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We will look at groups G of affine transformations of A3
1, affine

three-space, whose linear parts are the holonomy of a hyperbolic
structure on a surface with boundary.
We will consider the following question: when does G act freely
and properly discontinuously on A3

1?
This is joint work with Todd Drumm and Bill Goldman.
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A little history

I Milnor’s question: Given a manifold M = R3/G , where G
consists of affine transformations, must G be solvable?

I The alternative to Milnor’s question: can a free group of affine
transformations act freely and properly discontinuously on A3

1?

I Margulis’ answer (to the alternative): yes - take a Schottky
group and add appropriate translational parts to generators.

I Fried-Goldman: If G is not solvable, then taking its linear part
embeds it as a (conjugate of a) discrete subgroup of O(2, 1).

I Mess: In that case, the linear part of G is not the holonomy
of a closed surface.

V. Charette: Affine deformations



Outline Introduction Affine deformations Ideal triangle configurations The three-holed sphere The one-holed torus

Notation and terminology

I R3
1 = R3 with symmetric indefinite bilinear form of signature

(2, 1):
〈x, y〉 = x1y1 + x2y2 − x3y3.

I A3
1 is the affine space modeled on R3

1

I H2 denotes the hyperbolic plane; think H2 ⊂ R3
1.
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Cocycles and affine deformations

I From now on: Γ < SO(2, 1)0 is a free group.

I A cocycle u ∈ Z 1(Γ,R3
1) yields a representation

φu : Γ→ Aff(A3
1), by setting :

φu(g) : p 7→ g(p − o) + u(g),

where o is a choice of origin.

I Call φu(Γ) an affine deformation of Γ, and a proper affine
deformation if it acts (freely and) properly discontinuously on
A3

1.
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The Margulis invariant

The Margulis invariant of u, denoted αu, is the linear functional:

αu(g) = 〈u(g), x0(g)〉

where x0(g) is a preferred fixed eigenvector of g .
For hyperbolic g , it is the signed Lorentzian displacement along a
φu(g)-invariant line in A3

1.

V. Charette: Affine deformations



Outline Introduction Affine deformations Ideal triangle configurations The three-holed sphere The one-holed torus

The Margulis invariant and cohomology

For a rank 2 free subgroup
Γ = 〈g1, g2, g3 | g3g2g1 = Id〉 < SO(2, 1)0, H1(Γ,R3

1) is
parametrized using the Margulis invariant:

[u] = (αu(g1), αu(g2), αu(g3))

(Drumm-Goldman)
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Proper affine deformations lie in an octant of H1(Γ,R3
1)

Set:
Hg = {[u] ∈ H1(Γ,R3

1) | αu(g) > 0}

Then the set of proper affine deformations is contained in⋂
g∈Γ

Hg

(Margulis+absence of loss of generality)
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Ideal triangle configurations

The basic idea: Geodesics in H2 correspond to crooked planes in
A3

1.
Our strategy will be to move the crooked planes away from each
other along the edges of an ideal triangulation to obtain
fundamental domains for proper action

: Crooked plane stems
u1

u2

u3

F We want pairwise disjoint crooked planes in order to apply a
Klein-Maskit type combination theorem.
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What you need to know about crooked planes for this talk
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In a world without a positive definite
metric, where discrete groups may not act properly, you need
something like crooked planes to build fundamental domains.
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Ideal triangle configurations and the three-holed sphere
Let Σ = H2/Γ be a three-holed sphere. Write:

Γ = 〈g1, g2, g3 | g3g2g1 = Id〉
Let T be the ideal triangle whose vertices are the attracting fixed
points of the gi .

: Crooked plane stems paired by g2

g3

: Crooked plane stems paired by g1

: Invariant axes of generators
g1

g2

T yields half of an ideal triangulation of the interior of Σ’s convex
core.
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With a little work, one obtains proper affine deformations by
moving crooked planes “along the edges of T ”.

u3

: Crooked plane stems 

u1

u2
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Such a move will look something like this for a quadruple of
crooked planes.

: Crooked plane stems paired by g2
: Crooked plane stems paired by g1

: Invariant axes of generators

V. Charette: Affine deformations



Outline Introduction Affine deformations Ideal triangle configurations The three-holed sphere The one-holed torus

For the three-holed sphere, this yields all of
Hg1
∩Hg2

∩Hg3

Theorem (C-Drumm-Goldman)

Let Γ = 〈g1, g2, g3 | g3g2g1 = Id〉 < SO(2, 1)0, which is the
holonomy of a three-holed sphere, and let u ∈ Z 1(Γ,R3

1); suppose
that αu(gi ), i = 1, 2, 3, are all of the same sign. Then φu(Γ)
admits a fundamental domain. In particular, it acts freely and
properly discontinuously on A3

1.

(Compare Jones and Goldman-Labourie-Margulis.)
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Ideal triangle configurations for the one-holed torus

Let Γ = 〈g1, g2, g3 | g1g2g3 = Id〉 now be the holonomy of a
one-holed torus.
We consider an ideal triangulation with vertices judiciously chosen
amongst the fixed points of the commutators.
We obtain various regions of proper cocycles by changing the
generating set:

(g1, g2, g3) 7→ (g−1
2 , g1, g

−1
1 g2)
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Result for the one-holed torus

Theorem (C-Drumm-Goldman)

Let Γ be the holonomy of a one-holed torus. The set of
cohomology classes of cocycles admitting a fundamental domain is
the interior of the set: ⋂

g∈SCC
Hg

where SCC ⊂ Γ is the set of elements corresponding to simple
closed curves.
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