Singularities of free group character varieties

Sean Lawton (with Carlos Florentino)

lawtonsd@utpa.edu

University of Texas-Pan American
July 26, 2010

Reductive Lie groups

- Let K be a compact Lie group

Reductive Lie groups

- Let K be a compact Lie group \Longrightarrow real algebraic subgroup of $\mathrm{O}(n, \mathbb{R})$ with (reduced) coordinate ring $\mathbb{R}[\mathrm{O}(n, \mathbb{R})] / \mathfrak{J}$.

Reductive Lie groups

- Let K be a compact Lie group \Longrightarrow real algebraic subgroup of $\mathrm{O}(n, \mathbb{R})$ with (reduced) coordinate ring $\mathbb{R}[\mathrm{O}(n, \mathbb{R})] / \mathfrak{I}$.
- Let $G=K_{\mathbb{C}}$ be the complex zeros of \mathfrak{I}, called the complexification of K,

Reductive Lie groups

- Let K be a compact Lie group \Longrightarrow real algebraic subgroup of $\mathrm{O}(n, \mathbb{R})$ with (reduced) coordinate ring $\mathbb{R}[\mathrm{O}(n, \mathbb{R})] / \mathfrak{I}$.
- Let $G=K_{\mathbb{C}}$ be the complex zeros of \mathfrak{I}, called the complexification of K, \Longrightarrow is a complex affine subgroup of $\mathrm{O}(n, \mathbb{C})$ with coordinate ring $\mathbb{C}[G]=\mathbb{R}[K] \otimes_{\mathbb{R}} \mathbb{C}$.

Reductive Lie groups

- Let K be a compact Lie group \Longrightarrow real algebraic subgroup of $\mathrm{O}(n, \mathbb{R})$ with (reduced) coordinate ring $\mathbb{R}[\mathrm{O}(n, \mathbb{R})] / \mathfrak{I}$.
- Let $G=K_{\mathbb{C}}$ be the complex zeros of \mathfrak{I}, called the complexification of K, \Longrightarrow is a complex affine subgroup of $\mathrm{O}(n, \mathbb{C})$ with coordinate ring $\mathbb{C}[G]=\mathbb{R}[K] \otimes_{\mathbb{R}} \mathbb{C}$.
- Any complex affine group G which arises in this fashion is called reductive.

G-Character Variety of F_{r}.

G-Character Variety of F_{r}.

- Let $\mathrm{F}_{r}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{r}\right\rangle$ be a free group of rank r.

G-Character Variety of F_{r}.

- Let $\mathrm{F}_{r}=\left\langle\mathrm{x}_{1}, \ldots, \mathbf{x}_{r}\right\rangle$ be a free group of rank r.
- We call the set $\mathfrak{R}_{r}(G)=\operatorname{Hom}\left(\mathrm{F}_{r}, G\right)$ the G-representation variety of F_{r}.

G-Character Variety of F_{r}.

- Let $\mathrm{F}_{r}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{r}\right\rangle$ be a free group of rank r.
- We call the set $\Re_{r}(G)=\operatorname{Hom}\left(\mathrm{F}_{r}, G\right)$ the G-representation variety of F_{r}.
- The evaluation map, $\rho \mapsto\left(\rho\left(\mathrm{x}_{1}\right), \ldots, \rho\left(\mathrm{x}_{r}\right)\right)$, gives a homeomorphism $\mathfrak{R}_{r}(G) \cong G^{\times r}$.

G-Character Variety of F_{r}.

- Let $\mathrm{F}_{r}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{r}\right\rangle$ be a free group of rank r.
- We call the set $\mathfrak{R}_{r}(G)=\operatorname{Hom}\left(\mathrm{F}_{r}, G\right)$ the G-representation variety of F_{r}.
- The evaluation map, $\rho \mapsto\left(\rho\left(\mathrm{x}_{1}\right), \ldots, \rho\left(\mathrm{x}_{r}\right)\right)$, gives a homeomorphism $\mathfrak{R}_{r}(G) \cong G^{\times r}$.
- Since G is a smooth affine variety, $\mathfrak{R}_{r}(G)$ is likewise a smooth affine variety.

G-Character Variety of F_{r}.

- Let $\mathrm{F}_{r}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{r}\right\rangle$ be a free group of rank r.
- We call the set $\mathfrak{R}_{r}(G)=\operatorname{Hom}\left(\mathrm{F}_{r}, G\right)$ the G-representation variety of F_{r}.
- The evaluation map, $\rho \mapsto\left(\rho\left(\mathrm{x}_{1}\right), \ldots, \rho\left(\mathrm{x}_{r}\right)\right)$, gives a homeomorphism $\mathfrak{R}_{r}(G) \cong G^{\times r}$.
- Since G is a smooth affine variety, $\mathfrak{R}_{r}(G)$ is likewise a smooth affine variety.
- The conjugation action of G on $\mathfrak{R}_{r}(G)$ is regular; that is, $G \times \mathfrak{R}_{r}(G) \rightarrow \mathfrak{R}_{r}(G)$ is given by polynomials.

G-Character Variety of F_{r}.

