Hideki Miyachi

Osaka University

Geometry, Topology and Dynamics of Character Varieties (18-31 July, 2010) National University of Singapore 20 July, 2010 Introduction

Teichmüller space (1/26)

Let *X* be a Riemann surface of type (g, n) with 2g - 2 + n > 0. Let T(X) be the Teichmüller space of *X* i.e.

 $T(X) = \{(Y, f) \mid f : X \to Y \text{ q.c.}\} / \sim$ 

where  $(Y_1, f_1) \sim (Y_2, f_2)$  if there is a conformal mapping  $h : Y_1 \rightarrow Y_2$  such that  $h \circ f_1$  is homotopic to  $f_2$ .



Teichmüller space T(X) has a canonical complete distance, called the Teichmüller distance  $d_T$ , which we recall later. Introduction

Space of quadratic differentials (2/26)

For  $y = (Y, f) \in T(X)$ , we set

 $Q_y = \{q \mid hol. \text{ quadratic differential on } Y \text{ w. } ||q|| < \infty\},\$ 

where

$$||q|| = \int_Y |q| = \int_Y |q(z)| dx dy.$$

Then

$$Q = \cup_{y \in T(X)} Q_y$$

is a complex vector bundle over T(X) of rank 3g - 3 + n. Set

 $Q^1 = \{q \in Q \mid ||q|| = 1\}.$ 

- Introduction

Measured foliations (3/26)

We set

$$\begin{split} \mathcal{S} &= \{ \text{non-peripheral, non-trivial s.c.c.} \} / \text{isotopy} \\ \mathcal{R} &= \mathbb{R}_{\geq 0}^{\mathcal{S}} = \{ \text{non-negative functions on } \mathcal{S} \} \\ \mathcal{P}\mathcal{R} &= (\mathcal{R} - \{ 0 \}) / \mathbb{R}_{+}. \end{split}$$

We denote the projection by

proj : 
$$\mathcal{R} - \{0\} \rightarrow \mathcal{PR}$$
.

Introduction

Measured foliations (4/26)

We define the weighted s.c.c's by

 $WS := \{t\alpha \mid t \in \mathbb{R}_{\geq 0} \text{ and } \alpha \in S\}.$ 

Consider the embedding

$$\mathcal{WS} \ni t\alpha \stackrel{i_*}{\hookrightarrow} i_*(t\alpha) := [\beta \mapsto t \cdot i(\beta, \alpha)] \in \mathcal{R}.$$

By taking the closure, we get the space  $\mathcal{MF} = \mathcal{MF}(X)$  of measured foliations on *X*. i.e.

$$\mathcal{MF} = \overline{i_*(\mathcal{WS})} \subset \mathcal{R}.$$

We define the space  $\mathcal{PMF}$  of projective measured foliations on X by

$$\mathcal{PMF} = \operatorname{proj}(\mathcal{MF} - \{0\}) \subset \mathcal{PR}.$$

Properties of Teichmüller space and Measured foliations (5/26)

#### The following are well-known.

- T(X) is homeomorphic to  $\mathbb{R}^{6g-6+2n}$ .
- •
- •

Properties of Teichmüller space and Measured foliations (5/26)

#### The following are well-known.

- T(X) is homeomorphic to  $\mathbb{R}^{6g-6+2n}$ .
- $\mathcal{MF}$  is homeomorphic to  $\mathbb{R}^{6g-6+2n}$ .
- ٠

Introduction

Properties of Teichmüller space and Measured foliations (5/26)

### The following are well-known.

- T(X) is homeomorphic to  $\mathbb{R}^{6g-6+2n}$ .
- $\mathcal{MF}$  is homeomorphic to  $\mathbb{R}^{6g-6+2n}$
- The intersection number function

 $WS \times WS \ni (t\alpha, s\beta) \mapsto i(t\alpha, s\beta) := ts \cdot i(\alpha, \beta)$ 

extends continuously on  $\mathcal{MF} \times \mathcal{MF}$ .

