni,C) are irreducible} ,

where we consider all possible decompositions n = n1 + n2,

with ni > 0.

(b) Let r, n ≥ 2. Ur,n is dense in Xr(GL(n,C))red with respect

to the ball topology.
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It remains to prove the result for G = GL(n,C).

3. (a) Define Ur,n ⊂ Xr(GL(n,C))red by Ur,n =

{[ρ1 ⊕ ρ2] ∈ Xr(GL(n,C)) : ρi : Fr → GL(ni,C) are irreducible} ,

where we consider all possible decompositions n = n1 + n2,

with ni > 0.

(b) Let r, n ≥ 2. Ur,n is dense in Xr(GL(n,C))red with respect

to the ball topology.

(c) Suppose there exists a set O ⊂ Xr(G)sing ∩ Xr(G)red that is

dense with respect to the ball topology in Xr(G)red. Then

Xr(G)sing = Xr(G)red.
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It remains to prove the result for G = GL(n,C).

3. (a) Define Ur,n ⊂ Xr(GL(n,C))red by Ur,n =

{[ρ1 ⊕ ρ2] ∈ Xr(GL(n,C)) : ρi : Fr → GL(ni,C) are irreducible} ,

where we consider all possible decompositions n = n1 + n2,

with ni > 0.

(b) Let r, n ≥ 2. Ur,n is dense in Xr(GL(n,C))red with respect

to the ball topology.

(c) Suppose there exists a set O ⊂ Xr(G)sing ∩ Xr(G)red that is

dense with respect to the ball topology in Xr(G)red. Then

Xr(G)sing = Xr(G)red.

4. The conjugation action being free and proper on the

irreducibles implies Xr(G)sing ⊂ Xr(G)red.
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5. The Luna Slice Theorem (there exists Vx ⊂ X so

(G × Vx)//Stabx → X is strongly étale) implies

T[ρ]Xr(G) ∼= T0

(
H1(Fr; gAdρss )//Stabρss

)
,

where ρss is a poly-stable representative from the extended

orbit [ρ].
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5. The Luna Slice Theorem (there exists Vx ⊂ X so

(G × Vx)//Stabx → X is strongly étale) implies

T[ρ]Xr(G) ∼= T0

(
H1(Fr; gAdρss )//Stabρss

)
,

where ρss is a poly-stable representative from the extended

orbit [ρ].

6. (a) Let ρ ∈ Ur,n ⊂ Rr(G)red be of reduced type [n1, n2] with

n1, n2 > 0 and n = n1 + n2 and write it in the form

ρ = ρ1 ⊕ ρ2 =




~X ~0n1×n2

~0n2×n1
~Y



, where

~X = (X1, ..., Xr) ∈ Mr
n1×n1

and ~Y = (Y1, ..., Yr) ∈ Mr
n2×n2

and ~0k×l = (0k×l, ..., 0k×l
︸ ︷︷ ︸

r

) where 0k×l is the k by l matrix of

zeros. Recall that these representations form a dense set in

Xr(G)red.
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(b) Let diag(a1, ...., an) be an n × n matrix whose (i, j)-entry is

0 if i 6= j and is equal to ai otherwise. Then

Stabρ = C
∗ × C

∗ is given by

diag(λ, ..., λ,
︸ ︷︷ ︸

n1

n2
︷ ︸︸ ︷
µ, ..., µ).

We note that the action of the center is trivial so the action

of the stabilizer modulo its center is C∗.
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(b) Let diag(a1, ...., an) be an n × n matrix whose (i, j)-entry is

0 if i 6= j and is equal to ai otherwise. Then

Stabρ = C
∗ × C

∗ is given by

diag(λ, ..., λ,
︸ ︷︷ ︸

n1

n2
︷ ︸︸ ︷
µ, ..., µ).