- Let $\mathrm{F}_{r}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{r}\right\rangle$ be a free group of rank r.
- We call the set $\mathfrak{R}_{r}(G)=\operatorname{Hom}\left(\mathrm{F}_{r}, G\right)$ the G-representation variety of F_{r}.
- The evaluation map, $\rho \mapsto\left(\rho\left(\mathrm{x}_{1}\right), \ldots, \rho\left(\mathrm{x}_{r}\right)\right)$, gives a homeomorphism $\mathfrak{R}_{r}(G) \cong G^{\times r}$.
- Since G is a smooth affine variety, $\mathfrak{R}_{r}(G)$ is likewise a smooth affine variety.
- The conjugation action of G on $\mathfrak{R}_{r}(G)$ is regular; that is, $G \times \mathfrak{R}_{r}(G) \rightarrow \mathfrak{R}_{r}(G)$ is given by polynomials.
- In particular, the action is $(g, \rho) \mapsto g \rho g^{-1}$ or equivalently $\left(g,\left(\rho\left(\mathrm{x}_{1}\right), \ldots, \rho\left(\mathrm{x}_{r}\right)\right)\right) \mapsto\left(g \rho\left(\mathrm{x}_{1}\right) g^{-1}, \ldots, g \rho\left(\mathrm{x}_{r}\right) g^{-1}\right)$.
- Since $\Re_{r}(G)$ is an affine variety, its coordinate ring $\mathbb{C}\left[\Re_{r}(G)\right]$ is finitely generated and reduced
- Since $\mathfrak{R}_{r}(G)$ is an affine variety, its coordinate ring $\mathbb{C}\left[\mathfrak{R}_{r}(G)\right]$ is finitely generated and reduced \Longrightarrow the ring of invariants $\mathbb{C}\left[\mathfrak{R}_{r}(G)\right]^{G}$ is finitely generated and reduced.
- Since $\Re_{r}(G)$ is an affine variety, its coordinate ring $\mathbb{C}\left[\Re_{r}(G)\right]$ is finitely generated and reduced \Longrightarrow the ring of invariants $\mathbb{C}\left[\mathfrak{R}_{r}(G)\right]^{G}$ is finitely generated and reduced.
- Thus $\mathfrak{X}_{r}(G)=\operatorname{Spec}_{\text {max }}\left(\mathbb{C}\left[\mathfrak{\Re}_{r}(G)\right]^{G}\right)$, called the G-character variety of F_{r}, is a singular affine variety (irreducible if G is irreducible).
- Since $\mathfrak{R}_{r}(G)$ is an affine variety, its coordinate ring $\mathbb{C}\left[\mathfrak{R}_{r}(G)\right]$ is finitely generated and reduced \Longrightarrow the ring of invariants $\mathbb{C}\left[\mathfrak{R}_{r}(G)\right]^{G}$ is finitely generated and reduced.
- Thus $\mathfrak{X}_{r}(G)=\operatorname{Spec}_{\text {max }}\left(\mathbb{C}\left[\mathfrak{\Re}_{r}(G)\right]^{G}\right)$, called the G-character variety of F_{r}, is a singular affine variety (irreducible if G is irreducible).
- $\mathfrak{X}_{r}(G)$ parametrizes orbits of representations whose orbit is closed.
- Since $\mathfrak{R}_{r}(G)$ is an affine variety, its coordinate ring $\mathbb{C}\left[\mathfrak{R}_{r}(G)\right]$ is finitely generated and reduced \Longrightarrow the ring of invariants $\mathbb{C}\left[\mathfrak{R}_{r}(G)\right]^{G}$ is finitely generated and reduced.
- Thus $\mathfrak{X}_{r}(G)=\operatorname{Spec}_{\text {max }}\left(\mathbb{C}\left[\mathfrak{\Re}_{r}(G)\right]^{G}\right)$, called the G-character variety of F_{r}, is a singular affine variety (irreducible if G is irreducible).
- $\mathfrak{X}_{r}(G)$ parametrizes orbits of representations whose orbit is closed.
- There is a related space $\mathfrak{X}_{r}(K)=\operatorname{Hom}\left(\mathrm{F}_{r}, K\right) / K$, called the K-character space of F_{r}. This space is always Hausdorff since all orbits of compact groups are closed.
- Since $\mathfrak{R}_{r}(G)$ is an affine variety, its coordinate ring $\mathbb{C}\left[\mathfrak{R}_{r}(G)\right]$ is finitely generated and reduced \Longrightarrow the ring of invariants $\mathbb{C}\left[\mathfrak{R}_{r}(G)\right]^{G}$ is finitely generated and reduced.
- Thus $\mathfrak{X}_{r}(G)=\operatorname{Spec}_{\text {max }}\left(\mathbb{C}\left[\mathfrak{\Re}_{r}(G)\right]^{G}\right)$, called the G-character variety of F_{r}, is a singular affine variety (irreducible if G is irreducible).
- $\mathfrak{X}_{r}(G)$ parametrizes orbits of representations whose orbit is closed.
- There is a related space $\mathfrak{X}_{r}(K)=\operatorname{Hom}\left(\mathrm{F}_{r}, K\right) / K$, called the K-character space of F_{r}. This space is always Hausdorff since all orbits of compact groups are closed.
- In both cases we consider the topology induced by an ambient affine space of minimal dimension.

A Topology Theorem

Theorem 0.1 (Florentino \& L-, 2008). Let K be a compact Lie group. Then $\mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$ strongly deformation retracts onto $\mathfrak{X}_{r}(K)$. In particular, they have the same homotopy type.

A Topology Theorem

Theorem 0.1 (Florentino \& L-, 2008). Let K be a compact Lie group. Then $\mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$ strongly deformation retracts onto $\mathfrak{X}_{r}(K)$. In particular, they have the same homotopy type.

If we consider the more general situation with respect to an arbitrary finitely generated group Γ and the respective moduli $\mathfrak{X}_{\Gamma}(G)=\operatorname{Hom}(\Gamma, G) / / G$ and $\mathfrak{X}_{\Gamma}(K)=\operatorname{Hom}(\Gamma, K) / K$, one naturally wonders if they are also are homotopy equivalent.

A Topology Theorem

Theorem 0.1 (Florentino \& L-, 2008). Let K be a compact Lie group. Then $\mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$ strongly deformation retracts onto $\mathfrak{X}_{r}(K)$. In particular, they have the same homotopy type.

If we consider the more general situation with respect to an arbitrary finitely generated group Γ and the respective moduli
$\mathfrak{X}_{\Gamma}(G)=\operatorname{Hom}(\Gamma, G) / / G$ and $\mathfrak{X}_{\Gamma}(K)=\operatorname{Hom}(\Gamma, K) / K$, one naturally wonders if they are also are homotopy equivalent.

- If Γ is the fundamental group of a closed surface and $G=\mathrm{SL}(2, \mathbb{C})$ Wentworth, Daskalopoulos, and Wilkin (2008) show $\mathrm{P}_{t}\left(\mathfrak{X}_{\Gamma}(G)\right)=\mathrm{P}_{t}\left(\mathfrak{X}_{\Gamma}(K)\right)+C_{\Gamma}(t)$, where $C_{\Gamma} \neq 0$.

A Topology Theorem

Theorem 0.1 (Florentino \& L-, 2008). Let K be a compact Lie group. Then $\mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$ strongly deformation retracts onto $\mathfrak{X}_{r}(K)$. In particular, they have the same homotopy type.

If we consider the more general situation with respect to an arbitrary finitely generated group Γ and the respective moduli
$\mathfrak{X}_{\Gamma}(G)=\operatorname{Hom}(\Gamma, G) / / G$ and $\mathfrak{X}_{\Gamma}(K)=\operatorname{Hom}(\Gamma, K) / K$, one naturally wonders if they are also are homotopy equivalent.

- If Γ is the fundamental group of a closed surface and $G=\operatorname{SL}(2, \mathbb{C})$ Wentworth, Daskalopoulos, and Wilkin (2008) show
$\mathrm{P}_{t}\left(\mathfrak{X}_{\Gamma}(G)\right)=\mathrm{P}_{t}\left(\mathfrak{X}_{\Gamma}(K)\right)+C_{\Gamma}(t)$, where $C_{\Gamma} \neq 0$.
- If Γ is free abelian and $G=\operatorname{GL}(n, \mathbb{C})$ the answer is affirmative.

A Topology Theorem

Theorem 0.1 (Florentino \& L-, 2008). Let K be a compact Lie group. Then $\mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$ strongly deformation retracts onto $\mathfrak{X}_{r}(K)$. In particular, they have the same homotopy type.