#### Introduction

Properties of Teichmüller space and Measured foliations (5/26)

#### The following are well-known.

- T(X) is homeomorphic to  $\mathbb{R}^{6g-6+2n}$ .
- $\mathcal{MF}$  is homeomorphic to  $\mathbb{R}^{6g-6+2n}$ .
- The intersection number function

 $WS \times WS \ni (t\alpha, s\beta) \mapsto i(t\alpha, s\beta) := ts \cdot i(\alpha, \beta)$ 

extends continuously on  $\mathcal{MF} \times \mathcal{MF}$ .

•  $\mathcal{PMF}$  is homeomorphic to  $S^{6g-7+2n}$ .

L Thurston boundary

Definition and Properties of the Thurston boundary (6/26)

For  $\alpha \in S$  and  $y = (Y, f) \in T(X)$ , we denote by

 $\ell_y(\alpha)$ 

the hyperbolic length of the geodesic homotopic to  $f(\alpha)$  on *Y*. We consider the following maps

$$T(X) \ni y \stackrel{\tilde{\Phi}_{Th}}{\mapsto} \tilde{\Phi}_{Th}(y) := [\alpha \mapsto \ell_y(\alpha)] \in \mathcal{R} - \{0\} \xrightarrow{\text{proj}} \mathcal{PR}.$$

Then, it is known that the composite map

$$\Phi_{Th} := \operatorname{proj} \circ \tilde{\Phi}_{Th} : T(X) \to \mathcal{PR}$$

is embedding and its image is relatively compact in  $\mathcal{PR}$ .

L Thurston boundary

Definition and Properties of the Thurston boundary (7/26)

We say that

$$\partial_{Th}T(X) := \overline{\Phi_{Th}(T(X))} - \Phi_{Th}(T(X)) \subset \mathcal{PR}.$$

is the Thurston boundary of T(X).

```
– Theorem (Thurston) -
```

The Thurston boundary coincides with the space of projective measured foliations:

 $\partial_{Th}T(X) = \mathcal{PMF} \cong S^{6g-7+2n}.$ 

in  $\mathcal{PR}$ . Furthremore, the Thurston compactification  $\overline{\Phi_{Th}(T(X))}$  is homeomorphic to the closed ball of dimension 6g - 6 + 2n.

Properties of Extremal lengths (8/26)

Let  $\alpha \in S$  and  $y = (Y, f) \in T(X)$ . The extremal length of  $\alpha$  on y is, by definition

$$\operatorname{Ext}_{y}(\alpha) = \sup_{\rho} \frac{\ell_{\rho}(\alpha)^{2}}{\int_{Y} \rho(z)^{2} dx dy}$$

where  $\rho$  runs over all conformal measurable metrics on *Y* and  $\ell_{\rho}(\alpha)$  is the  $\rho$ -length of  $f(\alpha)$ :

$$\ell_{\rho}(\alpha) = \inf_{\alpha' \in f(\alpha)} \int_{\alpha'} \rho(z) |dz|$$

Properties of Extremal lengths (8/26)

Let  $\alpha \in S$  and  $y = (Y, f) \in T(X)$ . The extremal length of  $\alpha$  on y is, by definition

$$\operatorname{Ext}_{y}(\alpha) = \sup_{\rho} \frac{\ell_{\rho}(\alpha)^{2}}{\int_{Y} \rho(z)^{2} dx dy}$$

where  $\rho$  runs over all conformal measurable metrics on *Y* and  $\ell_{\rho}(\alpha)$  is the  $\rho$ -length of  $f(\alpha)$ :

$$\ell_{\rho}(\alpha) = \inf_{\alpha' \in f(\alpha)} \int_{\alpha'} \rho(z) |dz|$$

S. Kerckhoff has shown that when we set

$$\operatorname{Ext}_{y}(t\alpha) = t^{2}\operatorname{Ext}_{y}(\alpha),$$

the extremal length extends continuously on  $\mathcal{MF}$ .

