Penner's coordinate-system for a representation space of a punctured surface group and its applications

Toshihiro Nakanishi (Shimane University)

## 1 Integer Solutions of Some Diophantine Equations

### 1.1 The Markoff equation

The Markoff equation

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=3 x y z \tag{1}
\end{equation*}
$$

admits infinitely many positive integer solutions: $(x, y, z)=(1,1,1),(1,1,2),(1,2,5)$, $(1,5,13),(2,5,29),(1,13,34),(5,13,194),(25,29,433), \ldots$, etc.

Let $\Gamma_{1,1}$ be the group generated by the rational transformations:

$$
\omega_{1}(x, y, z)=\left(z, y, \frac{y^{2}+z^{2}}{x}\right), \quad \omega_{2}(x, y, z)=\left(x, z, \frac{x^{2}+z^{2}}{y}\right)
$$

Then all positive integer solutions of (1) are in the $\Gamma_{1,1}$-orbit of $(1,1,1)$ (A. A. Markoff). Note that $\omega_{1}(x, y, z)=(z, y, 3 y z-x), \omega_{2}(x, y, z)=(x, z, 3 x z-y)$ for $(x, y, z)$ satisfying (1).

### 1.2 Other examples

The equation

$$
\begin{equation*}
x_{1} x_{4}\left(x_{2}^{2}+x_{3}^{2}+x_{5}^{2}\right)+x_{2} x_{3}\left(x_{1}^{2}+x_{4}^{2}+x_{5}^{2}\right)=6 x_{1} x_{2} x_{3} x_{4} x_{5} \tag{2}
\end{equation*}
$$

admits infinitely many positive integer solutions: $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(1,1,1,1,1)$, $(1,1,1,1,2),(1,5,1,1,3),(29,1,1,5,2),(578,2,1,53,9),(85,2,578,6305,6860), \ldots$, etc.

Let $\Gamma_{1,2}$ be the group generated by the rational transformations:

$$
\begin{aligned}
& \omega_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{4}, x_{2}, x_{3}, \frac{x_{4}^{2}+x_{5}^{2}}{x_{1}}, x_{5}\right) \\
& \omega_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{4}, x_{1}, x_{2}, x_{3}, \frac{x_{1} x_{3}+x_{2} x_{4}}{x_{5}}\right) \\
& \omega_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{1}, \frac{x_{2}^{2}+x_{5}^{2}}{x_{3}}, x_{2}, x_{4}, x_{5}\right)
\end{aligned}
$$

If $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ is in the $\Gamma_{1,2}$-orbit of $(1,1,1,1,1)$, then it is a positive integer solution of (2).

Note that $\omega_{1}, \omega_{3}$, even if they are restricted to the locus of (2), are not polynomial mappings with integer coefficients. For example

$$
\omega_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{4}, x_{2}, x_{3}, 6 x_{4} x_{5}-\frac{x_{4}\left(x_{2}^{2}+x_{3}^{2}+x_{5}^{2}\right)}{x_{2} x_{3}}-x_{1}, x_{5}\right) .
$$

So the fact that $\Gamma_{1,2}(1,1,1,1,1)$ are integer solutions is not trivial at this moment.
The following equation is a variant of (2).

$$
\begin{equation*}
x_{1} x_{4}\left(x_{2}^{2}+x_{3}^{2}+x_{5}^{2}\right)+x_{2} x_{3}\left(x_{1}^{2}+x_{4}^{2}+x_{5}^{2}\right)=14 x_{1} x_{2} x_{3} x_{4} x_{5} . \tag{3}
\end{equation*}
$$

If $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ is in the $\Gamma_{1,2}$-orbit of $(\sqrt{2}+1, \sqrt{2}-1, \sqrt{2}+1, \sqrt{2}-1,1)$, then it is a solution of (3) in the ring of integers of the quadratc field $\mathbb{Q}(\sqrt{2})$.

The equation

$$
\begin{aligned}
18 x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} & =x_{4} x_{5} x_{6} x_{7} x_{8} x_{9}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+x_{1} x_{5} x_{6} x_{7} x_{8} x_{9}\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
& +x_{2} x_{3} x_{5} x_{6} x_{7} x_{8}\left(x_{1}^{2}+x_{4}^{2}+x_{9}^{2}\right)+x_{1} x_{2} x_{3} x_{4} x_{6} x_{7}\left(x_{5}^{2}+x_{8}^{2}+x_{9}^{2}\right) \\
& +x_{1} x_{2} x_{3} x_{4} x_{7} x_{8}\left(x_{5}^{2}+x_{6}^{2}+x_{7}^{2}\right)+x_{1} x_{2} x_{3} x_{4} x_{5} x_{9}\left(x_{6}^{2}+x_{7}^{2}+x_{8}^{2}\right)
\end{aligned}
$$

admits infinitely many positive integer solutions: $(1,1,1,1,1,1,1,1,1),(1,1,3,2,1,1,11,1)$, $(4,22,10,2384,691,28,25,1,468),(36,22,134,31752,691,28,25,1,468), \ldots$, etc.