If we consider the more general situation with respect to an arbitrary finitely generated group Γ and the respective moduli
$\mathfrak{X}_{\Gamma}(G)=\operatorname{Hom}(\Gamma, G) / / G$ and $\mathfrak{X}_{\Gamma}(K)=\operatorname{Hom}(\Gamma, K) / K$, one naturally wonders if they are also are homotopy equivalent.

- If Γ is the fundamental group of a closed surface and $G=\operatorname{SL}(2, \mathbb{C})$ Wentworth, Daskalopoulos, and Wilkin (2008) show $\mathrm{P}_{t}\left(\mathfrak{X}_{\Gamma}(G)\right)=\mathrm{P}_{t}\left(\mathfrak{X}_{\Gamma}(K)\right)+C_{\Gamma}(t)$, where $C_{\Gamma} \neq 0$.
- If Γ is free abelian and $G=\operatorname{GL}(n, \mathbb{C})$ the answer is affirmative.
- In "The topology of the moduli space of G-valued quivers" we obtain group theoretic conditions on Γ to ensure $\mathfrak{X}_{\Gamma}(G)$ and $\mathfrak{X}_{\Gamma}(K)$ are homotopy equivalent.

A really cool corollary.

A really cool corollary.

Corollary 0.2. The Poincaré polynomial for $\mathfrak{X}_{r}(\mathrm{SL}(2, \mathbb{C}))$ is

$$
\mathrm{P}_{t}\left(\mathfrak{X}_{r}\right)=1+t-\frac{t\left(1+t^{3}\right)^{r}}{1-t^{4}}+\frac{t^{3}}{2}\left(\frac{(1+t)^{r}}{1-t^{2}}-\frac{(1-t)^{r}}{1+t^{2}}\right) .
$$

A really cool corollary.

Corollary 0.2. The Poincaré polynomial for $\mathfrak{X}_{r}(\mathrm{SL}(2, \mathbb{C}))$ is

$$
\mathrm{P}_{t}\left(\mathfrak{X}_{r}\right)=1+t-\frac{t\left(1+t^{3}\right)^{r}}{1-t^{4}}+\frac{t^{3}}{2}\left(\frac{(1+t)^{r}}{1-t^{2}}-\frac{(1-t)^{r}}{1+t^{2}}\right) .
$$

Proof. In 2008 T. Baird established using methods of equivariant cohomology (in his PhD thesis) that the Poincaré polynomial for $\mathfrak{X}_{r}(\mathrm{SU}(2)) \cong \mathrm{SU}(2)^{\times r} / \mathrm{SU}(2)$ is P_{t} above.

A really cool corollary.

Corollary 0.2. The Poincaré polynomial for $\mathfrak{X}_{r}(\mathrm{SL}(2, \mathbb{C}))$ is

$$
\mathbf{P}_{t}\left(\mathfrak{X}_{r}\right)=1+t-\frac{t\left(1+t^{3}\right)^{r}}{1-t^{4}}+\frac{t^{3}}{2}\left(\frac{(1+t)^{r}}{1-t^{2}}-\frac{(1-t)^{r}}{1+t^{2}}\right) .
$$

Proof. In 2008 T. Baird established using methods of equivariant cohomology (in his PhD thesis) that the Poincaré polynomial for $\mathfrak{X}_{r}(\mathrm{SU}(2)) \cong \mathrm{SU}(2)^{\times r} / \mathrm{SU}(2)$ is P_{t} above.

Observe that this means $\mathrm{P}_{t}\left(\mathfrak{X}_{1}\right)=1=\mathrm{P}_{t}\left(\mathfrak{X}_{2}\right)$ and $\mathrm{P}_{t}\left(\mathfrak{X}_{3}\right)=1+t^{6}$.

Another Topology Theorem

Theorem 0.3. If K is a connected and simply connected compact Lie group, then both $\mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$ and $\mathfrak{X}_{r}(K)$ are simply connected.

Another Topology Theorem

Theorem 0.3. If K is a connected and simply connected compact Lie group, then both $\mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$ and $\mathfrak{X}_{r}(K)$ are simply connected.

Proof. Since K is assumed to be connected and simply connected, $\mathfrak{R}_{r}(K) \cong K^{r}$ is simply connected as well. Bredon has shown that a path connected K-space X has the property that $X \rightarrow X / K$ induces a surjection on fundamental groups. We conclude that $\mathfrak{X}_{r}(K)=\mathfrak{R}_{r}(K) / K$ is simply connected. By Theorem $0.1, \mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$ is likewise simply connected.

Another Topology Theorem

Theorem 0.3. If K is a connected and simply connected compact Lie group, then both $\mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$ and $\mathfrak{X}_{r}(K)$ are simply connected.

Proof. Since K is assumed to be connected and simply connected, $\mathfrak{R}_{r}(K) \cong K^{r}$ is simply connected as well. Bredon has shown that a path connected K-space X has the property that $X \rightarrow X / K$ induces a surjection on fundamental groups. We conclude that $\mathfrak{X}_{r}(K)=\mathfrak{R}_{r}(K) / K$ is simply connected. By Theorem $0.1, \mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$ is likewise simply connected.

In particular, $\mathfrak{X}_{r}(\mathrm{SL}(n, \mathbb{C}))$ and $\mathfrak{X}_{r}(\mathrm{SU}(n))$ are simply connected.

Another cool corollary

Corollary 0.4. For $m \geq 2$ or $m=0$,
$\pi_{m}\left(\mathfrak{X}_{r}(\mathrm{GL}(n, \mathbb{C}))\right) \cong \pi_{m}\left(\mathfrak{X}_{r}(\mathrm{U}(n))\right) \cong \pi_{m}\left(\mathfrak{X}_{r}(\mathrm{SU}(n))\right) \cong \pi_{m}\left(\mathfrak{X}_{r}(\mathrm{SL}(n, \mathbb{C}))\right)$,
and

$$
\pi_{1}\left(\mathfrak{X}_{r}(\mathrm{GL}(n, \mathbb{C}))\right) \cong \pi_{1}\left(\mathfrak{X}_{r}(\mathrm{U}(n))\right) \cong \mathbb{Z}^{\oplus r}
$$

Another cool corollary

Corollary 0.4. For $m \geq 2$ or $m=0$,
$\pi_{m}\left(\mathfrak{X}_{r}(\operatorname{GL}(n, \mathbb{C}))\right) \cong \pi_{m}\left(\mathfrak{X}_{r}(\mathrm{U}(n))\right) \cong \pi_{m}\left(\mathfrak{X}_{r}(\mathrm{SU}(n))\right) \cong \pi_{m}\left(\mathfrak{X}_{r}(\mathrm{SL}(n, \mathbb{C}))\right)$,
and

$$
\pi_{1}\left(\mathfrak{X}_{r}(\mathrm{GL}(n, \mathbb{C}))\right) \cong \pi_{1}\left(\mathfrak{X}_{r}(\mathrm{U}(n))\right) \cong \mathbb{Z}^{\oplus r}
$$

Proof.

