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The Gardiner-Masur boundary of Teichmueller space

L Introduction

LTeichmﬂller space (1/26)

Let X be a Riemann surface of type (g,n) with2¢g -2 +n > 0.
Let T(X) be the Teichmuller space of X i.e.

TX)={X.NHlf:X—>Yqc}/ ~

where (Y1, f1) ~ (Y2, f>) if there is a conformal mapping h: Y — Y»
such that & o f; is homotopic to f>.

XLXl
_ h
N
X2

Teichmiuiller space T'(X) has a canonical complete distance, called
the Teichmuller distance dr, which we recall later.
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L Introduction

LSpace of quadratic differentials (2/26)

Fory = (Y, f) € T(X), we set

Q, = {q | hol. quadratic differential on Y w. ||g|| < oo},

||61||=f|61|=f|Q(Z)|dXdy-
Y Y

Q = Uyer(0)€y

where

Then

is a complex vector bundle over T(X) of rank 3g — 3 + n. Set

Q' ={geQlliqll = 1}.
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L Introduction

L Measured foliations (3/26)

We set

S = {non-peripheral, non-trivial s.c.c.}/isotopy
R = RS = {non-negative functions on S}
PR =(R-{0)/R,.

We denote the projection by

proj : R — {0} — PR.
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L Introduction

L Measured foliations (4/26)

We define the weighted s.c.c’s by
WS :={ta|t€Rspand a € S}.

Consider the embedding

WS 5 ta &> iu(t) = [B 1 1 - i(B,a)] € R

By taking the closure, we get the space MF = M¥F (X) of
measured foliations on X. i.e.

MF =i ,(WS) c R.

We define the space PMF of projective measured foliations on X
by
PMF = proj(MF —{0}) c PR.
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L Introduction

L Properties of Teichmiiller space and Measured foliations (5/26)

The following are well-known.
e T(X) is homeomorphic to R6s-6+2,
]
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L Introduction

L Properties of Teichmiiller space and Measured foliations (5/26)

The following are well-known.

MF is homeomorphic to R%-6+2",
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L Introduction

L Properties of Teichmiiller space and Measured foliations (5/26)

The following are well-known.

e The intersection number function
WS x WS > (ta, sB) — i(ta, sP) := ts - i(a, B)

extends continuously on M¥F x MF.
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L Introduction

L Properties of Teichmiiller space and Measured foliations (5/26)

The following are well-known.

o PMF is homeomorphic to S 08~7+2,
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LThurston boundary

L Definition and Properties of the Thurston boundary (6/26)

Forae Sandy = (¥, f) € T(X), we denote by
)

the hyperbolic length of the geodesic homotopic to f(a) on Y.
We consider the following maps

TX)>y dr)—T>h O7rp(y) = [ ty(a)] € R - {0} iol PR.

Then, it is known that the composite map
®py, :=projo Q7 T(X) » PR

is embedding and its image is relatively compact in PR.
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LThurston boundary

L Definition and Properties of the Thurston boundary (7/26)

We say that
OrnT(X) := Orp(T (X)) — Pi(T (X)) € PR.

is the Thurston boundary of T'(X).
e Theorem (Thurston) ~

The Thurston boundary coincides with the space of projective
measured foliations:

OrnT(X) = PMF = §6877+2n

in PR. Furthremore, the Thurston compactification ®7,(T (X))
is homeomorphic to the closed ball of dimension 6g — 6 + 2n.
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LGardiner-Masur boundary

L Properties of Extremal lengths (8/26)

Leta e Sandy = (¥, f) € T(X). The extremal length of @ on y is,
by definition

l 2
Exty(a) = sup S

, f p(z)*dxdy
Y

where p runs over all conformal measurable metrics on Y and £,(a)
is the p-length of f(a):

{,(a) = inf d
p(@) alef(a)fa/p(z)l Zl
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LGardiner-Masur boundary

L Properties of Extremal lengths (8/26)

Leta e Sandy = (¥, f) € T(X). The extremal length of @ on y is,
by definition
l 2
Exty(a) = sup L
, f p(z)*dxdy
Y

where p runs over all conformal measurable metrics on Y and £,(a)
is the p-length of f(a):

¢, (o) = inf d

p(@) alef(a)fa/p(z)l Zl

S. Kerckhoff has shown that when we set
Ext,(t@) = Exty(a),

the extremal length extends continuously on M¥.
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LGardiner-Masur boundary

LHubbard-Ma's,ur theorem and Extremal length (9/26)

e Theorem (Hubbard-Masur) ~
Forall F e M¥ and y € T(X), there is a unique ¢r,, € Q, s.t.

i(a, F) = inf f |Re vq|

a’ef(@)

forall @ € S.