These solutions are found in the orbit of $(1,1,1,1,1,1,1,1)$ under a group $\Gamma_{2,1}$ of rational transformations. But some of the generators of this group are terribly lengthy to write down.

2 Penner's coordinate-system for the Teichmüller space of a punctured surface

Let $F=F_{g, n}$ be an oriented surface of genus $g$ with $n$ punctures, $n \geq 1$ and $2 g-2+n>0$, and $\mathcal{T}_{g, n}$ denote the Teichmüller space of hyperbolic structures on $F$ with finite area.

Let $\Delta=\left(c_{1}, c_{2}, \ldots, c_{D}\right)$ be an ideal triangulation of $F$, where $D=6 g-6+3 n$.

R.C. Penner introduced a coordinate-system, or a real-analytic embedding

$$
\lambda_{\Delta}: \mathcal{T}_{g, n} \rightarrow \mathbb{R}^{D}
$$

Features of Penner's coordinates or $\lambda$ length coordinates (see Remark 2 in Section 4.1) are:

1. $\lambda_{\Delta}\left(\mathcal{T}_{g, n}\right)$ is contained in an affine algebraic variety defined by $n$ polynomials.
2. For two ideal triangulations $\Delta$ and $\Delta^{\prime}$, the coordinate change

extends to a rational transformation of $\mathbb{R}^{D}$
3. (Corollary to 2 ) Let $\mathcal{M C}_{g, n}$ denote the mapping class group of $F$. The correspondence

$$
\phi \mapsto \phi_{*}=\lambda_{\varphi^{-1}(\Delta)} \circ \lambda_{\Delta}^{-1}
$$

gives an isomorphism of $\mathcal{M} \mathcal{C}_{g, n}$ to a group of rational transformations in $\mathbb{R}^{D}$.

## Remarks

(1) It is easy to obtain the polynomials in the statement 1 (such as the Markoff polynomial for the case of once punctured torus). For the case of once punctured surface, all points in $\lambda_{\Delta}\left(\mathcal{T}_{g, 1}\right)$ satisfy

$$
\sum_{T}\left(\frac{\lambda_{a}}{\lambda_{b} \lambda_{c}}+\frac{\lambda_{b}}{\lambda_{c} \lambda_{a}}+\frac{\lambda_{c}}{\lambda_{a} \lambda_{b}}\right)-1=0
$$

where $a, b, c$ are edges of a triangle $T$ in $\Delta$ and the sum is taken over all triangles $T$ in $\Delta$. To obtain a polynomial we multiply the left hand side by $\prod_{c \in \Delta} \lambda_{c}$.

(2) The groups $\Gamma_{1,1}$ and $\Gamma_{1,2}$ in Section 1 are the rational representations of $\mathcal{M C}_{1,1}$ and $\mathcal{M C}_{1,2}$, respectively.

## 3 Integer Solutions of Some Diophantine Equations: revisited

Let $\mathcal{M C}_{g, 1}$ be the mapping class group of the once punctured surface of genus $g(>1)$. The rational transformation $\varphi_{*}$ for $\varphi \in \mathcal{M C}_{g, 1}$ in Penner's coordinates has the form

$$
\begin{equation*}
\varphi_{*}\left(\lambda_{1}, \ldots, \lambda_{d+1}\right)=\left(\cdots, \frac{P_{k}\left(\lambda_{1}, \ldots, \lambda_{d+1}\right)}{\lambda_{1}^{a_{1}} \cdots \lambda_{d+1}^{a_{+1}}}, \cdots\right)_{k=1, \ldots, d+1} \tag{4}
\end{equation*}
$$

where $d=6 g-4=\operatorname{dim} \mathcal{T}_{g, 1}$, and in the $k$-th entry $P_{k}\left(\lambda_{1}, \ldots, \lambda_{d+1}\right)$ is a homogeneous polynomial with positive integer coefficients with degree $a_{1}+\cdots+a_{d+1}+1$ and

$$
a_{i}=\text { the geometric intersection number of } \varphi^{-1}\left(c_{k}\right) \text { and } c_{i} \text {. }
$$

The Penner coordinates send $\mathcal{T}_{g, 1}$ to an algebraic variety defined by a single polynomial $\Pi\left(\lambda_{1}, \ldots, \lambda_{d+1}\right)$ in $\mathbb{R}^{d+1}\left(\subset \mathbb{C}^{d+1}\right)$ (see Remark 1 in Section 2$)$.

It is possible to multiply $\left(\lambda_{1}, \ldots, \lambda_{d+1}\right)$ by a suitable constant so that $\Pi\left(\lambda_{1}, \ldots, \lambda_{d+1}\right)=0$ admits a solution $\left(x_{1}, x_{2}, \ldots, x_{d+1}\right)$ with entries in the set of the units in the ring of integers of a number field $K$.