$$
\mathfrak{X}_{r}(\mathrm{SU}(n)) \rightarrow \mathfrak{X}_{r}(\mathrm{U}(n)) \xrightarrow{\text { det }}\left(S^{1}\right)^{r}:=T_{r} .
$$

is a fibration. We compute the long exact homotopy sequence:

$$
\cdots \rightarrow \pi_{m}\left(\mathfrak{X}_{r}(\mathrm{SU}(n))\right) \rightarrow \pi_{m}\left(\mathfrak{X}_{r}(\mathrm{U}(n))\right) \rightarrow \pi_{m}\left(T_{r}\right) \rightarrow \cdots \rightarrow \pi_{0}\left(T_{r}\right) \rightarrow 1 .
$$

Using the fact that S^{1} has a contractible universal cover which implies $\pi_{m}\left(T_{r}\right)=1$ for $m \geq 2$, one calculates in these cases $\pi_{m}\left(\mathfrak{X}_{r}(\mathrm{U}(n))\right) \cong \pi_{m}\left(\mathfrak{X}_{r}(\mathrm{SU}(n))\right)$.

Singularities

Lemma 0.5 (Singular Equivalence). Let $[\rho] \in \mathfrak{X}_{r}(\mathrm{SL}(n, \mathbb{C}))$ and let $[\psi] \in \mathfrak{X}_{r}(\mathrm{SU}(n))$. Then

1. $[\rho] \in \mathfrak{X}_{r}(\operatorname{SL}(n, \mathbb{C}))^{\text {sing }}$ if and only if $[\rho] \in \mathfrak{X}_{r}(\operatorname{GL}(n, \mathbb{C}))^{\text {sing }}$
2. $[\psi] \in \mathfrak{X}_{r}(\mathrm{SU}(n))^{\text {sing }}$ if and only if $[\psi] \in \mathfrak{X}_{r}(\mathrm{U}(n))^{\text {sing }}$

Singularities

Lemma 0.5 (Singular Equivalence). Let $[\rho] \in \mathfrak{X}_{r}(\operatorname{SL}(n, \mathbb{C}))$ and let $[\psi] \in \mathfrak{X}_{r}(\mathrm{SU}(n))$. Then

1. $[\rho] \in \mathfrak{X}_{r}(\operatorname{SL}(n, \mathbb{C}))^{\text {sing }}$ if and only if $[\rho] \in \mathfrak{X}_{r}(\operatorname{GL}(n, \mathbb{C}))^{\text {sing }}$
2. $[\psi] \in \mathfrak{X}_{r}(\mathrm{SU}(n))^{\text {sing }}$ if and only if $[\psi] \in \mathfrak{X}_{r}(\mathrm{U}(n))^{\text {sing }}$

Proof. First let $[\rho] \in \mathfrak{X}_{r}(\mathrm{SL}(n, \mathbb{C}))$. One can show that central multiplication mapping $\mathfrak{X}_{r}(\mathrm{SL}(n, \mathbb{C})) \times\left(\mathbb{C}^{*}\right)^{r} \rightarrow \mathfrak{X}_{r}(\mathrm{GL}(n, \mathbb{C}))$ is an étale equivalence and such mappings preserve tangent spaces, we conclude
$\left.T_{[\rho]}\left(\mathfrak{X}_{r}(\mathrm{GL}(n, \mathbb{C}))\right) \cong T_{[\rho]}\left(\mathfrak{X}_{r}(\mathrm{SL}(n, \mathbb{C})) \times\left(\mathbb{C}^{*}\right)^{r}\right) \cong T_{[\rho]} \mathfrak{X}_{r}(\mathrm{SL}(n, \mathbb{C}))\right) \oplus \mathbb{C}^{r}$.

Main Theorem

- For $\operatorname{SL}(n, \mathbb{C})$ and $\operatorname{GL}(n, \mathbb{C})$ irreducible representations do not admit any proper (non-trivial) invariant subspaces.
- Denote the set of reducible representations by $\mathfrak{X}_{r}(G)^{\text {red }}$.

Main Theorem

- For $\operatorname{SL}(n, \mathbb{C})$ and $\mathrm{GL}(n, \mathbb{C})$ irreducible representations do not admit any proper (non-trivial) invariant subspaces.
- Denote the set of reducible representations by $\mathfrak{X}_{r}(G)^{\text {red }}$.

Theorem 0.6. Let $r, n \geq 2$. Let G be $\mathrm{SL}(n, \mathbb{C})$ or $\mathrm{GL}(n, \mathbb{C})$ and K be $\mathrm{SU}(n)$ or $\mathrm{U}(n)$. Then $\mathfrak{X}_{r}(G)^{\text {red }}=\mathfrak{X}_{r}(G)^{\text {sing }}$ and $\mathfrak{X}_{r}(K)^{\text {red }}=\mathfrak{X}_{r}(K)^{\text {sing }}$ if and only if $(r, n) \neq(2,2)$.

Main Theorem

- For $\operatorname{SL}(n, \mathbb{C})$ and $\operatorname{GL}(n, \mathbb{C})$ irreducible representations do not admit any proper (non-trivial) invariant subspaces.
- Denote the set of reducible representations by $\mathfrak{X}_{r}(G)^{\text {red }}$.

Theorem 0.6. Let $r, n \geq 2$. Let G be $\mathrm{SL}(n, \mathbb{C})$ or $\mathrm{GL}(n, \mathbb{C})$ and K be $\mathrm{SU}(n)$ or $\mathrm{U}(n)$. Then $\mathfrak{X}_{r}(G)^{\text {red }}=\mathfrak{X}_{r}(G)^{\text {sing }}$ and $\mathfrak{X}_{r}(K)^{\text {red }}=\mathfrak{X}_{r}(K)^{\text {sing }}$ if and only if $(r, n) \neq(2,2)$.

Heusener and Porti, studying PSL(2, © $)$, proved some of this theorem for $n=2$; their work was motivational. Also, a new paper of Sikora addresses some of the tools we use to prove this theorem in a new paper titled "Character Varieties". Lastly, similar results with respect to $\mathfrak{g l}(n, \mathbb{C})^{r} / / \mathrm{GL}(n, \mathbb{C})$ have been proved by LeBruyn.

Sketch of Proof

1. The singular equivalence theorem (the previous lemma) tells that the result is true for $G=\operatorname{SL}(n, \mathbb{C})$ if it is true for $G=\mathrm{GL}(n, \mathbb{C})$.

Sketch of Proof

1. The singular equivalence theorem (the previous lemma) tells that the result is true for $G=\operatorname{SL}(n, \mathbb{C})$ if it is true for $G=\mathrm{GL}(n, \mathbb{C})$.
2. $\mathfrak{X}_{r}(K)^{\text {red }}=\mathfrak{X}_{r}(K)^{\text {sing }}$ if and only if $\mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)^{\text {red }}=\mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)^{\text {sing }}$.