Hubbard-Masur theorem and Extremal length (9/26)

- Theorem (Hubbard-Masur)

For all  $F \in \mathcal{MF}$  and  $y \in T(X)$ , there is a unique  $q_{F,y} \in Q_y$  s.t.

$$i(\alpha, F) = \inf_{\alpha' \in f(\alpha)} \int_{\alpha'} \left| \operatorname{Re} \sqrt{q} \right|$$

for all  $\alpha \in S$ .

Then, it holds

$$\operatorname{Ext}_{y}(F) = \|q_{F,y}\| = \int_{Y} |q_{F,y}(z)| dx dy$$

for all  $F \in \mathcal{MF}$  and  $y \in T(X)$ .

Definition of the Gardiner-Masur boundary (10/26)

We consider

$$T(X) \ni y \mapsto \tilde{\Phi}_{GM}(y) := [\alpha \mapsto \operatorname{Ext}_{y}(\alpha)^{1/2}] \in \mathcal{R} - \{0\} \xrightarrow{\operatorname{proj}} \mathcal{PR}.$$

Then, F.Gardiner and H.Masur observed that the composite map

$$\Phi_{GM} := \operatorname{proj} \circ \tilde{\Phi}_{GM} : T(X) \to \mathcal{PR}$$

is embedding and its image is relatively compact in  $\mathcal{PR}$ .

Gardiner-Masur boundary

Definition of the Gardiner-Masur boundary (11/26)

The complement

$$\partial_{GM}T(X) = \overline{\Phi_{GM}(T(X))} - \Phi_{GM}(T(X)) \subset \mathcal{PR}$$

is called the Gardiner-Masur boundary.

F. Gardiner and H. Masur have shown that

 $\partial_{Th}T(X)\subset \partial_{GM}T(X)$ 

as subsets of  $\mathcal{PR}$ .

Representation theorem (12/26)

Denote by  $x_0 = (X, id)$  the base point.

For  $y \in T(X)$ , we set

$$\mathcal{E}_{y}(F) := \left\{ \frac{\mathrm{Ext}_{y}(F)}{K_{y}} \right\}^{1/2} : \mathcal{MF} \to \mathbb{R}_{+},$$

where  $K_y = \exp(2d_T(x_0, y))$ , and  $d_T$  is the Teichmüller distance on T(X):

$$d_T(y_1, y_2) = \frac{1}{2} \log \inf \left\{ K(h) \mid h : Y_1 \to Y_2 \text{ q.c. } h \sim f_2 \circ f_1^{-1} \right\}$$

where  $y_i = (Y_i, f_i)$  (*i* = 1, 2).

Representation theorem (13/26)

#### Notice that for any $F \in \mathcal{MF}$ , the function

$$\mathcal{S} \ni \alpha \mapsto i(\alpha, F)$$

extends continuously on  $\mathcal{MF}$ .

Representation theorem (13/26)

#### Notice that for any $F \in \mathcal{MF}$ , the function

$$\mathcal{S} \ni \alpha \mapsto i(\alpha, F)$$

extends continuously on  $\mathcal{MF}$ .

Thus, any boundary point of the Thurston boundary  $\partial_{Th}T(X)$  is represented by a continuous function on  $\mathcal{MF}$ .

Representation theorem (14/26)

Theorem 1

For any  $p \in \partial_{GM} T(X)$ , there is a continuous function  $\mathcal{E}_p$  on  $\mathcal{MF}$  with the following two properties.

(1) For t > 0 and  $F \in \mathcal{MF}$ ,

$$\mathcal{E}_p(tF) = t\mathcal{E}_p(F).$$

(2) The function

$$S \ni \alpha \mapsto \mathcal{E}_p(\alpha)$$

represents p.

Furthermore, when  $\{y_n\}_n$  converges to  $p \in \partial_{GM}T(X)$ , there is a subsequence  $\{y_{n_j}\}_j$  and  $t_0 > 0$  such that  $\mathcal{E}_{y_{n_j}}$  converges to  $t_0 \cdot \mathcal{E}_p$  on any compact sets of  $\mathcal{MF}$ .

