
Moduli spaces of hyperbolic surfaces with cone angles.

IMS Singapore, July 2010.

Paul Norbury

Melbourne

1



Summary.

• Define moduli spaces of hyperbolic surfaces with cone angles.

• These are equipped with symplectic forms and hence have well-

defined volumes depending on the cone angles.

• Mirzakhani proved that volumes of moduli spaces of hyperbolic

surfaces with geodesic boundary lengths are polynomial in the

lengths.

• The volume polynomial analytically continues to give volumes of

moduli spaces of hyperbolic surfaces with small cone angles.

• Question: how are Mirzakhani’s volume polynomials related to

the volumes of moduli spaces of hyperbolic surfaces with large

cone angles?



Mg,n(L1, ..., Ln) = moduli space of oriented hyperbolic surfaces with

length Li geodesic boundary components.
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Generalise L2 > 0 to L2 ∈ R.

L2 > 0—closed geodesic, L2 = 0—cusp, gL =





1 1

0 1





L2 < 0—cone angle, gL rotation by φ for L = iφ



Mg,n(L1, ..., Ln)= moduli space of oriented hyperbolic surfaces with

geodesic boundary components, cusps and cone angles corresponding

to Lj = iφj.

Different behaviours

• all Lj = 0 (cusps)

• all Lj = iφj, 0 ≤ φj < 2π

• Lj > 0 or Lj = iφj, φj < π

Arc lengths {ai} give (generalised) Penner coordinates.
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Poisson structure on Mg,n( · , ..., · ).

ηWP =
n

∑

j=1

∑

k,l

sinh(αj,klLj/2)

sinh(Lj/2)

∂

∂ak
∧ ∂

∂al
(Mondello)

αj,kl = 1 − 2×(fraction of rotation around Lj between arcs)

ηWP is degenerate—non-degenerate on Lj = constant

ωWP dual Weil-Petersson symplectic form

Vg,n(L1, ..., Ln) =

∫

Mg,n(L1,...,Ln)

ω3g−3+n
WP

(3g − 3 + n)!



Theorem (Mirzakhani) Vg,n(L1, ..., Ln) is polynomial in L2
i .

Uses a McShane identity.

True for Lj ≥ 0, Lj = iφj, φj ≤ π. (Tan-Wong-Zhang)

Q. How is Vg,n(L1, ..., Ln) related to the volume of the moduli space

for cone angles > π?

Example. V0,4(L1, ..., L4) = 1
2(L

2
1 + L2

2 + L2
3 + L2

4 + 4π2)

does not give the volume for large enough angles.

Guess: the polynomial gives the volume when there is only

one cone angle (< 2π.)



Theorem (Norman Do, N.)

(1) Vg,n+1(L1, ..., Ln, 2πi) =
n

∑

k=1

∫ Lk

0

LkVg,n(L1, ..., Ln)dLk

(2)
∂Vg,n+1

∂Ln+1
(L1, ..., Ln, 2πi) = 2πi(2g − 2 + n)Vg,n(L1, ..., Ln)

For 0 ≤ φj < 2π there exists a forgetful map

Mg,n+1(iφ1, ..., iφn, iφn+1) → Mg,n(iφ1, ..., iφn).

As φn+1 → 2π the Kähler metric degenerates along fibres and tends to

the pull-back of the Kähler metric downstairs. (Schumacher-Trapani)

Specialise (1) to

(3) Vg,n+1(0, ..., 0, 2πi) = 0.



Study the degeneration as φn+1 → 2π.

sin
φn+1

2
· ηWP →

∑

k,l

sin(φn+1,kl)
∂

∂ak
∧ ∂

∂al
.

Elementary geometry.
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{ai, aj} = sin φij

Lengths ai are functions on the hyperbolic surface. Hyperbolic metric

(Kähler) gives Poisson structure ηhyp.



The uniform convergence

sin
φ

2
· ηWP → ηhyp

almost gives (3) and (2).

Idea

ωWP,g,n+1 ∼ ωWP,g,n + sin
φ

2
· ωhyp

For N = 3g − 3 + n,

ωN+1
WP,g,n+1

(N + 1)!
∼ (N + 1)

ωN
WP,g,n

(N + 1)!
· sin

φ

2
· ωhyp

which should integrate to give

Volg,n+1 ∼ 4π(2g − 2 + n) sin
φ

2
· Volg,n(L1, ..., Ln).



Eynard and Orantin also (rigorously) prove (1) and (2).

• A model / B model mirror picture

• A model side: Vg,n(L1, ..., Ln)—generating function for Gromov-

Witten invariants with Kähler parameters as variables.

• B model side: Laplace transform of Vg,n(L1, ..., Ln)

– Underlying the B model is a Riemann surface Σ equipped with

a meromorphic 1-form θ and a map Σ → S2.

– B model is concerned with variations of periods of θ.

– Equations (1) and (2) are special cases of general properties of

the B model.