Proof.
(a) $\mathfrak{X}_{r}(K) \subset \mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$
(b) K-reducible K-representations are $K_{\mathbb{C}}$-reducible (obvious)
(c) $K_{\mathbb{C}}$-reducible K-representations are K-reducible (not obvious)
(d) $\operatorname{dim}_{\mathbb{R}} T_{[\rho]} \mathfrak{X}_{r}(K)=\operatorname{dim}_{\mathbb{C}} T_{[\rho]} \mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$ (by definition)
(e) $\operatorname{dim}_{\mathbb{R}} \mathfrak{X}_{r}(K)=\operatorname{dim}_{\mathbb{C}} \mathfrak{X}_{r}\left(K_{\mathbb{C}}\right)$

It remains to prove the result for $G=\operatorname{GL}(n, \mathbb{C})$.

3. (a) Define $U_{r, n} \subset \mathfrak{X}_{r}(\mathrm{GL}(n, \mathbb{C}))^{\text {red }}$ by $U_{r, n}=$
$\left\{\left[\rho_{1} \oplus \rho_{2}\right] \in \mathfrak{X}_{r}(\mathrm{GL}(n, \mathbb{C})): \rho_{i}: \mathrm{F}_{r} \rightarrow \mathrm{GL}\left(n_{i}, \mathbb{C}\right)\right.$ are irreducible $\}$,
where we consider all possible decompositions $n=n_{1}+n_{2}$, with $n_{i}>0$.

3. (a) Define $U_{r, n} \subset \mathfrak{X}_{r}(\operatorname{GL}(n, \mathbb{C}))^{\text {red }}$ by $U_{r, n}=$
$\left\{\left[\rho_{1} \oplus \rho_{2}\right] \in \mathfrak{X}_{r}(\mathrm{GL}(n, \mathbb{C})): \rho_{i}: \mathrm{F}_{r} \rightarrow \mathrm{GL}\left(n_{i}, \mathbb{C}\right)\right.$ are irreducible $\}$,
where we consider all possible decompositions $n=n_{1}+n_{2}$, with $n_{i}>0$.
(b) Let $r, n \geq 2 . U_{r, n}$ is dense in $\mathfrak{X}_{r}(\operatorname{GL}(n, \mathbb{C}))^{\text {red }}$ with respect to the ball topology.

It remains to prove the result for $G=\mathrm{GL}(n, \mathbb{C})$.

3. (a) Define $U_{r, n} \subset \mathfrak{X}_{r}(\operatorname{GL}(n, \mathbb{C}))^{\text {red }}$ by $U_{r, n}=$
$\left\{\left[\rho_{1} \oplus \rho_{2}\right] \in \mathfrak{X}_{r}(\mathrm{GL}(n, \mathbb{C})): \rho_{i}: \mathrm{F}_{r} \rightarrow \mathrm{GL}\left(n_{i}, \mathbb{C}\right)\right.$ are irreducible $\}$,
where we consider all possible decompositions $n=n_{1}+n_{2}$, with $n_{i}>0$.
(b) Let $r, n \geq 2 . U_{r, n}$ is dense in $\mathfrak{X}_{r}(\operatorname{GL}(n, \mathbb{C}))^{\text {red }}$ with respect to the ball topology.
(c) Suppose there exists a set $\mathcal{O} \subset \mathfrak{X}_{r}(G)^{\operatorname{sing}} \cap \mathfrak{X}_{r}(G)^{\text {red }}$ that is dense with respect to the ball topology in $\mathfrak{X}_{r}(G)^{\text {red }}$. Then $\mathfrak{X}_{r}(G)^{\text {sing }}=\mathfrak{X}_{r}(G)^{\text {red }}$.

It remains to prove the result for $G=\operatorname{GL}(n, \mathbb{C})$.

3. (a) Define $U_{r, n} \subset \mathfrak{X}_{r}(\operatorname{GL}(n, \mathbb{C}))^{r e d}$ by $U_{r, n}=$
$\left\{\left[\rho_{1} \oplus \rho_{2}\right] \in \mathfrak{X}_{r}(\mathrm{GL}(n, \mathbb{C})): \rho_{i}: \mathrm{F}_{r} \rightarrow \mathrm{GL}\left(n_{i}, \mathbb{C}\right)\right.$ are irreducible $\}$,
where we consider all possible decompositions $n=n_{1}+n_{2}$, with $n_{i}>0$.
(b) Let $r, n \geq 2 . U_{r, n}$ is dense in $\mathfrak{X}_{r}(\operatorname{GL}(n, \mathbb{C}))^{\text {red }}$ with respect to the ball topology.
(c) Suppose there exists a set $\mathcal{O} \subset \mathfrak{X}_{r}(G)^{\operatorname{sing}} \cap \mathfrak{X}_{r}(G)^{\text {red }}$ that is dense with respect to the ball topology in $\mathfrak{X}_{r}(G)^{\text {red }}$. Then $\mathfrak{X}_{r}(G)^{\text {sing }}=\mathfrak{X}_{r}(G)^{\text {red }}$.
4. The conjugation action being free and proper on the irreducibles implies $\mathfrak{X}_{r}(G)^{\text {sing }} \subset \mathfrak{X}_{r}(G)^{\text {red }}$.
5. The Luna Slice Theorem (there exists $V_{x} \subset X$ so $\left(G \times V_{x}\right) / / \operatorname{Stab}_{x} \rightarrow X$ is strongly étale) implies

$$
T_{[\rho]} \mathfrak{x}_{r}(G) \cong T_{0}\left(H^{1}\left(\mathrm{~F}_{r} ; \mathfrak{g}_{\mathrm{Ad}_{\rho} s s}\right) / / \operatorname{Stab}_{\rho^{s s}}\right),
$$

where $\rho^{s s}$ is a poly-stable representative from the extended orbit $[\rho]$.
5. The Luna Slice Theorem (there exists $V_{x} \subset X$ so $\left(G \times V_{x}\right) / / \operatorname{Stab}_{x} \rightarrow X$ is strongly étale) implies

$$
T_{[\rho]} \mathfrak{X}_{r}(G) \cong T_{0}\left(H^{1}\left(\mathrm{~F}_{r} ; \mathfrak{g}_{\mathrm{Ad}_{\rho s s}}\right) / / \operatorname{Stab}_{\rho^{s s}}\right),
$$