By the definition of $\varphi_{*}$ and (4)
(1) For each mapping class $\varphi \in \mathcal{M C}_{g, 1}, \varphi_{*}$ preserves the locus of $\Pi\left(\lambda_{1}, \ldots, \lambda_{d+1}\right)=0$.
(2) $\varphi_{*}\left(x_{1}, x_{2}, \ldots, x_{d+1}\right)$ is an integer solution in $K$.

Remark. The result as above can be generalized to the case of surfaces with more than one puncture to some extent.

## 4 Complex-valued Penner's coordinates

Let

$$
\Gamma=\pi_{1}(F)=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}, d_{1}, \ldots, d_{n}:\left(\prod_{k=1}^{g} a_{k} b_{k} a_{k}^{-1} b_{k}^{-1}\right) d_{1} \cdots d_{n}=1\right\rangle
$$

and $\mathcal{R}_{g, n}$ denote the space of the classes of faithful representations

$$
\rho: \Gamma \rightarrow S L(2, \mathbb{C})
$$

such that
$\rho\left(d_{k}\right)$ is parabolic and $\operatorname{tr} \rho\left(d_{k}\right)=-2$ for $k=1,2, \ldots, n$.

### 4.1 Definition of complex $\lambda$-length

Let $\mathbb{D}=\{z \in \mathbb{C}:|z-1 / 2| \leq 1\}-\{0,1\}$ be a twice punctured disk which contains the ideal $\operatorname{arc} c_{0}(t)=t(0<t<1)$. Then

$$
\pi_{1}(\mathbb{D})=\left\langle\gamma_{1}, \gamma_{2}\right\rangle .
$$

Let $f: \mathbb{D} \rightarrow F$ be an immersion such that $c=f \circ c_{0}$ is an ideal arc. For $[\rho] \in \mathcal{R}_{g, n}$, we have two parabolic elements with trace $-2: P_{1}=\rho\left(f_{*} \gamma_{1}\right), P_{2}=\rho\left(f_{*} \gamma_{2}\right)$.


Then two parabolic $P_{1}$ and $P_{2}$ satisfy

$$
(*) \operatorname{tr} P_{1}=\operatorname{tr} P_{2}=-2, \text { and } P_{1} \text { and } P_{2} \text { do not commute. }
$$

There is a $Q \in S L(2, \mathbb{C})$ such that $Q^{2}=-P_{1} P_{2}$.

We define

$$
\lambda(c, \rho)=\operatorname{tr} Q
$$

## Remarks.

(1) $\lambda(c, \rho)$ is defined uniquely up to sign.
(2) If $\rho$ is a Fuchsian representation and $\lambda(c, \rho)>0$, then $\lambda(c, \rho)$ equals Penner's $\lambda$-length up to the constant factor $\sqrt{2}$.

### 4.2 The ideal Ptolemy identity

We write

$$
P_{1} \xrightarrow{Q} P_{2},
$$

if the triple $\left(P_{1}, P_{2}, Q\right)$ satisfies the condition $(*)$ and $Q^{2}=-P_{1} P_{2}$.

Consider the following diagrams:


$$
Q_{5}^{\prime}=P_{1} Q_{5} P_{1}^{-1}, Q_{6}^{\prime}=P_{4} Q_{6} P_{4}^{-1} .
$$

Theorem 1 (the ideal Ptolemy identity)

$$
\begin{equation*}
\operatorname{tr} Q_{5} \operatorname{tr} Q_{6}=( \pm) \operatorname{tr} Q_{1} \operatorname{tr} Q_{3}+( \pm) \operatorname{tr} Q_{2} \operatorname{tr} Q_{4} \tag{5}
\end{equation*}
$$

where the signs $( \pm)$ depend on the signs of traces of $Q_{1} Q_{2} Q_{5}, \ldots, Q_{1} Q_{6} Q_{4}$, which are necessarily parabolic.

## Remarks.

(i) The ideal Ptolemy identity proved by Penner is a result of the hyperbolic geometry.
(ii) The identity (5) can be obtained by basic trace relations $\operatorname{tr} A \operatorname{tr} B=\operatorname{tr} A B+\operatorname{tr} A B^{-1}$ and $\operatorname{tr} A=\operatorname{tr} A^{-1}$ in $S L(2, \mathbb{C})$.

The mapping class group $\mathcal{M C}_{g, n}$ can be embedded in the Ptolemy groupoid (see Section 7 of Penner's paper [1]) and by this fact $\mathcal{M C}_{g, n}$ is represented as a group of rational transformations.

## References

[1] Penner, R. C., The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys. 113 (1987), 299-339.
[2] Nakanishi, T. and M. Näätänen, Complexification of lambda length as parameter for $S L(2, \mathbb{C})$ representation space of punctured surface groups, J. London Math. Soc., 70 (2004), 383-404.
[3] Nakanishi, T., A trace identity for parabolic elements of $S L(2, \mathbb{C})$, Kodai Math. J., 30 (2007) 1-18.
[4] Nakanishi, T., An application of Penner's coordinates of Teichmüller space of punctured surfaces, to appear in Research Institute of Mathematical Sciences, Kyoto Univ. Kokyuroku Bessatsu.

