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Margulis numbers

M a hyperbolic n-manifold

Write M = Hn/Γ

Γ ≤ Isom(Hn) discrete, torsion-free, uniquely determined up to
conjugacy by the hyerbolic structure of M

I’ll always assume Γ is non-elementary (i.e. has no abelian
subgroup of finite index)

Definition

A Margulis number for M (or for Γ) is a µ > 0 such that: If
P ∈ Hn, the elements x ∈ Γ such that d(P, x · P) < µ generate an
elementary subgroup.

Here d denotes hyperbolic distance on Hn.



Margulis numbers, cont’d

If M is closed, or 2-dimensional, or 3-dimensional and orientable, all
elementary subgroups of Γ are abelian. Thus the condition in the
definition of a Margulis number becomes: If P ∈ Hn, x , y ∈ Γ,
and max(d(P, x · P), d(P, y · P)) < µ, then x and y commute.



Margulis constants

The Margulis Lemma implies that for every n ≥ 2 there is a
positive constant which is a Margulis number for every hyperbolic
n-manifold. The largest such number, µ(n), is called the Margulis
constant for hyperbolic n-manifolds.

It is known that

• µ(3) ≥ 0.104 . . . (Meyerhoff)

• µ(3) ≤ 0.65 . . . (Culler)

For every n ≥ 2, Kellerhals has shown that

µ(n) ≥ 2ν+1

3ν+1πν
Γ(ν+2

2 )2

Γ(ν + 2)
,

where ν = [n−1
2 ].



Margulis numbers and geometry

Suppose M3 is hyperbolic and (for simplicity) closed and
orientable.

A Margulis number µ for M determines a canonical decomposition
of M into a µ-thin part, consisting of tubes around closed
geodesics, and a µ-thick part, a 3-manifold with torus boundary
components, consisting of points where the injectivity radius is at
least µ/2.

There are only finitely many topological possibilities for the µ-thick
part of M given an upper bound on the volume of M.
Topologically, M is obtained by a Dehn filling from its µ-thick part.

This makes estimation of the maximal Margulis number for M a
crucial step in understanding the geometric structure of M. The
larger µ is, the fewer possibilities there are for the µ-thick part.



A topological theorem

Theorem (Jaco-S.)

Let M be a hyperbolic 3-manifold (possibly with cusps and
possibly of infinite volume). Let J ≤ π1(M) be a subgroup of rank
at most two which has infinite index in π1(M). Then J is either an
abelian group or a free group of rank 2.

This is a topology theorem. The proof uses the compact core
theorem and a characterization of free groups due to Magnus.



The log(2k − 1) Theorem

Theorem (Anderson-Canary-Culler-S. + Marden Conjecture
(Agol and Calegari-Gabai) + Bers Density Conjecture
(Bromberg et al.))

Let k ≥ 2 be an integer and let F be a discrete subgroup of
Isom+(H3) = PSL2(C) which is freely generated by elements
ξ1, . . . , ξk . Let P be any point of H3 and set di = dist(P, ξi · P)
for i = 1, . . . , k. Then we have

k∑
i=1

1

1 + edi
≤ 1

2
.

In particular there is some i ∈ {1, . . . , k} such that
di ≥ log(2k − 1).

(Note the curious similarity to McShane’s identity.)



The log(2k − 1) theorem, cont’d

The proof of the log(2k − 1) theorem involves the construction of
the Patterson-Sullivan measure, the Banach-Tarski decomposition
of a free group, and deep results from the theory of Kleinian
groups.

The log 3 theorem and the result of J-S stated immediately imply:

• log 3 = 1.09 . . . is a Margulis number for any closed,
orientable hyperbolic 3-manifold M such that every subgroup
of rank at most 2 in π1(M) has infinite index. In particular
this holds if H1(M; Q) has rank at least 3, or if H1(M; Zp) has
rank at least 4 for some prime p (S.-Wagreich).



Haken manifolds

A compact, orientable, irreducible (e.g. hyperbolic) 3-manifold M
is called a Haken manifold if it contains a properly embedded
orientable surface S which is incompressible in the sense that (i) S
is not a 2-sphere and (ii) the inclusion homomorphism
π1(S)→ π1(M) is injective.

Theorem (Culler-S.)

Let M be a hyperbolic 3-manifold which is homeomorphic to the
interior of a Haken manifold. (In particular M may be a closed
Haken manifold.) Then 0.286 is a Margulis number for M. If
H1(M; Q) 6= 0, then 0.292 is a Margulis number for M.

One novel feature of the proof of this result is that it involves a
decomposition of the Patterson-Sullivan measure for groups that
are not necessarily free.