Uniquely ergodic boundary points (15/26)

A measured foliation  $G \in \mathcal{MF}$  is said to be uniquely ergodic if underlying foliation is arational and has a unique transversal measure (up to multiplying a positive constant).

Uniquely ergodic boundary points (15/26)

A measured foliation  $G \in \mathcal{MF}$  is said to be uniquely ergodic if underlying foliation is arational and has a unique transversal measure (up to multiplying a positive constant).

We ONLY need the following property of uniquely ergodic measured foliations later.

Intersection numbers and UE (Masur)

Let *G* be a uniquely ergodic measured foliation. If  $F \in \mathcal{MF}$  satisfies

$$i(F,G) = 0$$

then F = tG for some  $t \ge 0$ .

Uniquely ergodic boundary points (16/26)

A boundary point  $p \in \partial_{GM}T(X)$  is called uniquely ergodic if there is a uniquely ergodic  $G \in \mathcal{MF}$  such that  $\mathcal{E}_p(G) = 0$ .

Structure of Gardiner-Masur boundary

Uniquely ergodic boundary points (16/26)

A boundary point  $p \in \partial_{GM}T(X)$  is called uniquely ergodic if there is a uniquely ergodic  $G \in \mathcal{MF}$  such that  $\mathcal{E}_p(G) = 0$ .

Notice that for any projective class

$$[G] \in \mathcal{PMF} \cong \partial_{Th}T(X) \subset \frac{\partial_{GM}T(X)}{\partial_{GM}T(X)}$$

is represented by the function

$$\mathcal{MF} \ni F \mapsto i(F,G) = \mathcal{E}_{[G]}(F)$$

in  $\mathcal{R} = \mathbb{R}^{\mathcal{S}}_{\geq 0}$ .

Uniquely ergodic boundary points (16/26)

A boundary point  $p \in \partial_{GM}T(X)$  is called uniquely ergodic if there is a uniquely ergodic  $G \in \mathcal{MF}$  such that  $\mathcal{E}_p(G) = 0$ .

Notice that for any projective class

$$[G] \in \mathcal{PMF} \cong \partial_{Th}T(X) \subset \frac{\partial_{GM}T(X)}{\partial_{GM}T(X)}$$

is represented by the function

$$\mathcal{MF} \ni F \mapsto i(F,G) = \mathcal{E}_{[G]}(F)$$

in  $\mathcal{R} = \mathbb{R}^{\mathcal{S}}_{>0}$ .

This means that uniquely ergodic projective class  $[G] \in \partial_{Th}T(X)$  is a uniquely ergodic boundary point in  $\partial_{GM}T(X)$ .

Uniquely ergodic points are represented by the intersection number (17/26)

We have the converse.

Theorem 2

For any uniquely ergodic  $p \in \partial_{GM}T(X)$ , there is a uniquely ergodic  $G \in \mathcal{MF}$  such that

$$\mathcal{E}_p(F) = i(F,G)$$

for  $F \in \mathcal{MF}$ . Furthermore, *G* is unique up to multiplying positive constants.

Uniquely ergodic points are represented by the intersection number (17/26)

We have the converse.

Theorem 2

For any uniquely ergodic  $p \in \partial_{GM}T(X)$ , there is a uniquely ergodic  $G \in \mathcal{MF}$  such that

$$\mathcal{E}_p(F) = i(F,G)$$

for  $F \in \mathcal{MF}$ . Furthermore, *G* is unique up to multiplying positive constants.

This means that any uniquely ergodic boundary point in  $\partial_{GM}T(X)$  is contained in the Thurston boundary.

Structure of Gardiner-Masur boundary

A schematic picture (18/26)

This is a schematic picture.

 $\mathcal{PR}$ 



Structure of Gardiner-Masur boundary

A schematic picture (18/26)

#### This is a schematic picture.

 $\partial_{GM}(X)$ 



<u>N.B.</u> I DON'T know about any topological structure of  $\partial_{GM}T(X)$ .

A schematic picture (18/26)

This is a schematic picture.  $\partial_{Th}T(X) \subset \partial_{GM}(X)$  (Gardiner-Masur).



