Top terms of polynomial traces in Kra's plumbing construction.

July 2, 2010

(Joint work with Caroline Series)

Given a surface Σ , Kra's plumbing construction endows Σ with a projective structure for which the associated holonomy representation ρ depends on the 'plumbing parameters' $\tau_i \in \mathbb{C}$. In particular, the trace $\operatorname{Tr}(\rho(\gamma))$, $\gamma \in \pi_1(\Sigma)$, is a polynomial in the τ_i . Our result is a description of the two highest order terms of this polynomial. After reviewing the definition of the Dehn-Thurston coordinates for simple closed curves and of Kra's construction, explain our combinatorial proof of the trace formula.