Generic Margulis numbers

Theorem (S.)

Up to isometry there are at most finitely many closed, orientable
hyperbolic 3-manifolds for which 0.292 is not a Margulis number.

This may be expressed as saying that 0.292 is a “generic Margulis
number” for closed hyperbolic 3-manifolds.

This theorem is deduced from the above result about Haken
manifolds by the use of the representation variety of a
two-generator free group. I will being giving a similar argument in
detail a little later.



Margulis Numbers and Volume Bounds, I

Theorem A (S.)

Let λ be a positive real number strictly less than log 3. Then there
is a constant Vλ such that every closed, orientable hyperbolic
3-manifold of volume greater than Vλ admits λ as a Margulis
number.

Corollary

Let λ be a positive real number strictly less than log 3. Then there
is a there is a natural number dλ such that for every closed,
orientable hyperbolic 3-manifold M, either π1(M) has a rank-2
subgroup of index at most dλ, or M admits λ as a Margulis
number.



Margulis Numbers and Volume Bounds, I, cont’d

Corollary

Let λ be a positive real number strictly less than log 3. Then there
is a there is a natural number kλ such that every closed, orientable
hyperbolic 3-manifold whose fundamental group has rank greater
than kλ admits λ as a Margulis number.



Margulis Numbers and Volume Bounds, II
Given λ with 0 < λ < (log 3)/2

For a large enough integer N > 0 we have

3N+1 − 1

4N + 1
≥ 2667(sinh(2Nλ+ .104)− (2Nλ+ .104)).

Let N(λ) denote the smallest such positive integer N.

As λ→ (log 3)/2 from below, N(λ) grows a little faster than
1/((log 3)− 2λ).

Theorem B (S.)

Let λ be a positive real number strictly less than (log 3)/2. Then
every closed, orientable hyperbolic 3-manifold M with

vol M > λ · (8N(λ)− 2)

admits λ as a Margulis number.



Margulis Numbers and Volume Bounds, II, cont’d

Let V0 = 0.94 . . . denote the volume of the Weeks manifold.

Corollary

Let λ be a positive real number strictly less than (log 3)/2. Then
for every closed, orientable hyperbolic 3-manifold M, either π1(M)
has a rank-2 subgroup of index at most λ · (8N(λ)− 2)/V0, or M
admits λ as a Margulis number.

Corollary

Let λ be a positive real number strictly less than (log 3)/2. Then
every closed, orientable hyperbolic 3-manifold M with

rankπ1(M) > 2 + log2(λ · (8N(λ)− 2)/V0)

admits λ as a Margulis number.



Margulis Numbers and Trace Fields

Theorem (S.)

Let K be any number field, and let D denote its degree. The
number of (isometry classes of) closed, non-arithmetic hyperbolic
3-manifolds which are Z6-homology 3-spheres, have trace field K ,
and do not admit 0.183 as a Margulis number is at most
141× 224(D+1).

(Recall that by result about “generic Margulis numbers” that I
mentioned earlier, there are at most finitely many closed,
orientable hyperbolic 3-manifolds (up to isometry) for which 0.292
is not a Margulis number.)

The proof of the theorem stated above depends on the log 3
theorem, the algebra of congruence subgroups, Beukers and
Schlickewei’s explicit form of Siegel and Mahler’s finiteness
theorem for solutions to the unit equation in number fields, and
Theorem B.



Proof of Theorem A
Recall the statement:

Theorem A (S.)

Let λ be a positive real number strictly less than log 3. Then there
is a constant Vλ such that every closed, orientable hyperbolic
3-manifold of volume greater than Vλ admits λ as a Margulis
number.

We reason by contradiction. Assume there is a sequence (Mi )i≥1

of closed, orientable hyperbolic 3-manifolds such that vol Mi →∞
and no Mi admits λ as a Margulis number.

For each i write Mi = H3/Γ(i) for some torsion-free cocompact
discrete subgroup Γ(i) of Isom+(H3). Then, by definition, for each
i there exist non-commuting elements xi , yi ∈ Γ(i) and a point
Pi ∈ H3 such that

max(d(Pi , xi · Pi ), d(Pi , yi · Pi )) < λ.



Proof of Theorem A, cont’d
After replacing each Γi by a suitable conjugate of itself in
Isom+(H3), we may assume that the Pi are all the same point of
H3, which I will denote by P. Thus for each i we have

max(d(P, xi · P), d(P, yi · P)) < λ. (1)

Since λ < log 3, the log 3 Theorem implies that Γ̃i := 〈xi , yi 〉 is not
free. By the result of Jaco-S. I mentioned earlier, Γ̃i has finite
index in Γi . So M̃i := H3/Γ̃i is a closed hyperbolic 3-manifold, and
vol M̃i ≥ vol Mi . In particular, vol M̃i →∞.

