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1 Integer Solutions of Some Diophantine Equations

1.1 The Markoff equation

The Markoff equation
1 +y* + 2% = 3xyz (1)

admits infinitely many positive integer solutions: (z,y,z) = (1,1,1), (1,1,2), (1,2,5),
(1,5,13), (2,5,29), (1,13,34), (5,13, 194), (25,29, 433),..., etc.

Let I'y 1 be the group generated by the rational transformations:
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B ) 2 ' Y, 3~ y
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wl(x,y,z) — (Z7y7

Then all positive integer solutions of (1) are in the I'y j-orbit of (1,1,1) (A. A. Markoft).
Note that wi(z,y,2) = (2,y,3yz — x)wa(x,y, 2) = (x, 2,3xz — y) for (z,y, z) satisfying (1).



1.2 Other examples

The equation
T124(25 + 25 + 22) + zows(a] + 23 4 22) = 62102732475 (2)
admits infinitely many positive integer solutions: (x1,x2,x3,24,25) = (1,1,1,1,1),

(1,1,1,1,2), (1,5,1,1,3), (29,1,1,5,2), (578,2,1,53,9), (85,2, 578, 6305, 6860), ..., etc.

Let I'y o be the group generated by the rational transformations:
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If (x1, 2,23, 24,25) is in the I'; -orbit of (1,1,1,1,1), then it is a positive integer solution

of (2).



Note that wy, ws, even if they are restricted to the locus of (2), are not polynomial

mappings with integer coefficients. For example

rq(x3 + a3 + x2)

L2X3

W1($1,$2,$3,$4,$5) — ($4,$2,$3,6$43§'5 — — CUl?£5)°

So the fact that I'y 2(1,1,1,1,1) are integer solutions is not trivial at this moment.

The following equation is a variant of (2).

x1x4(:c§ + x% + ajg) + 2132333(33% + :BZ + xg) = 1421 T0T3T4X5. (3)

If (z1, 22,23, 24, 25) is in the ['j 9-orbit of (vV2 4+ 1,v/2 —1,v/2+1,/2 —1,1), then it is a
solution of (3) in the ring of integers of the quadratc field Q(v/2).



The equation
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1821 X2X3X4X5X6L7T8Ty = T4X5LeX7X8To(X] + X5 + T5) + T1T5TeT7TTo(T5 + x5 + x7)
2 2 2 2 2 2

+xowsrsrerrrs(x] + o) + Tg) + r1x2x3T46T7(TE + x5 + XF)

21 ToT3T42728 (T2 + TE 4+ 7)) + T1 T34 5T (TE + 27 + 17
admits infinitely many positive integer solutions: (1,1,1,1,1,1,1,1,1), (1,1,3,2,1,1,11,1),
(4,22,10, 2384, 691,28, 25, 1, 468), (36,22, 134, 31752, 691, 28, 25, 1, 468),..., etc.

These solutions are found in the orbit of (1,1,1,1,1,1,1,1) under a group I's ; of rational

transformations. But some of the generators of this group are terribly lengthy to write down.



2 Penner’s coordinate-system for the Teichmuller space of a

punctured surface

Let F' = I, ,, be an oriented surface of genus g with n punctures, n > 1 and 29 —2+n > 0,

and 7, ,, denote the Teichmiiller space of hyperbolic structures on F' with finite area.

Let A = (¢1,¢a,...,cp) be an ideal triangulation of F', where D = 6g — 6 + 3n.




R.C. Penner introduced a coordinate-system, or a real-analytic embedding

)\A:Tg,n—ﬂRD.

Features of Penner’s coordinates or A length coordinates (see Remark 2 in Section 4.1)

are:

1. Aa(7,,,) is contained in an affine algebraic variety defined by n polynomials.
2. For two ideal triangulations A and A’, the coordinate change

Tyn —25 AA(T)CRP

id AaroAR"
)\Al

,Tg,n —_— )\A/(T)CRD

extends to a rational transformation of RY

3. (Corollary to 2) Let MC, ,, denote the mapping class group of F'. The correspondence
¢ du = Ap-r(a)0 A8

gives an isomorphism of MC, ,, to a group of rational transformations in RP.



