Affine deformations of the three-holed sphere and other surfaces

Virginie Charette
Université de Sherbrooke, Canada

Singapore, July 2010

We will look at groups G of affine transformations of \mathbb{A}_{1}^{3}, affine three-space, whose linear parts are the holonomy of a hyperbolic structure on a surface with boundary.
We will consider the following question: when does G act freely and properly discontinuously on \mathbb{A}_{1}^{3} ?
This is joint work with Todd Drumm and Bill Goldman.

Introduction

Affine deformations

Ideal triangle configurations

The three－holed sphere

The one－holed torus

A little history

- Milnor's question: Given a manifold $M=\mathbb{R}^{3} / G$, where G consists of affine transformations, must G be solvable?
- The alternative to Milnor's question: can a free group of affine transformations act freely and properly discontinuously on \mathbb{A}_{1}^{3} ?
- Margulis' answer (to the alternative): yes - take a Schottky group and add appropriate translational parts to generators.
- Fried-Goldman: If G is not solvable, then taking its linear part embeds it as a (conjugate of a) discrete subgroup of $O(2,1)$.
- Mess: In that case, the linear part of G is not the holonomy of a closed surface.

Notation and terminology

- $\mathbb{R}_{1}^{3}=\mathbb{R}^{3}$ with symmetric indefinite bilinear form of signature $(2,1)$:

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3} .
$$

- \mathbb{A}_{1}^{3} is the affine space modeled on \mathbb{R}_{1}^{3}
- \mathbb{H}^{2} denotes the hyperbolic plane; think $\mathbb{H}^{2} \subset \mathbb{R}_{1}^{3}$.

Cocycles and affine deformations

- From now on: $\Gamma<\mathrm{SO}(2,1)^{0}$ is a free group.
- A cocycle $u \in Z^{1}\left(\Gamma, \mathbb{R}_{1}^{3}\right)$ yields a representation $\phi_{u}: \Gamma \rightarrow \operatorname{Aff}\left(\mathbb{A}_{1}^{3}\right)$, by setting :

$$
\phi_{u}(g): p \mapsto g(p-o)+u(g),
$$

where O is a choice of origin.

- Call $\phi_{u}(\Gamma)$ an affine deformation of Γ, and a proper affine deformation if it acts (freely and) properly discontinuously on \mathbb{A}_{1}^{3}.

The Margulis invariant

The Margulis invariant of u, denoted α_{u}, is the linear functional:

$$
\alpha_{u}(g)=\left\langle u(g), x^{0}(g)\right\rangle
$$

where $\mathrm{x}^{0}(g)$ is a preferred fixed eigenvector of g.
For hyperbolic g, it is the signed Lorentzian displacement along a $\phi_{u}(g)$-invariant line in \mathbb{A}_{1}^{3}.

The Margulis invariant and cohomology

For a rank 2 free subgroup
$\Gamma=\left\langle g_{1}, g_{2}, g_{3} \mid g_{3} g_{2} g_{1}=I d\right\rangle<\operatorname{SO}(2,1)^{0}, H^{1}\left(\Gamma, \mathbb{R}_{1}^{3}\right)$ is parametrized using the Margulis invariant:

$$
[u]=\left(\alpha_{u}\left(g_{1}\right), \alpha_{u}\left(g_{2}\right), \alpha_{u}\left(g_{3}\right)\right)
$$

(Drumm-Goldman)

Proper affine deformations lie in an octant of $H^{1}\left(\Gamma, \mathbb{R}_{1}^{3}\right)$

Set:

$$
\mathcal{H}_{g}=\left\{[u] \in H^{1}\left(\Gamma, \mathbb{R}_{1}^{3}\right) \mid \alpha_{u}(g)>0\right\}
$$

Then the set of proper affine deformations is contained in

$$
\bigcap_{g \in \Gamma} \mathcal{H}_{g}
$$

(Margulis+absence of loss of generality)

Ideal triangle configurations

The basic idea: Geodesics in \mathbb{H}^{2} correspond to crooked planes in \mathbb{A}_{1}^{3}.
Our strategy will be to move the crooked planes away from each other along the edges of an ideal triangulation to obtain fundamental domains for proper action

u2
\star We want pairwise disjoint crooked planes in order to apply a Klein-Maskit type combination theorem.

What you need to know about crooked planes for this talk

In a world without a positive definite metric, where discrete groups may not act properly, you need something like crooked planes to build fundamental domains.

Ideal triangle configurations and the three-holed sphere

 Let $\Sigma=\mathbb{H}^{2} / \Gamma$ be a three-holed sphere. Write:$$
\Gamma=\left\langle g_{1}, g_{2}, g_{3} \mid \quad g_{3} g_{2} g_{1}=I d\right\rangle
$$

Let T be the ideal triangle whose vertices are the attracting fixed points of the g_{i}.

----	: Crooked plane stems paired by g1
- - - - .	: Crooked plane stems paired by g2
	: Invariant axes of generators

T yields half of an ideal triangulation of the interior of Σ 's convex core. \qquad

With a little work，one obtains proper affine deformations by moving crooked planes＂along the edges of T＂．

Such a move will look something like this for a quadruple of crooked planes．

For the three-holed sphere, this yields all of

 $\mathcal{H}_{g_{1}} \cap \mathcal{H}_{g_{2}} \cap \mathcal{H}_{g_{3}}$Theorem (C-Drumm-Goldman)
Let $\Gamma=\left\langle g_{1}, g_{2}, g_{3} \mid g_{3} g_{2} g_{1}=I d\right\rangle<\operatorname{SO}(2,1)^{0}$, which is the holonomy of a three-holed sphere, and let $u \in Z^{1}\left(\Gamma, \mathbb{R}_{1}^{3}\right)$; suppose that $\alpha_{u}\left(g_{i}\right), i=1,2,3$, are all of the same sign. Then $\phi_{u}(\Gamma)$ admits a fundamental domain. In particular, it acts freely and properly discontinuously on \mathbb{A}_{1}^{3}.
(Compare Jones and Goldman-Labourie-Margulis.)

Ideal triangle configurations for the one-holed torus

Let $\Gamma=\left\langle g_{1}, g_{2}, g_{3}\right| g_{1} g_{2} g_{3}=|d\rangle$ now be the holonomy of a one-holed torus.
We consider an ideal triangulation with vertices judiciously chosen amongst the fixed points of the commutators.
We obtain various regions of proper cocycles by changing the generating set:

$$
\left(g_{1}, g_{2}, g_{3}\right) \mapsto\left(g_{2}^{-1}, g_{1}, g_{1}^{-1} g_{2}\right)
$$

Result for the one-holed torus

Theorem (C-Drumm-Goldman)
Let Γ be the holonomy of a one-holed torus. The set of cohomology classes of cocycles admitting a fundamental domain is the interior of the set:

$$
\bigcap_{g \in S C C} \mathcal{H}_{g}
$$

where $S C C \subset \Gamma$ is the set of elements corresponding to simple closed curves.

