Character varieties and Morse theory

Richard A. Wentworth

"Geometry, Topology, and Dynamics of Character Varieties"

Singapore 2010

Joint with

Georgios Daskalopoulos (Brown University)
 Jonathan Weitsman (Northeastern University)

Graeme Wilkin (University of Colorado)

Outline

Introduction

Higgs bundles

Equivariant Morse theory

Prym representations

Outline

Introduction

Higgs bundles

Equivariant Morse theory

Prym representations

Cohomology of Kähler and hyperKähler quotients

- The goal is to compute the equivariant cohomology of symplectic (Kähler or hyperKähler) reductions.
- By the Kempf-Ness, Guillemin-Sternberg theorem, examples arise in geometric invariant theory.
- Kirwan, Atiyah-Bott: In the symplectic case there is a "perfect" Morse stratification.
- HyperKähler case still unknown.

Infinite dimensional examples:

- Higgs bundles (Hitchin)
- Stable pairs (Bradlow)
- Quiver varieties (Nakajima)

These involve symplectic reduction in the presence of singularities.

Key points:

- this poses no (additional) analytic difficulties.
- Singularities can cause the Morse stratification to lose "perfection."
- Computations of cohomology are (sometimes) still possible.

Application to representation varieties

- $M=$ a closed Riemann surface $g \geq 2$
- $\pi=\pi_{1}(M, *)$
- $G=$ a compact connected Lie group
- $G^{\mathbb{C}}=$ its complexification (e.g. $G=U(n), G^{\mathbb{C}}=G L(n, \mathbb{C})$)
- Representation varieties:
$\operatorname{Hom}(\pi, G) / G$
vs.
$\operatorname{Hom}\left(\pi, G^{\mathbb{C}}\right) / / G^{\mathbb{C}}$
2।

Moduli of G-bundles
Moduli of G-Higgs bundles

Equivariant cohomology

- Z topological space with an action by G
- Classifying space: $E G \rightarrow B G$ is a contractible, principal G-bundle
- Equivariant cohomology: $H_{G}^{*}(Z)=H^{*}\left(Z \times{ }_{G} E G\right)$
- If the action is free: $H_{G}^{*}(Z)=H^{*}(Z / G)$
- If the action is trivial: $H_{G}^{*}(Z)=H^{*}(Z) \otimes H^{*}(B G)$

Application to representation varieties

Theorem (DWWW)

The equivariant Poincaré polynomial is given by

$$
\begin{aligned}
P_{t}^{S L(2, \mathbb{C})}(& (\operatorname{Hom}(\pi, S L(2, \mathbb{C})))=\frac{\left(1+t^{3}\right)^{2 g}-(1+t)^{2 g} t^{2 g+2}}{\left(1-t^{2}\right)\left(1-t^{4}\right)} \\
& -t^{4 g-4}+\frac{t^{2 g+2}(1+t)^{2 g}}{\left(1-t^{2}\right)\left(1-t^{4}\right)}+\frac{(1-t)^{2 g} t^{4 g-4}}{4\left(1+t^{2}\right)} \\
& +\frac{(1+t)^{2 g} t^{4 g-4}}{2\left(1-t^{2}\right)}\left(\frac{2 g}{t+1}+\frac{1}{t^{2}-1}-\frac{1}{2}+(3-2 g)\right) \\
& +\frac{1}{2}\left(2^{2 g}-1\right) t^{4 g-4}\left((1+t)^{2 g-2}+(1-t)^{2 g-2}-2\right)
\end{aligned}
$$

Application to representation varieties

- The Torelli group $I(M)$ is the subgroup of the mapping class group that acts trivially on the homology of M.

Theorem

$I(M)$ acts nontrivially on the equivariant cohomology of $\operatorname{Hom}(\pi, S L(2, \mathbb{C}))$ (via Prym representations).

- By contrast, $I(M)$ always acts trivially on the equivariant cohomology of $\operatorname{Hom}(\pi, G)$, G compact.

