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1 Integer Solutions of Some Diophantine Equations

1.1 The Markoff equation

The Markoff equation
x2 + y2 + z2 = 3xyz (1)

admits infinitely many positive integer solutions: (x, y, z) = (1, 1, 1), (1, 1, 2), (1, 2, 5),

(1, 5, 13), (2, 5, 29), (1, 13, 34), (5, 13, 194), (25, 29, 433),..., etc.

Let Γ1,1 be the group generated by the rational transformations:

ω1(x, y, z) = (z, y,
y2 + z2

x
), ω2(x, y, z) = (x, z,

x2 + z2

y
).

Then all positive integer solutions of (1) are in the Γ1,1-orbit of (1, 1, 1) (A. A. Markoff).

Note that ω1(x, y, z) = (z, y, 3yz − x),ω2(x, y, z) = (x, z, 3xz − y) for (x, y, z) satisfying (1).
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1.2 Other examples

The equation

x1x4(x2
2 + x2

3 + x2
5) + x2x3(x2

1 + x2
4 + x2

5) = 6x1x2x3x4x5 (2)

admits infinitely many positive integer solutions: (x1, x2, x3, x4, x5) = (1, 1, 1, 1, 1),

(1, 1, 1, 1, 2), (1, 5, 1, 1, 3), (29, 1, 1, 5, 2), (578, 2, 1, 53, 9), (85, 2, 578, 6305, 6860), ..., etc.

Let Γ1,2 be the group generated by the rational transformations:

ω1(x1, x2, x3, x4, x5) = (x4, x2, x3,
x2

4 + x2
5

x1
, x5),

ω2(x1, x2, x3, x4, x5) = (x4, x1, x2, x3,
x1x3 + x2x4

x5
)

ω3(x1, x2, x3, x4, x5) = (x1,
x2

2 + x2
5

x3
, x2, x4, x5)

If (x1, x2, x3, x4, x5) is in the Γ1,2-orbit of (1, 1, 1, 1, 1), then it is a positive integer solution

of (2).
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Note that ω1, ω3, even if they are restricted to the locus of (2), are not polynomial

mappings with integer coefficients. For example

ω1(x1, x2, x3, x4, x5) = (x4, x2, x3, 6x4x5 −
x4(x2

2 + x2
3 + x2

5)
x2x3

− x1, x5).

So the fact that Γ1,2(1, 1, 1, 1, 1) are integer solutions is not trivial at this moment.

The following equation is a variant of (2).

x1x4(x2
2 + x2

3 + x2
5) + x2x3(x2

1 + x2
4 + x2

5) = 14x1x2x3x4x5. (3)

If (x1, x2, x3, x4, x5) is in the Γ1,2-orbit of (
√

2 + 1,
√

2 − 1,
√

2 + 1,
√

2 − 1, 1), then it is a

solution of (3) in the ring of integers of the quadratc field Q(
√

2).
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The equation

18x1x2x3x4x5x6x7x8x9 = x4x5x6x7x8x9(x2
1 + x2

2 + x2
3) + x1x5x6x7x8x9(x2

2 + x2
3 + x2

4)
+x2x3x5x6x7x8(x2

1 + x2
4 + x2

9) + x1x2x3x4x6x7(x2
5 + x2

8 + x2
9)

+x1x2x3x4x7x8(x2
5 + x2

6 + x2
7) + x1x2x3x4x5x9(x2

6 + x2
7 + x2

8)

admits infinitely many positive integer solutions: (1, 1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 3, 2, 1, 1, 11, 1),

(4, 22, 10, 2384, 691, 28, 25, 1, 468), (36, 22, 134, 31752, 691, 28, 25, 1, 468),..., etc.

These solutions are found in the orbit of (1, 1, 1, 1, 1, 1, 1, 1) under a group Γ2,1 of rational

transformations. But some of the generators of this group are terribly lengthy to write down.
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2 Penner’s coordinate-system for the Teichmüller space of a

punctured surface

Let F = Fg,n be an oriented surface of genus g with n punctures, n ≥ 1 and 2g−2+n > 0,

and Tg,n denote the Teichmüller space of hyperbolic structures on F with finite area.

Let ∆ = (c1, c2, ..., cD) be an ideal triangulation of F , where D = 6g − 6 + 3n.
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R.C. Penner introduced a coordinate-system, or a real-analytic embedding

λ∆ : Tg,n → RD.

Features of Penner’s coordinates or λ length coordinates (see Remark 2 in Section 4.1)

are:

1. λ∆(Tg,n) is contained in an affine algebraic variety defined by n polynomials.