We note that the action of the center is trivial so the action

of the stabilizer modulo its center is C∗.
(c) Then the cocycles satisfy

Z
1
(Fr ; Adρ) ∼= g

r
=

=



0

@

~A ~B

~C ~D

1

A

˛

˛

˛

˛

~A ∈ M
r
n1×n1

, ~B ∈ M
r
n1×n2

, ~C ∈ M
r
n2×n1

, ~D ∈ M
r
n2×n2

ff

,

which have dimension n2r since this is the tangent space to

a representation and the representation variety is smooth.
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(d) The coboundaries are given by B1(Fr; Adρ) ∼=

∼=

8

<

:

0

@

A B

C D

1

A −

0

@

~X ~0n1×n2
~0n2×n1

~Y

1

A

0

@

A B

C D

1

A

0

@

~X−1 ~0n1×n2
~0n2×n1

~Y −1

1

A

9

=

;

∼=

8

<

:

0

@

A B

C D

1

A −

0

@

~XA ~X−1 ~XB~Y −1

~Y C ~X−1 ~Y D~Y −1

1

A

9

=

;

, for a fixed element
0

@

A B

C D

1

A ∈ g.

It has dimension n2 − 2 since it is the tangent space to the

G-orbit of ρ which has dimension equal to that of the group

minus its stabilizer.
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(d) The coboundaries are given by B1(Fr; Adρ) ∼=

∼=

8

<

:

0

@

A B

C D

1

A −

0

@

~X ~0n1×n2
~0n2×n1

~Y

1

A

0

@

A B

C D

1

A

0

@

~X−1 ~0n1×n2
~0n2×n1

~Y −1

1

A

9

=

;

∼=

8

<

:

0

@

A B

C D

1

A −

0

@

~XA ~X−1 ~XB~Y −1

~Y C ~X−1 ~Y D~Y −1

1

A

9

=

;

, for a fixed element
0

@

A B

C D

1

A ∈ g.

It has dimension n2 − 2 since it is the tangent space to the

G-orbit of ρ which has dimension equal to that of the group

minus its stabilizer.

(e) Thus with respect to the torus action of the stabilizer,

H1(Fr; Adρ) ∼= H1(Fr; Adρ1) ⊕ H1(Fr; Adρ2) ⊕ W,

where W exist since the torus action is reductive.
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(f) Computing dimensions we find:

dimC H1(Fr; Adρ) = n2r − (n2 − 2) = n2(r − 1) + 2,

dimC H1(Fr; Adρi
) = n2

i r − (n2
i − 1) = n2

i (r − 1) + 1,

which implies

dimC H1(Fr; Adρ)//(C∗ × C

∗) = n2(r − 1) + 1 = dimC Xr(G),

since the diagonal of the C∗ × C

∗ action is the center which

acts trivially. We also conclude that

dimC W = (n2 − n2
1 − n2

2)(r − 1) = 2n1n2(r − 1).
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(f) Computing dimensions we find:

dimC H1(Fr; Adρ) = n2r − (n2 − 2) = n2(r − 1) + 2,

dimC H1(Fr; Adρi
) = n2

i r − (n2
i − 1) = n2

i (r − 1) + 1,

which implies

dimC H1(Fr; Adρ)//(C∗ × C

∗) = n2(r − 1) + 1 = dimC Xr(G),

since the diagonal of the C∗ × C

∗ action is the center which

acts trivially. We also conclude that

dimC W = (n2 − n2
1 − n2

2)(r − 1) = 2n1n2(r − 1).

7. Explicitly, the Stabρ action on H1(Fr; Adρ) is given by:

diag(λ, ..., λ,
| {z }

n1

n2
z }| {

µ, ..., µ) ·

2

4

0

@

~A ~B

~C ~D

1

A

3

5 7→

2

4

0

@

~A λ~Bµ−1

µ~Cλ−1 ~D

1

A

3

5 .
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The action on H1(Fr; Adρ1
) ⊕ H1(Fr; Adρ2

) is trivial (but not

so on W ) and we conclude

H1(Fr; Adρ)//(C∗×C∗) ∼= H1(Fr; Adρ1)⊕H1(Fr; Adρ2)⊕(W//(C∗ × C

∗)) .

C C

C C C

C

C C C

C C

C C

C
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The action on H1(Fr; Adρ1
) ⊕ H1(Fr; Adρ2

) is trivial (but not

so on W ) and we conclude

H1(Fr; Adρ)//(C∗×C∗) ∼= H1(Fr; Adρ1)⊕H1(Fr; Adρ2)⊕(W//(C∗ × C

∗)) .