Outline

Introduction

Higgs bundles

Equivariant Morse theory

Prym representations

Higgs bundles

- $\mathcal{A}=$ space of unitary connections on a trivial rank 2 hermitian vector bundle $E \rightarrow M$
- ad $E=$ bundle of skew-hermitian endomorphisms of E
- $\mathcal{A} \simeq \Omega^{1}(M$, ad $E)$
- $\mathcal{A}_{c}=\left\{(A, \Psi): A \in \mathcal{A}, \Psi \in \Omega^{1}(M, \sqrt{-1} \operatorname{ad} E)\right\}$
- $\mathcal{G}=$ group of unitary gauge transformations, $\mathcal{G}^{\mathbb{C}}$ its complexification.
- Action of \mathcal{G} on \mathcal{A}_{c} is hamiltonian with respect to three symplectic structures.

The moduli space

The three moment maps for the action of \mathcal{G} are:

$$
\begin{aligned}
& \mu_{1}(A, \Psi)=F_{A}+\frac{1}{2}[\Psi, \Psi] \\
& \mu_{2}(A, \Psi)=\sqrt{-1} d_{A} \Psi \\
& \mu_{3}(A, \Psi)=\sqrt{-1} d_{A}(* \Psi)
\end{aligned}
$$

We are interested in the common zero locus:

$$
\mu_{1}^{-1}(0) \cap \mu_{2}^{-1}(0) \cap \mu_{3}^{-1}(0) / \mathcal{G}
$$

Hitchin's ASD equations

- The Higgs bundles are

$$
\mu_{2}^{-1}(0) \cap \mu_{3}^{-1}(0)=\left\{(A, \Phi): \bar{\partial}_{A} \Phi=0\right\}=\mathcal{B}_{\text {higgs }}
$$

where $\psi=\Phi+\Phi^{*}, \Phi \in \Omega^{1,0}(M$, End $E)$

- The conditions

$$
\mu_{1}(A, \Phi)=F_{A}+\left[\Phi, \Phi^{*}\right]=0
$$

are called Hitchin's ASD equations.

Flat connections

- The flat connections are: $\mu_{1}^{-1}(0) \cap \mu_{2}^{-1}(0)=\mathcal{A}_{c}^{\text {flat }}$

$$
=\left\{(A, \Psi) \in \mathcal{A}_{c}: D=d_{A}+\Psi \text { is flat } \mathrm{SL}(2, \mathbb{C}) \text { connection }\right\}
$$

- Given a flat connection $D, \operatorname{hol}(D)=\rho: \pi \rightarrow \mathrm{SL}(2, \mathbb{C})$, there is a ρ-equivariant map

$$
u: \widetilde{M} \rightarrow \mathbb{H}^{3} \simeq \operatorname{SL}(2, \mathbb{C}) / \mathrm{SU}(2)
$$

- The equation

$$
\mu_{3}(A, \Psi)=\sqrt{-1} d_{A}(* \Psi)=0
$$

is equivalent to u being harmonic.

Theorem (Hitchin, Simpson)

The closure of the \mathcal{G}^{C}-orbit of a Higgs bundle (A, Φ) intersects $\mu_{1}^{-1}(0)$ if and only if $(A, \Phi) \in \mathcal{B}_{\text {higgs }}^{\text {ss }}$, the subset of semistable Higgs bundles.

Theorem (Corlette, Donaldson)
If $\rho \in \operatorname{Hom}(\pi, \mathrm{SL}(2, \mathbb{C}))$, then the closure of its $\mathrm{SL}(2, \mathbb{C})$ orbit intersects $\mu_{3}^{-1}(0)$.
Corollary
The moduli space of semistable Higgs bundles is

$$
\begin{aligned}
\mathfrak{M}_{\text {higgs }} & =\mathcal{B}_{\text {higgs }}^{s \mathcal{S}} / / \mathcal{G}^{\mathbb{C}} \\
& \simeq \mu_{1}^{-1}(0) \cap \mu_{2}^{-1}(0) \cap \mu_{3}^{-1}(0) / \mathcal{G} \\
& \simeq \operatorname{Hom}(\pi, \operatorname{SL}(2, \mathbb{C})) / / \mathrm{SL}(2, \mathbb{C})
\end{aligned}
$$