Remarks

(1) It is easy to obtain the polynomials in the statement 1 (such as the Markoff polynomial

for the case of once punctured torus). For the case of once punctured surface, all points

in Aa(7,,1) satisfy
Aa Ab Ac
1=0
2 (Abxc T mb) |

where a, b, ¢ are edges of a triangle T in A and the sum is taken over all triangles T'

in A. To obtain a polynomial we multiply the left hand side by [] .. A Ac.

(2) The groups I'; 1 and I'y o in Section 1 are the rational representations of MC; ; and

MC 2, respectively.



3 Integer Solutions of Some Diophantine Equations: revisited

Let MC, 1 be the mapping class group of the once punctured surface of genus g(> 1).

The rational transformation ¢, for ¢ € MC, ; in Penner’s coordinates has the form

Pe(Ars A
Px(ALy ooy Adt1) = < ) l;\(all”.Aaiil)v'”> (4)
1 d+1 k=1,...,d+1

geeey

where d = 6g — 4 = dim7,;, and in the k-th entry Pg(A1,...,A¢+1) is a homogeneous

polynomial with positive integer coefficients with degree a; + -+ a4+1 + 1 and

a; = the geometric intersection number of gp_l(ck) and c;.



The Penner coordinates send 7,1 to an algebraic variety defined by a single polynomial
II(A1,...; Agy1) in R4 (€ C4T1) (see Remark 1 in Section 2).

It is possible to multiply (A1, ..., Ag+1) by a suitable constant so that II(A1, ..., \g+1) =0
admits a solution (z1,x2, ..., T4y1) with entries in the set of the units in the ring of integers
of a number field K.

By the definition of ¢, and (4)

(1) For each mapping class ¢ € MC, 1, ¢, preserves the locus of II(Ay, ..., Ag+1) = 0.

(2) pu(x1,22,...;2421) is an integer solution in K.

Remark. The result as above can be generalized to the case of surfaces with more than

one puncture to some extent.



4 Complex-valued Penner's coordinates

Let

g
I' =7 (F) = {ay,b1,...,ag,bg,d1,....dy : (H arbray b )dy - -
k=1

and R, , denote the space of the classes of faithful representations

p:I' = SL(2,C)
such that

p(dy) is parabolic and trp(dy) = —2 for k =1,2,...,n.



4.1 Definition of complex A-length

Let D={2€ C:|z—-1/2| <1} —{0,1} be a twice punctured disk which contains the
ideal arc ¢o(t) =t (0 <t < 1). Then

1 (D) = (y1,72)-

Let f :ID — F be an immersion such that ¢ = f o ¢ is an ideal arc. For [p] € R, we have

two parabolic elements with trace —2: P = p(f«71), P2 = p(fs2).




Then two parabolic P; and P, satisfy
(%) trP; = trP, = —2, and P; and P» do not commute.

There is a Q € SL(2,C) such that Q? = — P P.

We define
Ae, p) = tr@Q.

Remarks.

(1) A(c, p) is defined uniquely up to sign.
(2) If p is a Fuchsian representation and A(c, p) > 0, then A(c, p) equals Penner’s A-length
up to the constant factor /2.



4.2 The ideal Ptolemy identity

We write
Pl 2) P27

if the triple (P;, P, Q) satisfies the condition () and Q? = —P, P.

Consider the following diagrams:

P P1

Q1 Q4 Q1 Q4
1 Q6
Qg

Q2 Q3 Q2 Q3
P3 P3

QL = PiQsP; ', Qi = PiQe Py .



Theorem 1 (the ideal Ptolemy identity)
trQstrQe = (£)trQ1trQs + (£)trQ2trQy, (5)

where the signs (+) depend on the signs of traces of Q1Q2Qs,..., Q1QsQ4, which are neces-

sarily parabolic.

Remarks.

(i) The ideal Ptolemy identity proved by Penner is a result of the hyperbolic geometry.
(ii) The identity (5) can be obtained by basic trace relations trAtrB = trAB + trAB ™!
and trA = trA~1 in SL(2,C).

The mapping class group MC, , can be embedded in the Ptolemy groupoid (see Sec-
tion 7 of Penner’s paper [1]) and by this fact MC,,, is represented as a group of rational

transformations.
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