Moduli spaces of hyperbolic surfaces with cone angles.
IMS Singapore, July 2010.
Paul Norbury
Melbourne

Summary.

- Define moduli spaces of hyperbolic surfaces with cone angles.
- These are equipped with symplectic forms and hence have welldefined volumes depending on the cone angles.
- Mirzakhani proved that volumes of moduli spaces of hyperbolic surfaces with geodesic boundary lengths are polynomial in the lengths.
- The volume polynomial analytically continues to give volumes of moduli spaces of hyperbolic surfaces with small cone angles.
- Question: how are Mirzakhani's volume polynomials related to the volumes of moduli spaces of hyperbolic surfaces with large cone angles?
$\mathcal{M}_{g, n}\left(L_{1}, \ldots, L_{n}\right)=$ moduli space of oriented hyperbolic surfaces with length L_{i} geodesic boundary components.

Model of a neighbourhood of a length L closed geodesic

Generalise $L^{2}>0$ to $L^{2} \in \mathbb{R}$.

$$
L^{2}>0-\text { closed geodesic, } \quad L^{2}=0 \quad \text { cusp, } g_{L}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

$L^{2}<0$ - cone angle, g_{L} rotation by ϕ for $L=i \phi$
$\mathcal{M}_{g, n}\left(L_{1}, \ldots, L_{n}\right)=$ moduli space of oriented hyperbolic surfaces with geodesic boundary components, cusps and cone angles corresponding to $L_{j}=i \phi_{j}$.

Different behaviours

- all $L_{j}=0$ (cusps)
- all $L_{j}=i \phi_{j}, 0 \leq \phi_{j}<2 \pi$
- $L_{j}>0$ or $L_{j}=i \phi_{j}, \phi_{j}<\pi$

Arc lengths $\left\{a_{i}\right\}$ give (generalised) Penner coordinates.

Poisson structure on $\mathcal{M}_{g, n}(\cdot, \ldots, \cdot)$.

$$
\begin{aligned}
& \eta_{W P}=\sum_{j=1}^{n} \sum_{k, l} \frac{\sinh \left(\alpha_{j, k l} L_{j} / 2\right)}{\sinh \left(L_{j} / 2\right)} \frac{\partial}{\partial a_{k}} \wedge \frac{\partial}{\partial a_{l}} \quad \text { (Mondello) } \\
& \alpha_{j, k l}=1-2 \times \text { (fraction of rotation around } L_{j} \text { between arcs) }
\end{aligned}
$$

$\eta_{W P}$ is degenerate non-degenerate on $L_{j}=$ constant
$\omega_{W P}$ dual Weil-Petersson symplectic form

$$
V_{g, n}\left(L_{1}, \ldots, L_{n}\right)=\int_{\mathcal{M}_{g, n}\left(L_{1}, \ldots, L_{n}\right)} \frac{\omega_{W P}^{3 g-3+n}}{(3 g-3+n)!}
$$

Theorem (Mirzakhani) $V_{g, n}\left(L_{1}, \ldots, L_{n}\right)$ is polynomial in L_{i}^{2}.

Uses a McShane identity.
True for $L_{j} \geq 0, L_{j}=i \phi_{j}, \phi_{j} \leq \pi$. (Tan-Wong-Zhang)
Q. How is $V_{g, n}\left(L_{1}, \ldots, L_{n}\right)$ related to the volume of the moduli space for cone angles $>\pi$?

Example. $V_{0,4}\left(L_{1}, \ldots, L_{4}\right)=\frac{1}{2}\left(L_{1}^{2}+L_{2}^{2}+L_{3}^{2}+L_{4}^{2}+4 \pi^{2}\right)$ does not give the volume for large enough angles.

Guess: the polynomial gives the volume when there is only one cone angle ($<2 \pi$.)

Theorem (Norman Do, N.)
(1) $V_{g, n+1}\left(L_{1}, \ldots, L_{n}, 2 \pi i\right)=\sum_{k=1}^{n} \int_{0}^{L_{k}} L_{k} V_{g, n}\left(L_{1}, \ldots, L_{n}\right) d L_{k}$
(2) $\frac{\partial V_{g, n+1}}{\partial L_{n+1}}\left(L_{1}, \ldots, L_{n}, 2 \pi i\right)=2 \pi i(2 g-2+n) V_{g, n}\left(L_{1}, \ldots, L_{n}\right)$

For $0 \leq \phi_{j}<2 \pi$ there exists a forgetful map

$$
\mathcal{M}_{g, n+1}\left(i \phi_{1}, \ldots, i \phi_{n}, i \phi_{n+1}\right) \rightarrow \mathcal{M}_{g, n}\left(i \phi_{1}, \ldots, i \phi_{n}\right) .
$$

As $\phi_{n+1} \rightarrow 2 \pi$ the Kähler metric degenerates along fibres and tends to the pull-back of the Kähler metric downstairs. (Schumacher-Trapani)

Specialise (1) to

$$
\begin{equation*}
V_{g, n+1}(0, \ldots, 0,2 \pi i)=0 \tag{3}
\end{equation*}
$$

Study the degeneration as $\phi_{n+1} \rightarrow 2 \pi$.

$$
\sin \frac{\phi_{n+1}}{2} \cdot \eta_{W P} \rightarrow \sum_{k, l} \sin \left(\phi_{n+1, k l}\right) \frac{\partial}{\partial a_{k}} \wedge \frac{\partial}{\partial a_{l}}
$$

Elementary geometry.

$$
\left\{a_{i}, a_{j}\right\}=\sin \phi_{i j}
$$

Lengths a_{i} are functions on the hyperbolic surface. Hyperbolic metric (Kähler) gives Poisson structure $\eta_{\text {hyp }}$.

The uniform convergence

$$
\sin \frac{\phi}{2} \cdot \eta_{W P} \rightarrow \eta_{h y p}
$$

almost gives (3) and (2).

Idea

$$
\omega_{W P, g, n+1} \sim \omega_{W P, g, n}+\sin \frac{\phi}{2} \cdot \omega_{h y p}
$$

For $N=3 g-3+n$,

$$
\frac{\omega_{W P, g, n+1}^{N+1}}{(N+1)!} \sim(N+1) \frac{\omega_{W P, g, n}^{N}}{(N+1)!} \cdot \sin \frac{\phi}{2} \cdot \omega_{h y p}
$$

which should integrate to give

$$
\operatorname{Vol}_{g, n+1} \sim 4 \pi(2 g-2+n) \sin \frac{\phi}{2} \cdot \operatorname{Vol}_{g, n}\left(L_{1}, \ldots, L_{n}\right)
$$

Eynard and Orantin also (rigorously) prove (1) and (2).

- A model / B model mirror picture
- A model side: $V_{g, n}\left(L_{1}, \ldots, L_{n}\right)$-generating function for GromovWitten invariants with Kähler parameters as variables.
- B model side: Laplace transform of $V_{g, n}\left(L_{1}, \ldots, L_{n}\right)$
- Underlying the B model is a Riemann surface Σ equipped with a meromorphic 1-form θ and a map $\Sigma \rightarrow S^{2}$.
- B model is concerned with variations of periods of θ.
- Equations (1) and (2) are special cases of general properties of the B model.