Then, it holds
Exty(F) = llgr,ll = f lgF,y(2)dxdy
Y

forall F e M7 and y € T(X).
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LGardiner-Masur boundary

LDefinilion of the Gardiner-Masur boundary (10/26)

We consider
~ 172 proj
T(X)3y Oou(y) := [a = Exty(a) 7] € R {0} — PR.
Then, F.Gardiner and H.Masur observed that the composite map

D¢y = projo Oy : T(X) > PR

is embedding and its image is relatively compact in PR.
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LGardiner-Masur boundary

L Definition of the Gardiner-Masur boundary (11/26)

The complement
OomT (X) = Oou(T (X)) — Pom(T (X)) C PR

is called the Gardiner-Masur boundary.

F. Gardiner and H. Masur have shown that
ornT(X) C OgmuT (X)

as subsets of PR.
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LGardiner-Masur boundary

L Representation theorem (12/26)

Denote by xg = (X, id) the base point.
Fory e T(X), we set

Ext,(F)

172
Ey(F) = { } MF - Ry,

Y

where K, = exp(2dr(xo,y)), and dr is the Teichmdiller distance on
T(X):

.. -
dr(y1.y2) = 5 loginf {K(h) | h: Y1 = Yaqe. h~ fro i)

where y; = (Y3, f;) (i = 1,2).
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LGardiner-Masur boundary

L Representation theorem (13/26)

Notice that for any F' € M¥%, the function
Ssamila,F)

extends continuously on M¥.
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LGardiner-Masur boundary

L Representation theorem (13/26)

Notice that for any F' € M¥%, the function
Ssamila,F)

extends continuously on M¥.

Thus, any boundary point of the Thurston boundary d7,7(X) is
represented by a continuous function on MF.
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LGardiner-Masur boundary

L Representation theorem (14/26)

s Theorem 1 ~

Forany p € dgmT (X), there is a continuous function &, on MF
with the following two properties.

(1) Fort>0and F € MF,

Ep(1F) = 1E,(F).

(2) The function
Ssa- E)(a)

represents p.

Furthermore, when {y,}, converges to p € dguT(X), there is a
subsequence {y,;}; and 7o > 0 such that & ., cOnverges to1-&,
on any compact sets of M¥F.
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L Structure of Gardiner-Masur boundary

LUniquely ergodic boundary points (15/26)

A measured foliation G € M¥ is said to be uniquely ergodic if
underlying foliation is arational and has a unique transversal
measure (up to multiplying a positive constant).
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L Structure of Gardiner-Masur boundary

LUniquely ergodic boundary points (15/26)

We ONLY need the following property of uniquely ergodic
measured foliations later.
Intersection numbers and UE (Masur)

Let G be a uniquely ergodic measured foliation. If F € M¥F
satisfies
i(F,G)=0

then F = tG for some ¢ > 0.
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L Structure of Gardiner-Masur boundary

LUniquely ergodic boundary points (16/26)

A boundary point p € dguT(X) is called uniquely ergodic if
there is a uniquely ergodic G € M¥ such that £,(G) = 0.
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L Structure of Gardiner-Masur boundary

LUniquely ergodic boundary points (16/26)

A boundary point p € dguT(X) is called uniquely ergodic if
there is a uniquely ergodic G € M¥ such that £,(G) = 0.

Notice that for any projective class
[G] € PMF = 01, T(X) C dguT(X)
is represented by the function
MF 3 F s i(F,G) = Ei(F)
inR =R,
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L Structure of Gardiner-Masur boundary

LUniquely ergodic boundary points (16/26)

A boundary point p € dguT(X) is called uniquely ergodic if
there is a uniquely ergodic G € M¥ such that £,(G) = 0.

