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Introduction

Teichmüller space (1/26)

Let X be a Riemann surface of type (g, n) with 2g − 2 + n > 0.
Let T (X) be the Teichmüller space of X i.e.

T (X) = {(Y, f ) | f : X → Y q.c.}/ ∼

where (Y1, f1) ∼ (Y2, f2) if there is a conformal mapping h : Y1 → Y2
such that h ◦ f1 is homotopic to f2.
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Teichmüller space T (X) has a canonical complete distance, called
the Teichmüller distance dT , which we recall later.
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Space of quadratic differentials (2/26)

For y = (Y, f ) ∈ T (X), we set

Qy = {q | hol. quadratic differential on Y w. ∥q∥ < ∞},

where
∥q∥ =

∫
Y
|q| =

∫
Y
|q(z)|dxdy.

Then
Q = ∪y∈T (X)Qy

is a complex vector bundle over T (X) of rank 3g − 3 + n. Set

Q1 = {q ∈ Q | ∥q∥ = 1}.
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Measured foliations (3/26)

We set

S = {non-peripheral, non-trivial s.c.c.}/isotopy

R = RS≥0 = {non-negative functions on S}
PR = (R − {0})/R+.

We denote the projection by

proj : R − {0} → PR.
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Measured foliations (4/26)

We define the weighted s.c.c’s by

WS := {tα | t ∈ R≥0 and α ∈ S}.

Consider the embedding

WS ∋ tα
i∗
↪→ i∗(tα) := [β 7→ t · i(β, α)] ∈ R.

By taking the closure, we get the spaceMF =MF (X) of
measured foliations on X. i.e.

MF = i∗(WS) ⊂ R.

We define the space PMF of projective measured foliations on X
by

PMF = proj(MF − {0}) ⊂ PR.
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Properties of Teichmüller space and Measured foliations (5/26)

The following are well-known.

• T (X) is homeomorphic to R6g−6+2n.

• MF is homeomorphic to R6g−6+2n.

• The intersection number function

WS×WS ∋ (tα, sβ) 7→ i(tα, sβ) := ts · i(α, β)

extends continuously onMF ×MF .

• PMF is homeomorphic to S 6g−7+2n.
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Definition and Properties of the Thurston boundary (6/26)

For α ∈ S and y = (Y, f ) ∈ T (X), we denote by

ℓy(α)

the hyperbolic length of the geodesic homotopic to f (α) on Y.
We consider the following maps

T (X) ∋ y
Φ̃Th7→ Φ̃Th(y) := [α 7→ ℓy(α)] ∈ R − {0}

proj
−→ PR.

Then, it is known that the composite map

ΦTh := proj ◦ Φ̃Th : T (X)→ PR

is embedding and its image is relatively compact in PR.
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Definition and Properties of the Thurston boundary (7/26)

We say that

∂ThT (X) := ΦTh(T (X)) − ΦTh(T (X)) ⊂ PR.

is the Thurston boundary of T (X).
Theorem (Thurston)¶ ³
The Thurston boundary coincides with the space of projective
measured foliations:

∂ThT (X) = PMF � S 6g−7+2n.

in PR. Furthremore, the Thurston compactification ΦTh(T (X))
is homeomorphic to the closed ball of dimension 6g − 6 + 2n.µ ´



The Gardiner-Masur boundary of Teichmueller space

Gardiner-Masur boundary

Properties of Extremal lengths (8/26)

Let α ∈ S and y = (Y, f ) ∈ T (X). The extremal length of α on y is,
by definition

Exty(α) = sup
ρ

ℓρ(α)2∫
Y
ρ(z)2dxdy

where ρ runs over all conformal measurable metrics on Y and ℓρ(α)
is the ρ-length of f (α):

ℓρ(α) = inf
α′∈ f (α)

∫
α′
ρ(z)|dz|

S. Kerckhoff has shown that when we set

Exty(tα) = t2Exty(α),

the extremal length extends continuously onMF .
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Hubbard-Masur theorem and Extremal length (9/26)

Theorem (Hubbard-Masur)¶ ³
For all F ∈ MF and y ∈ T (X), there is a unique qF,y ∈ Qy s.t.

i(α, F) = inf
α′∈ f (α)

∫
α′

∣∣∣Re
√

q
∣∣∣

for all α ∈ S.µ ´
Then, it holds

Exty(F) = ∥qF,y∥ =
∫

Y
|qF,y(z)|dxdy

for all F ∈ MF and y ∈ T (X).



The Gardiner-Masur boundary of Teichmueller space

Gardiner-Masur boundary

Definition of the Gardiner-Masur boundary (10/26)

We consider

T (X) ∋ y 7→ Φ̃GM(y) := [α 7→ Exty(α)1/2] ∈ R − {0}
proj
−→ PR.