<u>N.B.</u> I DON'T know about any topological structure of  $\partial_{GM}T(X)$ .

A schematic picture (18/26)

This is a schematic picture.  $\partial_{Th}T(X) \subset \partial_{GM}(X)$  (Gardiner-Masur).



N.B. I DON'T know about any topological structure of  $\partial_{GM}T(X)$ .

A schematic picture (18/26)

This is a schematic picture.  $\partial_{Th}T(X) \subset \partial_{GM}(X)$  (Gardiner-Masur).



N.B. I DON'T know about any topological structure of  $\partial_{GM}T(X)$ .

Geodesic currents and Compactification of the space of singular flat structures (Duchin-Leininger-Rafi) (19/26)

Let S denote a surface of genus g with n punctures. The quotient space

$$\texttt{Flat}(S) = Q^1/q \sim e^{i\theta}q$$

is canonically identified with the space of singular flat structure (whose cone angles form  $n\pi$  ( $n \in \mathbb{N}$ ).

Let C(S) be the space of geodesic currents on S, and set

 $\mathcal{P}C(S) = (C(S) - \{0\})/\mathbb{R}_+.$ 

It is known that  $\mathcal{MF}$  is canonically contained in C(S) and the intersection number function  $i(\cdot, \cdot)$  on  $\mathcal{MF}$  extends continuously on C(S) (Bonahon).

Geodesic currents and Compactification of the space of singular flat structures (Duchin-Leininger-Rafi) (20/26)

#### M. Duchin, C. Leininger, K. Rafi construct an embedding

```
Flat(S) \ni q \mapsto L_q \in C(S)
```

such that the *q*-length of  $\alpha \in S$  satsifies

$$\ell_q(\alpha) = i(L_q, F).$$

Furthremore, they observe that the *q*-length of  $F \in \mathcal{MF}$  is well-defined and

$$\operatorname{Flat}(S) \times \mathcal{MF} \ni (q, F) \mapsto \ell_q(F) = i(L_q, F).$$

is continuous.

Sketch of the Proof of Theorem 2

Stable sequences (21/26)

A sequence  $\{q_n\}_{n=1}^{\infty}$  in Flat(*S*) is said to be stable if any accumulation point in C(S) of the sequence



is NOT the zero-geodesic current where  $y_n \in T(X)$  is taken to satisfy  $q_n \in Q_{y_n}$ .



Sketch of the Proof of Theorem 2

Stable sequences (21/26)

A sequence  $\{q_n\}_{n=1}^{\infty}$  in Flat(S) is said to be stable if any accumulation point in C(S) of the sequence



is NOT the zero-geodesic current where  $y_n \in T(X)$  is taken to satisfy  $q_n \in Q_{y_n}$ .



Sketch of the Proof of Theorem 2

L Stable sequences (22/26)

One can observe the following.

• (Precompactness)

• (Stability criterion)

• (Limits of stab. seq.)

Sketch of the Proof of Theorem 2

L Stable sequences (22/26)

One can observe the following.

- (Precompactness) For any sequence  $\{q_n\}_{n=1}^{\infty}$ ,  $\{K_{y_n}^{-1/2}L_{q_n}\}_{n=1}^{\infty}$  contains a convergent sequence in C(S).
- (Stability criterion)

• (Limits of stab. seq.)

Sketch of the Proof of Theorem 2

L Stable sequences (22/26)

One can observe the following.

- (Precompactness) For any sequence  $\{q_n\}_{n=1}^{\infty}$ ,  $\{K_{y_n}^{-1/2}L_{q_n}\}_{n=1}^{\infty}$  contains a convergent sequence in C(S).
- (Stability criterion) Let  $q_n = q_{F_n, y_n} / ||q_{F_n, y_n}||$ . Suppose that  $F_n \to F, y_n \to p$  and  $\mathcal{E}_p(F) \neq 0$ . Then,  $\{q_n\}_{n=1}^{\infty}$  is stable.
- (Limits of stab. seq.)