8. Let n ≥ 2 and T = C

∗ × C

∗ act on a vector space

V = C

2n = C

n × C

n as follows:

(λ, µ) · (z,w) = (λµ−1z, µλ−1w).

Then, C2n//T is isomorphic to the affine cone over the product

of projective spaces CC(CPn−1 × CPn−1). Its unique singularity

is the orbit of the origin. This follows since the invariant

polynomials are generated by zjwk.

C C

C C

C
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The action on H1(Fr; Adρ1
) ⊕ H1(Fr; Adρ2

) is trivial (but not

so on W ) and we conclude

H1(Fr; Adρ)//(C∗×C∗) ∼= H1(Fr; Adρ1)⊕H1(Fr; Adρ2)⊕(W//(C∗ × C

∗)) .

8. Let n ≥ 2 and T = C

∗ × C

∗ act on a vector space

V = C

2n = C

n × C

n as follows:

(λ, µ) · (z,w) = (λµ−1z, µλ−1w).

Then, C2n//T is isomorphic to the affine cone over the product

of projective spaces CC(CPn−1 × CPn−1). Its unique singularity

is the orbit of the origin. This follows since the invariant

polynomials are generated by zjwk.

9. Therefore, 0 is a singularity of W//(C∗ ×C
∗) which then implies

it is a singularity to H1(Fr; Adρ)//(C∗ × C

∗) whenever

dimC W = 2n1n2(r − 1) > 2; that is, whenever (r, n) 6= (2, 2). ¤
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Picture Book of Topologies (Examples)

C
C C

C
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Picture Book of Topologies (Examples)

1. For G = SL(1,C) both G and K are single points =⇒

Xr(G) = {∗} = Xr(K)

C C

C
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Picture Book of Topologies (Examples)

1. For G = SL(1,C) both G and K are single points =⇒

Xr(G) = {∗} = Xr(K)

2. For G = GL(1,C) ∼= C

∗ =⇒ K = U(1) ∼= S1.

C
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Picture Book of Topologies (Examples)

1. For G = SL(1,C) both G and K are single points =⇒

Xr(G) = {∗} = Xr(K)

2. For G = GL(1,C) ∼= C

∗ =⇒ K = U(1) ∼= S1. In these cases

the conjugation action is trivial =⇒

Xr(K) ∼= (S1)×r and Xr(G) ∼= (C∗)×r.
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3. SU(n)/SU(n) is homeomorphic to a closed real ball of real

dimension n − 1 given by the exponential of the Weyl alcove.

C C
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3. SU(n)/SU(n) is homeomorphic to a closed real ball of real

dimension n − 1 given by the exponential of the Weyl alcove.

For example, SU(2)/SU(2) ∼= [−2, 2] and SU(3)/SU(3) is

-1 0 1 2 3

-2

-1

0

1

2

Figure 1: SU(3)/SU(3)

C C
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3. SU(n)/SU(n) is homeomorphic to a closed real ball of real

dimension n − 1 given by the exponential of the Weyl alcove.

For example, SU(2)/SU(2) ∼= [−2, 2] and SU(3)/SU(3) is

-1 0 1 2 3

-2

-1

0

1

2

Figure 1: SU(3)/SU(3)

And also we have X1(SL(n,C)) ∼= C

n−1 given by the coefficients of

the characteristic polynomial.



Geometry, Topology and Dynamics of Character Varieties Workshop 2010 20'

&

$

%

4. The Fricke-Vogt Theorem (1896,1889) tells that

X2(SL(2,C)) ∼= C

3 given by

[ρ] 7→ (tr(X), tr(Y ), tr(XY )),

where ρ ↔ (X, Y ) ∈ SL(2,C)×2.
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On the other hand, in 1992 Jeffrey and Weitsman compute that

X2(SU(2)) ∼=

Figure 2: SU(2)×2/SU(2)
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5. Let G = SL(2,C).

X3(G)
Â

Ä

//

²²

C

7

C

6

is a singular branched double cover.