Then, F.Gardiner and H.Masur observed that the composite map

ΦGM := proj ◦ Φ̃GM : T (X)→ PR

is embedding and its image is relatively compact in PR.
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Definition of the Gardiner-Masur boundary (11/26)

¶ ³
The complement

∂GMT (X) = ΦGM(T (X)) − ΦGM(T (X)) ⊂ PR

is called the Gardiner-Masur boundary.µ ´
F. Gardiner and H. Masur have shown that

∂ThT (X) ⊂ ∂GMT (X)

as subsets of PR.
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Representation theorem (12/26)

Denote by x0 = (X, id) the base point.

For y ∈ T (X), we set

Ey(F) :=
{

Exty(F)
Ky

}1/2

:MF → R+,

where Ky = exp(2dT (x0, y)), and dT is the Teichmüller distance on
T (X):

dT (y1, y2) =
1
2

log inf
{
K(h) | h : Y1 → Y2 q.c. h ∼ f2 ◦ f −1

1 .
}

where yi = (Yi, fi) (i = 1, 2).
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Representation theorem (13/26)

Notice that for any F ∈ MF , the function

S ∋ α 7→ i(α, F)

extends continuously onMF .¶ ³
Thus, any boundary point of the Thurston boundary ∂ThT (X) is
represented by a continuous function onMF .µ ´
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Representation theorem (14/26)

Theorem 1¶ ³
For any p ∈ ∂GMT (X), there is a continuous function Ep onMF
with the following two properties.

(1) For t > 0 and F ∈ MF ,

Ep(tF) = tEp(F).

(2) The function
S ∋ α 7→ Ep(α)

represents p.

Furthermore, when {yn}n converges to p ∈ ∂GMT (X), there is a
subsequence {yn j} j and t0 > 0 such that Eyn j

converges to t0 ·Ep

on any compact sets ofMF .µ ´
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Structure of Gardiner-Masur boundary

Uniquely ergodic boundary points (15/26)

A measured foliation G ∈ MF is said to be uniquely ergodic if
underlying foliation is arational and has a unique transversal
measure (up to multiplying a positive constant).

We ONLY need the following property of uniquely ergodic
measured foliations later.

Intersection numbers and UE (Masur)¶ ³
Let G be a uniquely ergodic measured foliation. If F ∈ MF
satisfies

i(F,G) = 0

then F = tG for some t ≥ 0.µ ´
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Uniquely ergodic boundary points (16/26)¶ ³
A boundary point p ∈ ∂GMT (X) is called uniquely ergodic if
there is a uniquely ergodic G ∈ MF such that Ep(G) = 0.µ ´

Notice that for any projective class

[G] ∈ PMF � ∂ThT (X) ⊂ ∂GMT (X)

is represented by the function

MF ∋ F 7→ i(F,G) = E[G](F)

in R = RS≥0.¶ ³
This means that uniquely ergodic projective class [G] ∈
∂ThT (X) is a uniquely ergodic boundary point in ∂GMT (X).µ ´
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Structure of Gardiner-Masur boundary

Uniquely ergodic points are represented by the intersection number (17/26)

We have the converse.
Theorem 2¶ ³
For any uniquely ergodic p ∈ ∂GMT (X), there is a uniquely er-
godic G ∈ MF such that

Ep(F) = i(F,G)

for F ∈ MF . Furthermore, G is unique up to multiplying posi-
tive constants.µ ´¶ ³
This means that any uniquely ergodic boundary point in
∂GMT (X) is contained in the Thurston boundary.µ ´
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Structure of Gardiner-Masur boundary

A schematic picture (18/26)

This is a schematic picture. ∂ThT (X) ⊂ ∂GM(X) (Gardiner-Masur) .

N.B. I DON’T know about any topological structure of ∂GMT (X).
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Sketch of the Proof of Theorem 2

Geodesic currents and Compactification of the space of singular flat structures (Duchin-Leininger-Rafi) (19/26)

Let S denote a surface of genus g with n punctures.
The quotient space

Flat(S ) = Q1/q ∼ eiθq

is canonically identified with the space of singular flat structure
(whose cone angles form nπ (n ∈ N).

Let C(S ) be the space of geodesic currents on S , and set

PC(S ) = (C(S ) − {0})/R+.

It is known thatMF is canonically contained in C(S ) and the
intersection number function i(·, ·) onMF extends continuously on
C(S ) (Bonahon).
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Sketch of the Proof of Theorem 2

Geodesic currents and Compactification of the space of singular flat structures (Duchin-Leininger-Rafi) (20/26)

M. Duchin, C. Leininger, K. Rafi construct an embedding

Flat(S ) ∋ q 7→ Lq ∈ C(S )

such that the q-length of α ∈ S satsifies

ℓq(α) = i(Lq, F).