Deformation retraction for the character variety

Fix ρ and consider ρ-equivariant maps

- $\partial u_{t} / \partial t=-\tau\left(u_{t}\right)$ is the ρ-equivariant harmonic map flow
- $h_{t} u_{t}(*)=\star$, fixed.
- Define a flow on $\operatorname{Hom}(\pi, \operatorname{SL}(2, \mathbb{C}))$ by $\rho_{t}=h_{t} \rho h_{t}^{-1}$

Deformation retraction for the character variety

$$
r: \mathcal{A}_{c}^{f l a t} \longrightarrow \mu_{1}^{-1}(0) \cap \mu_{2}^{-1}(0) \cap \mu_{3}^{-1}(0): \rho \mapsto \lim _{t \rightarrow \infty} \rho_{t}
$$

Theorem
The map r defines a \mathcal{G}-equivariant deformation retraction

$$
\mu_{1}^{-1}(0) \cap \mu_{2}^{-1}(0) \cap \mu_{3}^{-1}(0) \hookrightarrow \operatorname{Hom}(\pi, \operatorname{SL}(2, \mathbb{C}))
$$

Deformation retraction on Higgs bundles

Study the gradient flow on $\mathcal{B}_{\text {higgs }}$ of the Yang-Mills-Higgs functional:

$$
\operatorname{YMH}(A, \Phi)=\left\|F_{A}+\left[\Phi, \Phi^{*}\right]\right\|^{2}
$$

Theorem (Wilkin)
The gradient flow converges (to the expected limit). In particular, the inclusion

$$
\mu_{1}^{-1}(0) \cap \mu_{2}^{-1}(0) \cap \mu_{3}^{-1}(0) \hookrightarrow \mathcal{B}_{\text {higgs }}^{s S}
$$

is a \mathcal{G}-equivariant deformation retraction.

Higgs Bundles vs. Flat Connections

Approach: Compute the right hand side via Morse theory.

Outline

Introduction

Higgs bundles

Equivariant Morse theory

Prym representations

Symplectic reduction

- (X, ω) symplectic manifold (compact)
- G compact, connected Lie group, acting symplectically.
- $\mu: X \rightarrow \mathfrak{g}^{*}$ a moment map $\left(d \mu^{\xi}(\cdot)=\omega\left(\xi^{\sharp}, \cdot\right)\right)$
- the Marsden-Weinstein quotient $\mu^{-1}(0) / G$ is symplectic.
- What is the cohomology of $\mu^{-1}(0) / G$?

Atiyah-Bott, Kirwan

- Study the gradient flow $f=\|\mu\|^{2}$.
- Critical sets η_{β} are characterized in terms of isotropy in G.
- Gradient flow \rightsquigarrow smooth stratification $X=\cup_{\beta \in I} S_{\beta}$; with normal bundles ν_{β}.
- The corresponding long exact sequence splits

$$
\cdots \longrightarrow H_{G}^{*}\left(S_{\beta}, \cup_{\alpha<\beta} S_{\alpha}\right) \longrightarrow H_{G}^{*}\left(S_{\beta}\right) \longrightarrow H_{G}^{*}\left(\cup_{\alpha<\beta} S_{\alpha}\right) \longrightarrow \cdots
$$

- Compute change at each step from $H_{G}^{*}\left(S_{\beta}, \cup_{\alpha<\beta} S_{\alpha}\right)$

Two key steps

- Morse-Bott Lemma:

$$
H_{G}^{*}\left(S_{\beta}, \cup_{\alpha<\beta} S_{\alpha}\right) \simeq H_{G}^{*}\left(\nu_{\beta}, \nu_{\beta} \backslash\{0\}\right) \simeq H_{G}^{*-\lambda_{\beta}}\left(\eta_{\beta}\right)
$$

- Atiyah-Bott Lemma: criterion for multiplication by the equivariant Euler class to be injective.