Notice that for any projective class
[G] € PMF = 01, T(X) C dguT(X)
is represented by the function
MF 3 F s i(F,G) = Ei(F)
inR =R,

This means that uniquely ergodic projective class [G] €
ornT(X) is a uniquely ergodic boundary point in dgy T (X).
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L Structure of Gardiner-Masur boundary

L Uniquely ergodic points are represented by the intersection number (17/26)

We have the converse.
. Theorem 2 N

For any uniquely ergodic p € dguT(X), there is a uniquely er-
godic G € M¥F such that

E,(F) = i(F,G)

for F € MJ . Furthermore, G is unique up to multiplying posi-
tive constants.

N J
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L Structure of Gardiner-Masur boundary

L Uniquely ergodic points are represented by the intersection number (17/26)

We have the converse.
. Theorem 2 N

For any uniquely ergodic p € dguT(X), there is a uniquely er-
godic G € M¥F such that

E,(F) = i(F,G)

for F € MJ . Furthermore, G is unique up to multiplying posi-
tive constants.

J

This means that any uniquely ergodic boundary point in
0omT(X) is contained in the Thurston boundary.
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L Structure of Gardiner-Masur boundary

LA schematic picture (18/26)

This is a schematic picture.
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L Structure of Gardiner-Masur boundary

LA schematic picture (18/26)

This is a schematic picture. Om(X)

@

OemT (X)

N.B. | DON'T know about any topological structure of dgy T (X).
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L Structure of Gardiner-Masur boundary

LA schematic picture (18/26)

This is a schematic picture. 97, T(X) C dgp(X) (Gardiner-Masur) .

@

OemT (X)

drnT(X) = PMF

N.B. | DON'T know about any topological structure of dgy T (X).
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L Structure of Gardiner-Masur boundary

LA schematic picture (18/26)

This is a schematic picture. 97, T(X) C dgp(X) (Gardiner-Masur) .

@

OemT (X)

Limits of T-rays of s.c.c
(Gardiner-Masur)

we. (M)

drnT(X) = PMF

N.B. | DON'T know about any topological structure of dgy T (X).
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L Structure of Gardiner-Masur boundary

LA schematic picture (18/26)

This is a schematic picture. 97, T(X) C dgp(X) (Gardiner-Masur) .

Limits of certain sequences (Gardiner-Masur)
Limits of T-ray of multi-curves. (Kerckhoff, M)

OemT (X)

Limits of T-rays of s.c.c
(Gardiner-Masur)

we. (M)

drnT(X) = PMF

N.B. | DON'T know about any topological structure of dgy T (X).
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LSketch of the Proof of Theorem 2

LGeodesic currents and Compactification of the space of singular flat structures (Duchin-Leininger-Rafi) (19/26)

Let S denote a surface of genus g with n punctures.
The quotient space

Flat(S) = Q!/q ~ €%

is canonically identified with the space of singular flat structure
(whose cone angles form nx (n € N).

Let C(S) be the space of geodesic currents on S, and set
PC(S) = (C(S) —{0)/R,.

It is known that M¥ is canonically contained in C(S) and the
intersection number function i(-, -) on M% extends continuously on
C(S) (Bonahon).
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LSketch of the Proof of Theorem 2

LGeodesic currents and Compactification of the space of singular flat structures (Duchin-Leininger-Rafi) (20/26)

M. Duchin, C. Leininger, K. Rafi construct an embedding
Flat(§)> g L, € C(S)
such that the g-length of @ € S satsifies
t,(@) = i(L,, F).
Furthremore, they observe that the g-length of F € M¥ is
well-defined and
Flat(S) x MF 3 (¢, F) = {y(F) = i(L,, F).

is continuous.
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LSketch of the Proof of Theorem 2

LStable sequences (21/26)

A sequence {g,},> , in Flat(S) is said to be stable if any
accumulation point in C(S) of the sequence

L, ”
1/2 74n
Kyn n=1

is NOT the zero-geodesic current where y,, € T(X) is taken to
satisfy ¢, € Q,,.

an
q1 [ ] .. fl *
Flat(S) ®
42
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LSketch of the Proof of Theorem 2

LStable sequences (21/26)

A sequence {g,},> , in Flat(S) is said to be stable if any
accumulation point in C(S) of the sequence

L, ”
1/2 74n
Kyn n=1

is NOT the zero-geodesic current where y,, € T(X) is taken to
satisfy ¢, € Q,,.