Furthremore, they observe that the q-length of F ∈ MF is
well-defined and

Flat(S ) ×MF ∋ (q, F) 7→ ℓq(F) = i(Lq, F).

is continuous.
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Sketch of the Proof of Theorem 2

Stable sequences (21/26)

A sequence {qn}∞n=1 in Flat(S ) is said to be stable if any
accumulation point in C(S ) of the sequence 1

K1/2
yn

Lqn


∞

n=1

is NOT the zero-geodesic current where yn ∈ T (X) is taken to
satisfy qn ∈ Qyn .
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Sketch of the Proof of Theorem 2

Stable sequences (22/26)

One can observe the following.

• (Precompactness) For any sequence {qn}∞n=1,
{
K−1/2

yn Lqn

}∞
n=1

contains a convergent sequence in C(S ).

• (Stability criterion) Let qn = qFn,yn/∥qFn,yn∥. Suppose that
Fn → F, yn → p and Ep(F) , 0. Then, {qn}∞n=1 is stable.

• (Limits of stab. seq.) Let Let qn = qFn,yn/∥qFn,yn∥. Suppose that
Fn → F, yn → p and Eyn → t0 Ep. Suppose that {qn}∞n=1 is

stable. Then, any accumulation point L∞ of
{
K−1/2

yn Lqn

}∞
n=1

is
inMF − {0}. Furthermore,

i(L∞,H) ≤ t0 Ep(H) (∀H ∈ MF )

i(L∞, F) = t0 Ep(F)
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Proof of Theorem 2 (23/26)

Let p be a uniquely ergodic boundary point. Let {yn}n ⊂ T (X) with
yn → p. We may assume that Eyn converges to t0 Ep.
By definition, there is a uniquely ergodic G ∈ MF with Ep(G) = 0.

Let F ∈ MF with Ep(F) , 0. From (Stablility criterion), {qn}n is
stable, where qn = qF,yn/∥qF,yn∥. We may assume that

K−1/2
yn Lqn → L∞ ∈ C(S ) − {0}.

Then, by (Limit of stab. seq.), L∞ ∈ MF − {0} and

i(L∞,H) ≤ t0 Ep(H) (∀H ∈ MF )

i(L∞, F) = t0 Ep(F).

In particular, i(L∞,G) ≤ Ep(G) = 0. Hence, L∞ = t G for some
t > 0, and Ep(H) , 0 if H < R ·G.
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Let F′ ∈ MF − {0} with F′ < R ·G. By the previous argument,
{q′n}n (q′n = qF′,yn/∥qF′,yn∥) contains a subsequence {q′n j

} j such that

K−1/2
yn j

Lq′n j
→ L′∞ = t′G ∈ MF − {0}.

for some t′ > 0.

Furthermore,

i(L′∞,H) ≤ t0 Ep(H) (∀H ∈ MF )

i(L′∞, F
′) = t0 Ep(F′).



The Gardiner-Masur boundary of Teichmueller space

Sketch of the Proof of Theorem 2

Proof of Theorem 2 (24/26)

Let F′ ∈ MF − {0} with F′ < R ·G. By the previous argument,
{q′n}n (q′n = qF′,yn/∥qF′,yn∥) contains a subsequence {q′n j

} j such that

K−1/2
yn j

Lq′n j
→ L′∞ = t′G ∈ MF − {0}.

for some t′ > 0.

Furthermore,

i(L′∞,H) ≤ t0 Ep(H) (∀H ∈ MF )

i(L′∞, F
′) = t0 Ep(F′).



The Gardiner-Masur boundary of Teichmueller space

Sketch of the Proof of Theorem 2

Proof of Theorem 2 (25/26)

Now we have L∞ = t G and L′∞ = t′G. Furthermore, they satisfy

i(L∞,H) ≤ t0 Ep(H) (∀H ∈ MF ) (1)

i(L∞, F) = t0 Ep(F) (2)

i(L′∞,H) ≤ t0 Ep(H) (∀H ∈ MF ) (3)

i(L′∞, F
′) = t0 Ep(F′). (4)

From (2) and (3),

t′ i(F,G) = i(L′∞, F) ≤ t0Ep(F) = t i(F,G).

Hence t′ ≤ t. From (1) and (4),

t i(F′,G) = i(L∞, F′) ≤ t0Ep(F′) = t′ i(F′,G).

Hence t′ = t. This means that t and t′ are independent F and F′

and hence
t0Ep(F) = t i(F,G)

for all F ∈ MF .
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Problem (26/26)

• How do Teichmüller rays behave in the Gardiner-Masur
clusure?
Y. Iguchi will give a behavior of some Teichmüller ray in the
poster session.

• What are geometric objects representing points of ∂GMT (X)?
In the case of Thurston boundary, boundary points
correspond to measured foliations (nice geometric objects!!).

• Thank you very much for your attention.
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very much (∗∗/∞)
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In the case of Thurston boundary, boundary points
correspond to measured foliations (nice geometric objects!!).
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