Sketch of the Proof of Theorem 2

Stable sequences (22/26)

One can observe the following.

- (Precompactness) For any sequence  $\{q_n\}_{n=1}^{\infty}$ ,  $\{K_{y_n}^{-1/2}L_{q_n}\}_{n=1}^{\infty}$  contains a convergent sequence in C(S).
- (Stability criterion) Let  $q_n = q_{F_n, y_n} / ||q_{F_n, y_n}||$ . Suppose that  $F_n \to F, y_n \to p$  and  $\mathcal{E}_p(F) \neq 0$ . Then,  $\{q_n\}_{n=1}^{\infty}$  is stable.
- (Limits of stab. seq.) Let Let  $q_n = q_{F_n, y_n}/||q_{F_n, y_n}||$ . Suppose that  $F_n \to F$ ,  $y_n \to p$  and  $\mathcal{E}_{y_n} \to t_0 \mathcal{E}_p$ . Suppose that  $\{q_n\}_{n=1}^{\infty}$  is stable. Then, any accumulation point  $L_{\infty}$  of  $\{K_{y_n}^{-1/2}L_{q_n}\}_{n=1}^{\infty}$  is in  $\mathcal{MF} \{0\}$ . Furthermore,

$$i(L_{\infty}, H) \le t_0 \mathcal{E}_p(H) \quad (\forall H \in \mathcal{MF})$$
$$i(L_{\infty}, F) = t_0 \mathcal{E}_p(F)$$

Proof of Theorem 2 (23/26)

Let *p* be a uniquely ergodic boundary point. Let  $\{y_n\}_n \subset T(X)$  with  $y_n \to p$ . We may assume that  $\mathcal{E}_{y_n}$  converges to  $t_0 \mathcal{E}_p$ . By definition, there is a uniquely ergodic  $G \in \mathcal{MF}$  with  $\mathcal{E}_p(G) = 0$ .

Proof of Theorem 2 (23/26)

Let *p* be a uniquely ergodic boundary point. Let  $\{y_n\}_n \subset T(X)$  with  $y_n \to p$ . We may assume that  $\mathcal{E}_{y_n}$  converges to  $t_0 \mathcal{E}_p$ . By definition, there is a uniquely ergodic  $G \in \mathcal{MF}$  with  $\mathcal{E}_p(G) = 0$ .

Let  $F \in \mathcal{MF}$  with  $\mathcal{E}_p(F) \neq 0$ . From (Stablility criterion),  $\{q_n\}_n$  is stable, where  $q_n = q_{F,y_n}/||q_{F,y_n}||$ . We may assume that

$$K_{y_n}^{-1/2}L_{q_n} \to L_{\infty} \in C(S) - \{0\}.$$

Proof of Theorem 2 (23/26)

Let *p* be a uniquely ergodic boundary point. Let  $\{y_n\}_n \subset T(X)$  with  $y_n \to p$ . We may assume that  $\mathcal{E}_{y_n}$  converges to  $t_0 \mathcal{E}_p$ . By definition, there is a uniquely ergodic  $G \in \mathcal{MF}$  with  $\mathcal{E}_p(G) = 0$ .

Let  $F \in \mathcal{MF}$  with  $\mathcal{E}_p(F) \neq 0$ . From (Stablility criterion),  $\{q_n\}_n$  is stable, where  $q_n = q_{F,y_n}/||q_{F,y_n}||$ . We may assume that

$$K_{y_n}^{-1/2}L_{q_n} \to L_{\infty} \in C(S) - \{0\}.$$

Then, by (Limit of stab. seq.),  $L_{\infty} \in \mathcal{MF} - \{0\}$  and

$$\begin{split} i(L_{\infty}, H) &\leq t_0 \, \mathcal{E}_p(H) \quad (\forall H \in \mathcal{MF}) \\ i(L_{\infty}, F) &= t_0 \, \mathcal{E}_p(F). \end{split}$$

In particular,  $i(L_{\infty}, G) \leq \mathcal{E}_p(G) = 0$ .