Ing
a® | . »
Flat(S) ° K, °L

q2 )

~accumulation pts
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LSketch of the Proof of Theorem 2

LStable sequences (22/26)

One can observe the following.
e (Precompactness)

o (Stability criterion)

¢ (Limits of stab. seq.)
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LSketch of the Proof of Theorem 2

LStable sequences (22/26)

One can observe the following.

* (Precompactness) For any sequence {g.},, {K;ﬂl/qun}
contains a convergent sequence in C(S).

n=1

o (Stability criterion)

¢ (Limits of stab. seq.)
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LSketch of the Proof of Theorem 2

LStable sequences (22/26)

One can observe the following.

« (Precompactness) For any sequence {g, )2, {K,"/ qun}:o: 1
contains a convergent sequence in C(S).

o (Stability criterion) Let g, = gr,.y,/llgF,.y,|l. Suppose that
Fy,— F,y, = pand §,(F) # 0. Then, {g,}}, is stable.

¢ (Limits of stab. seq.)
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LSketch of the Proof of Theorem 2

LStable sequences (22/26)

One can observe the following.

« (Precompactness) For any sequence {g, )2, {K,"/ qun}:o: 1
contains a convergent sequence in C(S).

o (Stability criterion) Let g, = gr,.y,/llgF,.y,|l. Suppose that
Fy,— F,y, = pand §,(F) # 0. Then, {g,}}, is stable.

e (Limits of stab. seq.) Let Let g, = gr,,,/llgF,.,|l- Suppose that
Fy,— F,y, » pand &, — 1) &,. Suppose that {g,} , is

stable. Then, any accumulatlon point Lo, of{ nl/qun}:; is
in MF —{0}. Furthermore,

i(Loos H) < 10 Ep(H)  (YH € MF)
i(Loo, F) = 10 E(F)
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LSketch of the Proof of Theorem 2

L Proof of Theorem 2 (23/26)

Let p be a uniquely ergodic boundary point. Let {y,}, ¢ T(X) with
y» — p. We may assume that &,, converges to 1) &,,.
By definition, there is a uniquely ergodic G € M¥ with £,(G) = 0.



The Gardiner-Masur boundary of Teichmueller space

LSketch of the Proof of Theorem 2
L Proof of Theorem 2 (23/26)

Let p be a uniquely ergodic boundary point. Let {y,}, ¢ T(X) with
y» — p. We may assume that &,, converges to 1) &,,.
By definition, there is a uniquely ergodic G € M¥ with £,(G) = 0.

Let FF € MF with &,(F) # 0. From (Stablility criterion), {g,}, is
stable, where g, = gr,,/llqF,y,|l. We may assume that

K;'*L,, — Lo € C(S) — {0},

)
n
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LSketch of the Proof of Theorem 2
L Proof of Theorem 2 (23/26)

Let p be a uniquely ergodic boundary point. Let {y,}, ¢ T(X) with
y» — p. We may assume that &,, converges to 1) &,,.
By definition, there is a uniquely ergodic G € M¥ with £,(G) = 0.

Let FF € MF with &,(F) # 0. From (Stablility criterion), {g,}, is
stable, where g, = gr,,/llqF,y,|l. We may assume that

K;'*L,, — Lo € C(S) — {0},

Then, by (Limit of stab. seq.), L., € MF — {0} and

(Lo, H) <t E,(H) (VH € M)
i(Loo, F) = 19 E,(F).

In particular, (L., G) < &,(G) = 0.
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LSketch of the Proof of Theorem 2
L Proof of Theorem 2 (23/26)

Let p be a uniquely ergodic boundary point. Let {y,}, ¢ T(X) with
y» — p. We may assume that &,, converges to 1) &,,.
By definition, there is a uniquely ergodic G € M¥ with £,(G) = 0.

Let FF € MF with &,(F) # 0. From (Stablility criterion), {g,}, is
stable, where g, = gr,,/llqF,y,|l. We may assume that

K;'*L,, — Lo € C(S) — {0},

Then, by (Limit of stab. seq.), L., € MF — {0} and

(Lo, H) <t E,(H) (VH € M)
i(Loo, F) = 19 E,(F).