2. For two ideal triangulations ∆ and ∆′, the coordinate change

Tg,n
λ∆−−−−→ λ∆(T ) ⊂ RDyid

yλ∆′◦λ−1
∆

Tg,n
λ∆′−−−−→ λ∆′(T ) ⊂ RD

extends to a rational transformation of RD

3. (Corollary to 2) Let MCg,n denote the mapping class group of F . The correspondence

φ 7→ φ∗ = λϕ−1(∆) ◦ λ−1
∆

gives an isomorphism of MCg,n to a group of rational transformations in RD.
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Remarks

(1) It is easy to obtain the polynomials in the statement 1 (such as the Markoff polynomial

for the case of once punctured torus). For the case of once punctured surface, all points

in λ∆(Tg,1) satisfy ∑
T

(
λa

λbλc
+

λb

λcλa
+

λc

λaλb

)
− 1 = 0,

where a, b, c are edges of a triangle T in ∆ and the sum is taken over all triangles T

in ∆. To obtain a polynomial we multiply the left hand side by
∏

c∈∆ λc.

(2) The groups Γ1,1 and Γ1,2 in Section 1 are the rational representations of MC1,1 and

MC1,2, respectively.
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3 Integer Solutions of Some Diophantine Equations: revisited

Let MCg,1 be the mapping class group of the once punctured surface of genus g(> 1).

The rational transformation ϕ∗ for ϕ ∈ MCg,1 in Penner’s coordinates has the form

ϕ∗(λ1, ..., λd+1) =

(
· · · ,

Pk(λ1, ..., λd+1)
λa1

1 · · ·λad+1
d+1

, · · ·

)
k=1,...,d+1

(4)

where d = 6g − 4 = dim Tg,1, and in the k-th entry Pk(λ1, ..., λd+1) is a homogeneous

polynomial with positive integer coefficients with degree a1 + · · · + ad+1 + 1 and

ai = the geometric intersection number of ϕ−1(ck) and ci.
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The Penner coordinates send Tg,1 to an algebraic variety defined by a single polynomial

Π(λ1, ..., λd+1) in Rd+1 (⊂ Cd+1) (see Remark 1 in Section 2).

It is possible to multiply (λ1, ..., λd+1) by a suitable constant so that Π(λ1, ..., λd+1) = 0

admits a solution (x1, x2, ..., xd+1) with entries in the set of the units in the ring of integers

of a number field K.

By the definition of ϕ∗ and (4)

(1) For each mapping class ϕ ∈ MCg,1, ϕ∗ preserves the locus of Π(λ1, ..., λd+1) = 0.

(2) ϕ∗(x1, x2, ..., xd+1) is an integer solution in K.

Remark. The result as above can be generalized to the case of surfaces with more than

one puncture to some extent.

10



4 Complex-valued Penner’s coordinates

Let

Γ = π1(F ) = 〈a1, b1, ..., ag, bg, d1, ..., dn : (
g∏

k=1

akbka−1
k b−1

k )d1 · · · dn = 1〉.

and Rg,n denote the space of the classes of faithful representations

ρ : Γ → SL(2, C)

such that

ρ(dk) is parabolic and trρ(dk) = −2 for k = 1, 2, ..., n.
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4.1 Definition of complex λ-length

Let D = {z ∈ C : |z − 1/2| ≤ 1} − {0, 1} be a twice punctured disk which contains the

ideal arc c0(t) = t (0 < t < 1). Then

π1(D) = 〈γ1, γ2〉.

Let f : D → F be an immersion such that c = f ◦ c0 is an ideal arc. For [ρ] ∈ Rg,n, we have

two parabolic elements with trace −2: P1 = ρ(f∗γ1), P2 = ρ(f∗γ2).
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Then two parabolic P1 and P2 satisfy

(∗) trP1 = trP2 = −2, and P1 and P2 do not commute.

There is a Q ∈ SL(2, C) such that Q2 = −P1P2.

We define
λ(c, ρ) = trQ.

Remarks.

(1) λ(c, ρ) is defined uniquely up to sign.

(2) If ρ is a Fuchsian representation and λ(c, ρ) > 0, then λ(c, ρ) equals Penner’s λ-length

up to the constant factor
√

2.
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4.2 The ideal Ptolemy identity

We write
P1

Q−→ P2,

if the triple (P1, P2, Q) satisfies the condition (∗) and Q2 = −P1P2.

Consider the following diagrams:

‘

‘

Q′
5 = P1Q5P

−1
1 , Q′

6 = P4Q6P
−1
4 .
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Theorem 1 (the ideal Ptolemy identity)

trQ5trQ6 = (±)trQ1trQ3 + (±)trQ2trQ4, (5)

where the signs (±) depend on the signs of traces of Q1Q2Q5,..., Q1Q6Q4, which are neces-

sarily parabolic.

Remarks.

(i) The ideal Ptolemy identity proved by Penner is a result of the hyperbolic geometry.

(ii) The identity (5) can be obtained by basic trace relations trAtrB = trAB + trAB−1

and trA = trA−1 in SL(2, C).

The mapping class group MCg,n can be embedded in the Ptolemy groupoid (see Sec-

tion 7 of Penner’s paper [1]) and by this fact MCg,n is represented as a group of rational

transformations.
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