where $\rho^{s s}$ is a poly-stable representative from the extended orbit $[\rho]$.
6. (a) Let $\rho \in U_{r, n} \subset \mathfrak{R}_{r}(G)^{\text {red }}$ be of reduced type $\left[n_{1}, n_{2}\right]$ with $n_{1}, n_{2}>0$ and $n=n_{1}+n_{2}$ and write it in the form
$\rho=\rho_{1} \oplus \rho_{2}=\left(\begin{array}{cc}\vec{X} & \overrightarrow{0}_{n_{1} \times n_{2}} \\ \overrightarrow{0}_{n_{2} \times n_{1}} & \vec{Y}\end{array}\right)$, where
$\vec{X}=\left(X_{1}, \ldots, X_{r}\right) \in M_{n_{1} \times n_{1}}^{r}$ and $\vec{Y}=\left(Y_{1}, \ldots, Y_{r}\right) \in M_{n_{2} \times n_{2}}^{r}$ and $\overrightarrow{0}_{k \times l}=(\underbrace{0_{k \times l}, \ldots, 0_{k \times l}}_{r})$ where $0_{k \times l}$ is the k by l matrix of
zeros. Recall that these representations form a dense set in $\mathfrak{X}_{r}(G)^{\text {red }}$.
(b) Let $\operatorname{diag}\left(a_{1}, \ldots ., a_{n}\right)$ be an $n \times n$ matrix whose (i, j)-entry is 0 if $i \neq j$ and is equal to a_{i} otherwise. Then $\operatorname{Stab}_{\rho}=\mathbb{C}^{*} \times \mathbb{C}^{*}$ is given by

$$
\operatorname{diag}(\underbrace{\lambda, \ldots, \lambda}_{n_{1}}, \overbrace{\mu, \ldots, \mu}^{n_{2}})
$$

We note that the action of the center is trivial so the action of the stabilizer modulo its center is \mathbb{C}^{*}.
(b) Let $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ be an $n \times n$ matrix whose (i, j)-entry is 0 if $i \neq j$ and is equal to a_{i} otherwise. Then $\operatorname{Stab}_{\rho}=\mathbb{C}^{*} \times \mathbb{C}^{*}$ is given by

$$
\operatorname{diag}(\underbrace{\lambda, \ldots, \lambda}_{n_{1}}, \overbrace{\mu, \ldots, \mu}^{n_{2}})
$$

We note that the action of the center is trivial so the action of the stabilizer modulo its center is \mathbb{C}^{*}.
(c) Then the cocycles satisfy

$$
\begin{aligned}
& Z^{1}\left(\mathfrak{F}_{r} ; \operatorname{Ad}_{\rho}\right) \cong \mathfrak{g}^{r}= \\
& =\left\{\left.\left(\begin{array}{ll}
\vec{A} & \vec{B} \\
\vec{C} & \vec{D}
\end{array}\right) \right\rvert\, \vec{A} \in M_{n_{1} \times n_{1}}^{r}, \vec{B} \in M_{n_{1} \times n_{2}}^{r}, \vec{C} \in M_{n_{2} \times n_{1}}^{r}, \vec{D} \in M_{n_{2} \times n_{2}}^{r}\right\},
\end{aligned}
$$

which have dimension $n^{2} r$ since this is the tangent space to a representation and the representation variety is smooth.
(d) The coboundaries are given by $B^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho}\right) \cong$
$\cong\left\{\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)-\left(\begin{array}{cc}\vec{X} & \overrightarrow{0}_{n_{1} \times n_{2}} \\ \vec{\sigma}_{n_{2} \times n_{1}} & \vec{Y}\end{array}\right)\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)\left(\begin{array}{cc}\vec{X}^{-1} & \vec{J}_{n_{1} \times n_{2}} \\ \vec{o}_{n_{2} \times n_{1}} & \bar{Y}-1\end{array}\right)\right\}$
$\cong\left\{\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)-\left(\begin{array}{cc}\vec{X} A \vec{X}^{-1} & \vec{X}_{B} \vec{Y}^{-1} \\ \vec{Y} C \vec{X}^{-1} & \vec{Y} D \vec{Y}^{-1}\end{array}\right)\right\}$, for a fixed element
$\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \mathfrak{g}$.
It has dimension $n^{2}-2$ since it is the tangent space to the G-orbit of ρ which has dimension equal to that of the group minus its stabilizer.
(d) The coboundaries are given by $B^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho}\right) \cong$
$\simeq\left\{\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)-\left(\begin{array}{cc}\vec{X} & \overrightarrow{0}_{n_{1} \times n_{2}} \\ \vec{\sigma}_{n_{2} \times n_{1}} & \vec{Y}\end{array}\right)\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)\left(\begin{array}{cc}\vec{X}^{-1} & \overrightarrow{\bar{O}}_{n_{1} \times n_{2}} \\ \vec{\sigma}_{n_{2} \times n_{1}} & \bar{Y}-1\end{array}\right)\right\}$ $\cong\left\{\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)-\left(\begin{array}{cc}\vec{X} A \vec{X}^{-1} & \vec{X} B \vec{Y}^{-1} \\ \vec{Y} C \vec{X}^{-1} & \vec{Y} D \vec{Y}^{-1}\end{array}\right)\right\}$, for a fixed element $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \mathfrak{g}$.
It has dimension $n^{2}-2$ since it is the tangent space to the G-orbit of ρ which has dimension equal to that of the group minus its stabilizer.
(e) Thus with respect to the torus action of the stabilizer,

$$
H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho}\right) \cong H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho_{1}}\right) \oplus H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho_{2}}\right) \oplus W,
$$

where W exist since the torus action is reductive.
(f) Computing dimensions we find:

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}} H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho}\right) & =n^{2} r-\left(n^{2}-2\right)=n^{2}(r-1)+2 \\
\operatorname{dim}_{\mathbb{C}} H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho_{i}}\right) & =n_{i}^{2} r-\left(n_{i}^{2}-1\right)=n_{i}^{2}(r-1)+1
\end{aligned}
$$

which implies $\operatorname{dim}_{\mathbb{C}} H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho}\right) / /\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right)=n^{2}(r-1)+1=\operatorname{dim}_{\mathbb{C}} \mathfrak{X}_{r}(G)$, since the diagonal of the $\mathbb{C}^{*} \times \mathbb{C}^{*}$ action is the center which acts trivially. We also conclude that

$$
\operatorname{dim}_{\mathbb{C}} W=\left(n^{2}-n_{1}^{2}-n_{2}^{2}\right)(r-1)=2 n_{1} n_{2}(r-1)
$$

(f) Computing dimensions we find:

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}} H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho}\right) & =n^{2} r-\left(n^{2}-2\right)=n^{2}(r-1)+2 \\
\operatorname{dim}_{\mathbb{C}} H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho_{i}}\right) & =n_{i}^{2} r-\left(n_{i}^{2}-1\right)=n_{i}^{2}(r-1)+1
\end{aligned}
$$

which implies $\operatorname{dim}_{\mathbb{C}} H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho}\right) / /\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right)=n^{2}(r-1)+1=\operatorname{dim}_{\mathbb{C}} \mathfrak{X}_{r}(G)$, since the diagonal of the $\mathbb{C}^{*} \times \mathbb{C}^{*}$ action is the center which acts trivially. We also conclude that

$$
\operatorname{dim}_{\mathbb{C}} W=\left(n^{2}-n_{1}^{2}-n_{2}^{2}\right)(r-1)=2 n_{1} n_{2}(r-1)
$$