In particular, (L., G) < &,(G) = 0. Hence, L., =t G for some
t>0,and E,(H) # 0if H ¢ R -G.
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LSketch of the Proof of Theorem 2

L Proof of Theorem 2 (24/26)

Let F/ € MF — {0} with F’ ¢ R - G. By the previous argument,
{3 (@, = qr ,/llgF ,1) contains a subsequence {q,’”},- such that

K;ni/qu;j > L, =1GeMF -{0}.

for some ¢ > 0.
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LSketch of the Proof of Theorem 2

L Proof of Theorem 2 (24/26)

Let F/ € MF — {0} with F’ ¢ R - G. By the previous argument,
{3 (@, = qr ,/llgF ,1) contains a subsequence {q,’”},- such that

K;ni/qu;j > L, =1GeMF -{0}.
for some ¢ > 0.
Furthermore,

i(Ll, H) < 10Ey(H) (YH € MF)
i(LL, F') = 19 E,(F").
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LSketch of the Proof of Theorem 2

L Proof of Theorem 2 (25/26)

Now we have L, =tG and L, =t G. Furthermore, they satisfy

i(Loos H) < 10 Ep(H)  (YH € MF) (1)
(Lo, F) = 10 E)(F) (2)
i(Ll H) < 10E,(H) (YH € MF) 3)
i(LL, F') = 19 E,(F"). (4)



The Gardiner-Masur boundary of Teichmueller space
LSketch of the Proof of Theorem 2

L Proof of Theorem 2 (25/26)

Now we have L, =tG and L, =t G. Furthermore, they satisfy

i(Loos H) < 10 Ep(H)  (YH € MF) (1)
(Lo, F) = 10 E)(F) (2)
i(Ll H) < 10E,(H) (YH € MF) 3)
i(LL, F') = 19 E,(F"). (4)

From (2) and (3),
1'i(F,G) = i(L,, F) < 10E,(F) = ti(F,G).

Hence t’ < 1.
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LSketch of the Proof of Theorem 2

L Proof of Theorem 2 (25/26)

Now we have L, =tG and L, =t G. Furthermore, they satisfy

i(Loos H) < 10 Ep(H)  (YH € MF) (1)
(Lo, F) = 10 E)(F) (2)
i(Ll H) < 10E,(H) (YH € MF) 3)
i(LL, F') = 19 E,(F"). (4)

From (2) and (3),
1'i(F,G) = i(L,, F) < 10E,(F) = ti(F,G).
Hence ¢’ <. From (1) and (4),
ti(F',G) = i(Leo, F") < 10E,(F") = 1 i(F', G).

Hence t’ = 1.
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LSketch of the Proof of Theorem 2
L Proof of Theorem 2 (25/26)

Now we have L, =tG and L, =t G. Furthermore, they satisfy

(Lo, H) <10 E,(H) (YH € MF) (1)
(Lo, F) = 10 Ep(F) @)
(L, H) < tgE,(H) (YH € MF) (3)
(L, F') = tg Ep(F). (4)
From (2) and (3),
1'i(F,G) = i(L,, F) < 10E,(F) = ti(F,G).
Hence ¢’ <. From (1) and (4),
ti(F',G) = i(Leo, F") < 10E,(F") = 1 i(F', G).
Hence ' = . This means that r and ¢’ are independent of F and

F’ and hence
10E,(F) = ti(F,G)

for all F € MF.
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L problem (26/26)

e How do Teichmdiller rays behave in the Gardiner-Masur
clusure?
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e How do Teichmdiller rays behave in the Gardiner-Masur

clusure?
Y. Iguchi will give a behavior of some Teichmdiller ray in the

poster session.
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e How do Teichmdiller rays behave in the Gardiner-Masur

clusure?
Y. Iguchi will give a behavior of some Teichmdiller ray in the

poster session.

e What are geometric objects representing points of dgy T (X)?
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L Problem
L problem (26/26)

e How do Teichmdiller rays behave in the Gardiner-Masur

clusure?
Y. Iguchi will give a behavior of some Teichmdiller ray in the

poster session.

e What are geometric objects representing points of dgy T (X)?
In the case of Thurston boundary, boundary points
correspond to measured foliations (nice geometric objects!!).
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LThank you

Lvery much (x3/co)

Y. Iguchi will give a behavior of some Teichmdller ray in the
poster session.

In the case of Thurston boundary, boundary points
correspond to measured foliations (nice geometric objects!!).

e Thank you very much for your attention.