Proof of Theorem 2 (23/26)

Let *p* be a uniquely ergodic boundary point. Let  $\{y_n\}_n \subset T(X)$  with  $y_n \to p$ . We may assume that  $\mathcal{E}_{y_n}$  converges to  $t_0 \mathcal{E}_p$ . By definition, there is a uniquely ergodic  $G \in \mathcal{MF}$  with  $\mathcal{E}_p(G) = 0$ .

Let  $F \in \mathcal{MF}$  with  $\mathcal{E}_p(F) \neq 0$ . From (Stablility criterion),  $\{q_n\}_n$  is stable, where  $q_n = q_{F,y_n}/||q_{F,y_n}||$ . We may assume that

$$K_{y_n}^{-1/2}L_{q_n} \to L_{\infty} \in C(S) - \{0\}.$$

Then, by (Limit of stab. seq.),  $L_{\infty} \in \mathcal{MF} - \{0\}$  and

$$\begin{split} i(L_{\infty}, H) &\leq t_0 \, \mathcal{E}_p(H) \quad (\forall H \in \mathcal{MF}) \\ i(L_{\infty}, F) &= t_0 \, \mathcal{E}_p(F). \end{split}$$

In particular,  $i(L_{\infty}, G) \leq \mathcal{E}_p(G) = 0$ . Hence,  $L_{\infty} = tG$  for some t > 0, and  $\mathcal{E}_p(H) \neq 0$  if  $H \notin \mathbb{R} \cdot G$ .

Proof of Theorem 2 (24/26)

Let  $F' \in \mathcal{MF} - \{0\}$  with  $F' \notin \mathbb{R} \cdot G$ . By the previous argument,  $\{q'_n\}_n \ (q'_n = q_{F',y_n}/||q_{F',y_n}||)$  contains a subsequence  $\{q'_n\}_j$  such that

$$K_{y_{n_j}}^{-1/2}L_{q'_{n_j}} \to L'_{\infty} = t' G \in \mathcal{MF} - \{0\}.$$

for some t' > 0.

Proof of Theorem 2 (24/26)

Let  $F' \in \mathcal{MF} - \{0\}$  with  $F' \notin \mathbb{R} \cdot G$ . By the previous argument,  $\{q'_n\}_n \ (q'_n = q_{F',y_n}/||q_{F',y_n}||)$  contains a subsequence  $\{q'_n\}_j$  such that

$$K_{y_{n_j}}^{-1/2}L_{q'_{n_j}} \to L'_{\infty} = t' G \in \mathcal{MF} - \{0\}.$$

for some t' > 0.

Furthermore,

$$i(L'_{\infty}, H) \le t_0 \mathcal{E}_p(H) \quad (\forall H \in \mathcal{MF})$$
$$i(L'_{\infty}, F') = t_0 \mathcal{E}_p(F').$$

Sketch of the Proof of Theorem 2

Proof of Theorem 2 (25/26)

Now we have  $L_{\infty} = t G$  and  $L'_{\infty} = t' G$ . Furthermore, they satisfy

$$i(L_{\infty}, H) \le t_0 \mathcal{E}_p(H) \quad (\forall H \in \mathcal{MF})$$
(1)

$$i(L_{\infty}, F) = t_0 \mathcal{E}_p(F) \tag{2}$$

$$i(L'_{\infty}, H) \le t_0 \mathcal{E}_p(H) \quad (\forall H \in \mathcal{MF})$$
(3)

$$i(L'_{\infty}, F') = t_0 \mathcal{E}_p(F').$$
 (4)

Sketch of the Proof of Theorem 2

Proof of Theorem 2 (25/26)

Now we have  $L_{\infty} = t G$  and  $L'_{\infty} = t' G$ . Furthermore, they satisfy

$$i(L_{\infty}, H) \le t_0 \mathcal{E}_p(H) \quad (\forall H \in \mathcal{MF})$$
(1)

$$i(L_{\infty}, F) = t_0 \mathcal{E}_p(F) \tag{2}$$

$$i(L'_{\infty}, H) \le t_0 \mathcal{E}_p(H) \quad (\forall H \in \mathcal{MF})$$
(3)

$$i(L'_{\infty}, F') = t_0 \mathcal{E}_p(F').$$
(4)

From (2) and (3),

$$t' i(F,G) = i(L'_{\infty},F) \le t_0 \mathcal{E}_p(F) = t i(F,G).$$

Hence  $t' \leq t$ .