7. Explicitly, the Stab_{ρ} action on $H^{1}\left(\mathrm{~F}_{r} ; \mathrm{Ad}_{\rho}\right)$ is given by:

$$
\operatorname{diag}(\underbrace{\lambda, \ldots, \lambda}_{n_{1}}, \overbrace{\mu, \ldots, \mu}^{n_{2}}) \cdot\left[\left(\begin{array}{cc}
\vec{A} & \vec{B} \\
\vec{C} & \vec{D}
\end{array}\right)\right] \mapsto\left[\left(\begin{array}{cc}
\vec{A} & \lambda \vec{B} \mu^{-1} \\
\mu \vec{C} \lambda^{-1} & \vec{D}
\end{array}\right)\right]
$$

The action on $H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho_{1}}\right) \oplus H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho_{2}}\right)$ is trivial (but not so on W) and we conclude

$$
H^{1}\left(\mathbf{F}_{r} ; \operatorname{Ad}_{\rho}\right) / /\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right) \cong H^{1}\left(\mathbf{F}_{r} ; \operatorname{Ad}_{\rho_{1}}\right) \oplus H^{1}\left(\mathbf{F}_{r} ; \operatorname{Ad}_{\rho_{2}}\right) \oplus\left(W / /\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right)\right) .
$$

The action on $H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho_{1}}\right) \oplus H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho_{2}}\right)$ is trivial (but not so on W) and we conclude
$H^{1}\left(\mathcal{F}_{r} ; \operatorname{Ad}_{\rho}\right) / /\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right) \cong H^{1}\left(\mathcal{F}_{r} ; \operatorname{Ad}_{\rho_{1}}\right) \oplus H^{1}\left(\mathcal{F}_{r} ; \operatorname{Ad}_{\rho_{2}}\right) \oplus\left(W / /\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right)\right)$.
8. Let $n \geq 2$ and $T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ act on a vector space $V=\mathbb{C}^{2 n}=\mathbb{C}^{n} \times \mathbb{C}^{n}$ as follows:

$$
(\lambda, \mu) \cdot(\mathbf{z}, \mathbf{w})=\left(\lambda \mu^{-1} \mathbf{z}, \mu \lambda^{-1} \mathbf{w}\right)
$$

Then, $\mathbb{C}^{2 n} / / T$ is isomorphic to the affine cone over the product of projective spaces $\mathcal{C}_{\mathbb{C}}\left(\mathbb{C} P^{n-1} \times \mathbb{C} P^{n-1}\right)$. Its unique singularity is the orbit of the origin. This follows since the invariant polynomials are generated by $z_{j} w_{k}$.

The action on $H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho_{1}}\right) \oplus H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho_{2}}\right)$ is trivial (but not so on W) and we conclude
$H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho}\right) / /\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right) \cong H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho_{1}}\right) \oplus H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho_{2}}\right) \oplus\left(W / /\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right)\right)$.
8. Let $n \geq 2$ and $T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ act on a vector space $V=\mathbb{C}^{2 n}=\mathbb{C}^{n} \times \mathbb{C}^{n}$ as follows:

$$
(\lambda, \mu) \cdot(\mathbf{z}, \mathbf{w})=\left(\lambda \mu^{-1} \mathbf{z}, \mu \lambda^{-1} \mathbf{w}\right)
$$

Then, $\mathbb{C}^{2 n} / / T$ is isomorphic to the affine cone over the product of projective spaces $\mathcal{C}_{\mathbb{C}}\left(\mathbb{C} P^{n-1} \times \mathbb{C} P^{n-1}\right)$. Its unique singularity is the orbit of the origin. This follows since the invariant polynomials are generated by $z_{j} w_{k}$.
9. Therefore, 0 is a singularity of $W / /\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right)$ which then implies it is a singularity to $H^{1}\left(\mathrm{~F}_{r} ; \operatorname{Ad}_{\rho}\right) / /\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right)$ whenever $\operatorname{dim}_{\mathbb{C}} W=2 n_{1} n_{2}(r-1)>2$; that is, whenever $(r, n) \neq(2,2)$.

Picture Book of Topologies (Examples)

Picture Book of Topologies (Examples)

1. For $G=\operatorname{SL}(1, \mathbb{C})$ both G and K are single points \Longrightarrow

$$
\mathfrak{X}_{r}(G)=\{*\}=\mathfrak{X}_{r}(K)
$$

Picture Book of Topologies (Examples)

1. For $G=\operatorname{SL}(1, \mathbb{C})$ both G and K are single points \Longrightarrow

$$
\mathfrak{X}_{r}(G)=\{*\}=\mathfrak{X}_{r}(K)
$$

2. For $G=\mathrm{GL}(1, \mathbb{C}) \cong \mathbb{C}^{*} \Longrightarrow K=\mathrm{U}(1) \cong S^{1}$.

Picture Book of Topologies (Examples)

1. For $G=\operatorname{SL}(1, \mathbb{C})$ both G and K are single points \Longrightarrow

$$
\mathfrak{X}_{r}(G)=\{*\}=\mathfrak{X}_{r}(K)
$$

2. For $G=\mathrm{GL}(1, \mathbb{C}) \cong \mathbb{C}^{*} \Longrightarrow K=\mathrm{U}(1) \cong S^{1}$. In these cases the conjugation action is trivial \Longrightarrow

$$
\mathfrak{X}_{r}(K) \cong\left(S^{1}\right)^{\times r} \text { and } \mathfrak{X}_{r}(G) \cong\left(\mathbb{C}^{*}\right)^{\times r} .
$$

3. $\mathrm{SU}(n) / \mathrm{SU}(n)$ is homeomorphic to a closed real ball of real dimension $n-1$ given by the exponential of the Weyl alcove.
4. $\mathrm{SU}(n) / \mathrm{SU}(n)$ is homeomorphic to a closed real ball of real dimension $n-1$ given by the exponential of the Weyl alcove. For example, $\operatorname{SU}(2) / \mathrm{SU}(2) \cong[-2,2]$ and $\mathrm{SU}(3) / \mathrm{SU}(3)$ is

Figure 1: SU(3)/SU(3)
3. $\mathrm{SU}(n) / \mathrm{SU}(n)$ is homeomorphic to a closed real ball of real dimension $n-1$ given by the exponential of the Weyl alcove. For example, $\mathrm{SU}(2) / \mathrm{SU}(2) \cong[-2,2]$ and $\mathrm{SU}(3) / \mathrm{SU}(3)$ is

Figure 1: $\mathrm{SU}(3) / \mathrm{SU}(3)$
And also we have $\mathfrak{X}_{1}(\operatorname{SL}(n, \mathbb{C})) \cong \mathbb{C}^{n-1}$ given by the coefficients of the characteristic polynomial.
4. The Fricke-Vogt Theorem $(1896,1889)$ tells that $\mathfrak{X}_{2}(\mathrm{SL}(2, \mathbb{C})) \cong \mathbb{C}^{3}$ given by

$$
[\rho] \mapsto(\operatorname{tr}(X), \operatorname{tr}(Y), \operatorname{tr}(X Y)),
$$

where $\rho \leftrightarrow(X, Y) \in \mathrm{SL}(2, \mathbb{C})^{\times 2}$.