For each i we define a representation ρi of the rank-2 free group
F2 = 〈ξ, η〉 by ρi (ξ) = xi , ρi (η) = yi . It follows from (1) that the
ρi lie in a compact subset of the representation variety
R = Hom(F2,PSL2(C)). Hence after passing to a subsequence we
may assume the sequence (ρi ) converges, say to ρ∞. Set
x∞ = ρ∞(ξ), y∞ = ρ∞(η). By (1) we have

max(d(P, x∞ · P), d(P, y∞ · P)) ≤ λ. (2)



Proof of Theorem A, cont’d

A theorem due to T. Jorgensen and P. Klein implies that the set D
of representations of F2 with discrete, torsion-free, non-elementary
image is closed in R. Hence ρ∞ ∈ D.

Let Φ denote the subset of D consisting of those discrete
torsion-free representations whose images have finite covolume. It
is well known that the function ρ 7→ vol(H3)/ρ(F2) is continuous
on Φ. If ρ∞ ∈ Φ, it follows that

vol(H3)/ρi (F2)→ vol(H3)/ρ∞(F2),

a contradiction since

vol(H3)/ρi (F2) = vol(H3)/Γi →∞.



Proof of Theorem A, concluded

If ρ∞ /∈ Φ, so that M∞ = H3/ρ∞(F2) has infinite volume, the
proof of the Jaco-S. result shows that
π1(M∞) ∼= ρ∞(F2) = 〈x∞, y∞〉 is free of rank 2. The log 3
Theorem then gives

max(d(P, x∞ · P), d(P, y∞ · P)) ≥ log 3,

a contradiction to (2).



Proof of Theorem B

Recall the statement:

Theorem B (S.)

Let λ be a positive real number strictly less than (log 3)/2. Then
every closed, orientable hyperbolic 3-manifold M with

vol M > λ · (8N(λ)− 2)

admits λ as a Margulis number.



Proof of Theorem B, cont’d
It follows formally from two propositions:

Proposition 1

Let M = H3/Γ be a closed, orientable, hyperbolic 3-manifold, let
λ < (log 3)/2 be given, and let x and y be non-commuting
elements of Γ such that max(d(P, x · P), d(P, y · P)) < λ for
i = 1, 2. Then there is a reduced word W in two letters, with
0 < length W ≤ 8N(λ), such that W (x , y) = 1. Furthermore,
〈x , y〉 has finite index in Γ.

Proposition 2

Let (M̃, ?) be a based closed, orientable, hyperbolic 3-manifold
such that π1(M̃, ?) is generated by two elements x and y. Let
λ > 0 be given, and suppose that x and y are represented by
closed loops of length < λ based at ?. Let W be a non-trivial
reduced word in two letters such that W (x , y) = 1. Then

vol M̃ < (length(W )− 2) min(π, λ).



Proof of Proposition 1

Set µ = 0.104 < µ(3). Set N = N(λ).

The elements γ ∈ Γ such that d(γ · P,P) < µ generate a cyclic
subgroup C of Γ (trivial or cyclic)

First look at the case C trivial. In this case I’ll show there is a
reduced word W in two letters, with 0 < length W ≤ 2N, such
that W (x , y) = 1.

Suppose no such W exists. Then for distinct reduced words V , V ′

of length at most N we have V (x , y) 6= V ′(x , y). Since C = {1} it
follows that d(V (x , y) · P,V ′(x , y) · P) ≥ µ. So if B denotes the
(open) ball of radius µ/2 about P, the balls V (x , y) · B, where V
ranges over reduced words of length at most N, are pairwise
disjoint.



The case where C is trivial, cont’d

There are 2(3N+1 − 1) reduced words of length at most N

If V is such a word, the ball V (x , y) · B has volume
β := vol B = 0.000589 . . . and is contained in the ball of radius
Nλ+ (µ/2) about P, which has volume
π(sinh(2Nλ+ µ)− (2Nλ+ µ)). So

2(3N+1 − 1)β < π(sinh(2Nλ+ µ)− (2Nλ+ µ)),

which is a contradiction, because the definition of N = N(λ)
implies that

2(3N+1 − 1)

4N + 1
>
π

β
(sinh(2Nλ+ µ)− (2Nλ+ µ)).



The case where C is infinite cyclic

In this case I’ll show there is a reduced word W in two letters, with
0 < length W ≤ 8N, such that W (x , y) = 1. Suppose no such W
exists.