Sketch of the Proof of Theorem 2

Proof of Theorem 2 (25/26)

Now we have  $L_{\infty} = t G$  and  $L'_{\infty} = t' G$ . Furthermore, they satisfy

$$i(L_{\infty}, H) \le t_0 \mathcal{E}_p(H) \quad (\forall H \in \mathcal{MF})$$
(1)

$$i(L_{\infty}, F) = t_0 \mathcal{E}_p(F) \tag{2}$$

$$i(L'_{\infty}, H) \le t_0 \mathcal{E}_p(H) \quad (\forall H \in \mathcal{MF})$$
(3)

$$i(L'_{\infty}, F') = t_0 \mathcal{E}_p(F').$$
(4)

From (2) and (3),

$$t'i(F,G) = i(L'_{\infty},F) \le t_0 \mathcal{E}_p(F) = t\,i(F,G).$$

Hence  $t' \leq t$ . From (1) and (4),

$$t i(F', G) = i(L_{\infty}, F') \le t_0 \mathcal{E}_p(F') = t' i(F', G).$$

Hence t' = t.

Sketch of the Proof of Theorem 2

Proof of Theorem 2 (25/26)

Now we have  $L_{\infty} = t G$  and  $L'_{\infty} = t' G$ . Furthermore, they satisfy

$$i(L_{\infty}, H) \le t_0 \mathcal{E}_p(H) \quad (\forall H \in \mathcal{MF})$$
(1)

$$i(L_{\infty}, F) = t_0 \mathcal{E}_p(F) \tag{2}$$

$$i(L'_{\infty}, H) \le t_0 \mathcal{E}_p(H) \quad (\forall H \in \mathcal{MF})$$
(3)

$$i(L'_{\infty}, F') = t_0 \mathcal{E}_p(F').$$
 (4)

From (2) and (3),

$$t'i(F,G) = i(L'_{\infty},F) \le t_0 \mathcal{E}_p(F) = t\,i(F,G).$$

Hence  $t' \leq t$ . From (1) and (4),

$$t i(F',G) = i(L_{\infty},F') \le t_0 \mathcal{E}_p(F') = t' i(F',G).$$

Hence t' = t. This means that *t* and *t'* are independent of *F* and *F'* and hence

$$t_0 \mathcal{E}_p(F) = t \, i(F, G)$$

for all  $F \in \mathcal{MF}$ .

Problem (26/26)

•

•

•

Problem (26/26)

## • How do Teichmüller rays behave in the Gardiner-Masur clusure?

Problem (26/26)

• How do Teichmüller rays behave in the Gardiner-Masur clusure?

Y. Iguchi will give a behavior of some Teichmüller ray in the poster session.

Problem (26/26)

• How do Teichmüller rays behave in the Gardiner-Masur clusure?

Y. Iguchi will give a behavior of some Teichmüller ray in the poster session.

• What are geometric objects representing points of  $\partial_{GM}T(X)$ ?

Problem (26/26)

• How do Teichmüller rays behave in the Gardiner-Masur clusure?

Y. Iguchi will give a behavior of some Teichmüller ray in the poster session.

• What are geometric objects representing points of  $\partial_{GM}T(X)$ ? In the case of Thurston boundary, boundary points correspond to measured foliations (nice geometric objects!!).

۲

L Thank you

└-very much (\*\*/∞)

• How do Teichmüller rays behave in the Gardiner-Masur clusure?

Y. Iguchi will give a behavior of some Teichmüller ray in the poster session.

- What are geometric objects representing points of  $\partial_{GM}T(X)$ ? In the case of Thurston boundary, boundary points correspond to measured foliations (nice geometric objects!!).
- Thank you very much for your attention.