C C

C

C

C C
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5. Let G = SL(2,C).

X3(G)
Â

Ä

//

²²

C

7

C

6

is a singular branched double cover.

This statement is equivalent to the commutative algebra

statement:

C[Hom(F3, SL(2,C))]SL(2,C) ∼= C[t1, t2, t3, t4, t5, t6][t7]/I.

where

I = (t27 − P (t1, ..., t6)t7 + Q(t1, ..., t6)).

C C
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5. Let G = SL(2,C).

X3(G)
Â

Ä

//

²²

C

7

C

6

is a singular branched double cover.

This statement is equivalent to the commutative algebra

statement:

C[Hom(F3, SL(2,C))]SL(2,C) ∼= C[t1, t2, t3, t4, t5, t6][t7]/I.

where

I = (t27 − P (t1, ..., t6)t7 + Q(t1, ..., t6)).

• The key observations for this result are already present in

1889 by Vogt, and the related scheme gl(2,C)×3//GL(2,C)

was described by Sibirskii in 1968.
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• However, an explicit description of X3(G) in the above terms

seems to be appearing only now in Goldman’s Trace

coordinates on Fricke spaces of some simple hyperbolic surfaces

in the Handbook of Teichmüller Theory II.

C
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• However, an explicit description of X3(G) in the above terms

seems to be appearing only now in Goldman’s Trace

coordinates on Fricke spaces of some simple hyperbolic surfaces

in the Handbook of Teichmüller Theory II.

For K = SU(2), Cooper & Bratholdt in 2001 established

X3(K) ∼= S6 (homeomorphic).

C
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• However, an explicit description of X3(G) in the above terms

seems to be appearing only now in Goldman’s Trace

coordinates on Fricke spaces of some simple hyperbolic surfaces

in the Handbook of Teichmüller Theory II.

For K = SU(2), Cooper & Bratholdt in 2001 established

X3(K) ∼= S6 (homeomorphic).

Thus using our theorem we see X3(KC) ≃ S6 (homotopic).
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• However, an explicit description of X3(G) in the above terms

seems to be appearing only now in Goldman’s Trace

coordinates on Fricke spaces of some simple hyperbolic surfaces

in the Handbook of Teichmüller Theory II.

For K = SU(2), Cooper & Bratholdt in 2001 established

X3(K) ∼= S6 (homeomorphic).

Thus using our theorem we see X3(KC) ≃ S6 (homotopic).

It is worth noting that Cooper & Bratholdt motivated much of our

present work.
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6. In 2006, L- showed

X2(SL(3,C)) Â

Ä

//

²²

C

9

C

8

is a singular branched double cover.

C C

C

C

C
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6. In 2006, L- showed

X2(SL(3,C)) Â

Ä

//

²²

C

9

C

8

is a singular branched double cover. Again there is an

equivalent commutative algebra statement:

C[Hom(F2, SL(3,C))]SL(3,C) ∼= C[t1, t2, t3, t4, t5, t6, t7, t8][t9]/I.

where

I = (t29 − P (t1, ..., t8)t9 + Q(t1, ..., t8)).

C
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6. In 2006, L- showed

X2(SL(3,C)) Â

Ä

//

²²

C

9

C

8

is a singular branched double cover. Again there is an

equivalent commutative algebra statement:

C[Hom(F2, SL(3,C))]SL(3,C) ∼= C[t1, t2, t3, t4, t5, t6, t7, t8][t9]/I.

where

I = (t29 − P (t1, ..., t8)t9 + Q(t1, ..., t8)).

Theorem 0.7 (Florentino & L-, 2008). Let K = SU(3). Then

X2(KC) ≃ S8 ∼= X2(K).
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Classification Theorem

Theorem 0.8. Let r, n ≥ 2. Let G be SL(n,C) or GL(n,C) and K

be SU(n) or U(n). Xr(G) is a topological manifold possibly with

boundary if and only if (r, n) = (2, 2). Xr(K) is a topological

manifold possibly with boundary if and only if (r, n) = (2, 2), (2, 3),

or (3, 2).
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Thank you!
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Thank you!

references are available upon request