Let V , V ′ be reduced words of length at most N. If V (x , y) and
V ′(x , y) represent distinct cosets of C we have

d(V (x , y) · P,V ′(x , y) · P) ≥ µ,

so the balls V (x , y) · B and V ′(x , y) · B are disjoint. I claim there
are at most 4N + 1 reduced words of length at most N
representing a given coset. This will imply that

2(3N+1 − 1)β

4N + 1
< sinh(2Nλ+ µ)− (2Nλ+ µ)

which still contradicts the definition of N = N(λ).



Proof of the Claim

We must show there are at most 4N + 1 reduced words of length
at most N representing a given coset of C . If V and V ′ are
distinct reduced words of length at most N representing the same
coset, then U = V−1V ′ is equal in the rank-2 free group F2 to a
non-trivial reduced word of length at most 2N, and U(x , y) ∈ C .
So we may assume there is at least one non-trivial reduced word
U0 of length at most 2N such that U0(x , y) ∈ C . Let Ĉ denote
the maximal cyclic subgroup of F2 that contains U0.

Suppose that a given coset of C in Γ is represented by an element
V1(x , y), where V1 is a reduced word of length at most N. If V is
any reduced word of length at most N, such that V (x , y) belongs
to the coset V1(x , y)C , then U := V−1V1 is a word of length 2N
and U(x , y) ∈ C . Since C is abelian, the word W := UU0U−1U−1

0

satisfies W (x , y) = 1. Since W has length at most 8N, our
assumption implies that W represents the identity element of F2.
Hence U ∈ Ĉ .



Proof of the Claim, concluded

Thus V 7→ V−1V1 is an injection from the set of reduced words of
length at most N representing elements of the coset V1(x , y)C to
the set of elements of Ĉ represented by words of length at most
2N. Since Ĉ is cyclic there are at most 4N + 1 such elements.



Proof of Proposition 2
The basic method is due to Cooper.

Recall the statement (in slightly changed notation):

Proposition 2

Let (M, ?) be a based closed, orientable, hyperbolic 3-manifold
such that π1(M, ?) is generated by two elements x and y. Let
λ > 0 be given, and suppose that x and y are represented by
closed loops of length < λ based at ?. Let W be a non-trivial
reduced word in two letters such that W (x , y) = 1. Then

vol M < (length(W )− 2) min(π, λ).

We have a surjection from the one-relator group F2/〈〈W 〉〉 to
π1(M, ?) which takes the generators to x and y . We realize it by a
map f : K → M, where K is a complex with one vertex, two
1-cells and one 2-cell. Each 1-cell maps to a loop which is geodesic
except at the base point, and has length < λ.



Proof of Proposition 2, cont’d

We subdivide the 2-cell into combinatorial triangles, each of which
has all its vertices at the original 0-cell. This introduces new edges
but no new vertices, and each triangle has at least one side in the
original 1-skeleton. After a homotopy we may assume that each
open edge of the subdivided complex maps onto a geodesic path,
and that each open triangle maps onto a (possibly singular) totally
geodesic triangle in M. For simplicity I’ll assume f is in general
position, i.e. has at most one-dimensional self-intersections.

The area of a hyperbolic triangle is less than min(π, l), where l is
the length of the shortest side. Since K contains length(W )− 2
combinatorial triangles, it follows that

area f (K ) < (length(W )− 2) min(π, λ).

Hence it suffices to prove that vol M < area f (K ). This will follow
from two lemmas.



A topological lemma

Topological Lemma (S.)

Let M be a closed, orientable 3-manifold, let K be a connected
2-complex whose fundamental group has rank 2 but is not a rank-2
free group, and let f : K → M be a continuous map such that
f] : π1(K )→ π1(M) is surjective. Then for each component C of
M − f (K ), the inclusion homomorphism π1(C )→ π1(M) has
cyclic image.

The proof uses the result due to Jaco-S. that I mentioned earlier,
and the characteristic submanifold theory.



An isoperimetric lemma; proof of Prop. 2 concluded
Isoperimetric Lemma (Agol-Liu)

Let M be a hyperbolic 3-manifold and let C be a precompact
subset of M such that the frontier F of M is piecewise smooth.
Suppose that the inclusion homomorphism π1(C )→ π1(M) has
abelian image. Then

vol C <
1

2
area F .

In the notation of the proof of Proposition 2, these two lemmas
imply that if C is any component of M − f (K ) and FC denotes its
frontier, we have vol C < 1

2 area FC . Summing over the
components of M − f (K ), we find that

vol M =
∑
C

vol C <
1

2

∑
C

area FC = area f (K ),

as required.