On the other hand, in 1992 Jeffrey and Weitsman compute that $\mathfrak{X}_{2}(\mathrm{SU}(2)) \cong$

Figure 2: $\mathrm{SU}(2)^{\times 2} / \mathrm{SU}(2)$
5. Let $G=\operatorname{SL}(2, \mathbb{C})$.

is a singular branched double cover.
5. Let $G=\operatorname{SL}(2, \mathbb{C})$.

is a singular branched double cover.
This statement is equivalent to the commutative algebra statement:

$$
\mathbb{C}\left[\operatorname{Hom}\left(\mathrm{F}_{3}, \mathrm{SL}(2, \mathbb{C})\right)\right]^{\mathrm{SL}(2, \mathbb{C})} \cong \mathbb{C}\left[t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right]\left[t_{7}\right] / \mathfrak{I}
$$

where

$$
\mathfrak{I}=\left(t_{7}^{2}-P\left(t_{1}, \ldots, t_{6}\right) t_{7}+Q\left(t_{1}, \ldots, t_{6}\right)\right)
$$

5. Let $G=\operatorname{SL}(2, \mathbb{C})$.

is a singular branched double cover.
This statement is equivalent to the commutative algebra
statement:

$$
\mathbb{C}\left[\operatorname{Hom}\left(\mathrm{F}_{3}, \mathrm{SL}(2, \mathbb{C})\right)\right]^{\mathrm{SL}(2, \mathbb{C})} \cong \mathbb{C}\left[t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right]\left[t_{7}\right] / \mathfrak{I}
$$

where

$$
\mathfrak{I}=\left(t_{7}^{2}-P\left(t_{1}, \ldots, t_{6}\right) t_{7}+Q\left(t_{1}, \ldots, t_{6}\right)\right)
$$

- The key observations for this result are already present in 1889 by Vogt, and the related scheme $\mathfrak{g l}(2, \mathbb{C})^{\times 3} / / \mathrm{GL}(2, \mathbb{C})$ was described by Sibirskii in 1968.
- However, an explicit description of $\mathfrak{X}_{3}(G)$ in the above terms seems to be appearing only now in Goldman's Trace coordinates on Fricke spaces of some simple hyperbolic surfaces in the Handbook of Teichmüller Theory II.
- However, an explicit description of $\mathfrak{X}_{3}(G)$ in the above terms seems to be appearing only now in Goldman's Trace coordinates on Fricke spaces of some simple hyperbolic surfaces in the Handbook of Teichmüller Theory II.

For $K=\mathrm{SU}(2)$, Cooper \& Bratholdt in 2001 established $\mathfrak{X}_{3}(K) \cong S^{6}$ (homeomorphic).

- However, an explicit description of $\mathfrak{X}_{3}(G)$ in the above terms seems to be appearing only now in Goldman's Trace coordinates on Fricke spaces of some simple hyperbolic surfaces in the Handbook of Teichmüller Theory II.

For $K=\mathrm{SU}(2)$, Cooper \& Bratholdt in 2001 established $\mathfrak{X}_{3}(K) \cong S^{6}$ (homeomorphic).

Thus using our theorem we see $\mathfrak{X}_{3}\left(K_{\mathbb{C}}\right) \simeq S^{6}$ (homotopic).

- However, an explicit description of $\mathfrak{X}_{3}(G)$ in the above terms seems to be appearing only now in Goldman's Trace coordinates on Fricke spaces of some simple hyperbolic surfaces in the Handbook of Teichmüller Theory II.

For $K=\mathrm{SU}(2)$, Cooper \& Bratholdt in 2001 established $\mathfrak{X}_{3}(K) \cong S^{6}$ (homeomorphic).
Thus using our theorem we see $\mathfrak{X}_{3}\left(K_{\mathbb{C}}\right) \simeq S^{6}$ (homotopic).
It is worth noting that Cooper \& Bratholdt motivated much of our present work.
6. In 2006, L- showed

is a singular branched double cover.
6. In 2006, L- showed

$$
\begin{gathered}
\mathfrak{X}_{2}(\mathrm{SL}(3, \mathbb{C})) \xrightarrow{\longrightarrow} \mathbb{C}^{9} \\
\downarrow \\
\mathbb{C}^{8}
\end{gathered}
$$

is a singular branched double cover. Again there is an equivalent commutative algebra statement:

$$
\mathbb{C}\left[\operatorname{Hom}\left(\mathrm{F}_{2}, \mathrm{SL}(3, \mathbb{C})\right)\right]^{\mathrm{SL}(3, \mathbb{C})} \cong \mathbb{C}\left[t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right]\left[t_{9}\right] / \mathfrak{I} .
$$

where

$$
\mathfrak{I}=\left(t_{9}^{2}-P\left(t_{1}, \ldots, t_{8}\right) t_{9}+Q\left(t_{1}, \ldots, t_{8}\right)\right)
$$

6. In 2006, L- showed

$$
\begin{gathered}
\mathfrak{X}_{2}(\mathrm{SL}(3, \mathbb{C})) \longleftrightarrow \mathbb{C}^{9} \\
\downarrow \\
\mathbb{C}^{8}
\end{gathered}
$$

is a singular branched double cover. Again there is an equivalent commutative algebra statement:

$$
\mathbb{C}\left[\operatorname{Hom}\left(\mathrm{F}_{2}, \mathrm{SL}(3, \mathbb{C})\right)\right]^{\mathrm{SL}(3, \mathbb{C})} \cong \mathbb{C}\left[t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right]\left[t_{9}\right] / \mathfrak{I} .
$$

where

$$
\mathfrak{I}=\left(t_{9}^{2}-P\left(t_{1}, \ldots, t_{8}\right) t_{9}+Q\left(t_{1}, \ldots, t_{8}\right)\right)
$$

Theorem 0.7 (Florentino \& L-, 2008). Let $K=\mathrm{SU}(3)$. Then $\mathfrak{X}_{2}\left(K_{\mathbb{C}}\right) \simeq S^{8} \cong \mathfrak{X}_{2}(K)$ 。

Classification Theorem

Theorem 0.8. Let $r, n \geq 2$. Let G be $\operatorname{SL}(n, \mathbb{C})$ or $\operatorname{GL}(n, \mathbb{C})$ and K be $\mathrm{SU}(n)$ or $\mathrm{U}(n) . \mathfrak{X}_{r}(G)$ is a topological manifold possibly with boundary if and only if $(r, n)=(2,2) . \mathfrak{X}_{r}(K)$ is a topological manifold possibly with boundary if and only if $(r, n)=(2,2),(2,3)$, or $(3,2)$.

Thank you!

references are available upon request