$$
\begin{gathered}
\cdots \longrightarrow H_{G}^{p}\left(S_{\beta}, \cup_{\alpha<\beta} S_{\alpha}\right) \longrightarrow H_{G}^{p}\left(S_{\beta}\right) \longrightarrow \cdots \\
\downarrow \cong \\
H_{G}^{p}\left(\nu_{\beta}, \nu_{\beta} \backslash\{0\}\right) \longrightarrow H_{G}^{p}\left(\eta_{\beta}\right)
\end{gathered}
$$

Perfect equivariant Morse theory

Theorem (Kirwan, Atiyah-Bott)
For a (compact) symplectic manifold X with action by G,

$$
P_{t}^{G}\left(\mu^{-1}(0)\right)=P_{t}^{G}(X)-\sum_{\beta} t^{\lambda_{\beta}} P_{t}^{G}\left(\eta_{\beta}\right)
$$

Theorem (Kirwan surjectivity)
The map on cohomology

$$
H_{G}^{*}(X) \longrightarrow H_{G}^{*}\left(\mu^{-1}(0)\right)
$$

induced from inclusion $\mu^{-1}(0) \hookrightarrow X$ is surjective.

Vector bundles on Riemann surfaces

- $\mu: \mathcal{A} \rightarrow \operatorname{Lie}(\mathcal{G})$ is given by $A \mapsto F_{A}$
- Minimum of $\|\mu\|^{2}=\left\|F_{A}\right\|^{2}=Y M(A)$ is the space of flat connections (i.e. representation variety)
- The flow converges and the Morse stratification is smooth (Daskalopoulos)
- Higher critical sets correspond to split Yang-Mills connections, i.e. representations to smaller groups. For example, $E=L_{1} \oplus L_{2}, d=\operatorname{deg} L_{1}>\operatorname{deg} L_{2}$:

$$
\eta_{d}=\operatorname{Jac}(M) \times \operatorname{Jac}(M)
$$

- Morse-Bott lemma: Negative directions given by $H^{0,1}\left(L_{1}^{*} \otimes L_{2}\right) ; \lambda_{d}=\operatorname{dim}$ is constant.

Theorem (Atiyah-Bott, Daskalopoulos)

$$
\begin{aligned}
P_{t}^{S U(2)}(\operatorname{Hom}(\pi, S U(2))) & =P(B \mathcal{G})-\sum_{d=0}^{\infty} t^{\lambda_{d}} P_{t}^{S^{1}}\left(\operatorname{Jac}_{d}(M)\right) \\
& =\frac{\left(1+t^{3}\right)^{2 g}-t^{2 g+2}(1+t)^{2 g}}{\left(1-t^{2}\right)\left(1-t^{4}\right)}
\end{aligned}
$$

Corollary
Kirwan surjectivity: $H^{*}(B \mathcal{G}) \rightarrow H_{S U(2)}^{*}(\operatorname{Hom}(\pi, S U(2)))$ is
surjective. In particular, $\mathcal{I}(S)$ acts trivially on the $\mathrm{SU}(2)$-equivariant cohomology of $\mathrm{Hom}(\pi, \mathrm{SU}(2))$.

Singularities

- What about Higgs bundles (A, Φ) ?
- Singularities because of the jump in $\operatorname{dim} \operatorname{ker} \bar{\partial}_{A}$.
- Kuranishi model: $\{$ Slice $\} \hookrightarrow H^{1}$ (deformation complex)
- Negative directions: ν_{β} is the intersection of negative directions with the image of the slice.
- Morse-Bott isomorphism: Need to define a deformation retraction.

Critical Higgs bundle

- $\nu_{d}: E=L_{1} \oplus L_{2}, d=\operatorname{deg} L_{1}>\operatorname{deg} L_{2}$,

$$
A=A_{1} \oplus A_{2} \quad, \quad \Phi=\left(\begin{array}{cc}
\Phi_{1} & 0 \\
0 & \Phi_{2}
\end{array}\right)
$$

- Negative directions $\nu_{d}:(a, \varphi)$ strictly lower triangular.

$$
a \in H^{0,1}\left(L_{1}^{*} \otimes L_{2}\right), \varphi \in H^{1,0}\left(L_{1}^{*} \otimes L_{2}\right)
$$

- $\operatorname{deg}\left(L_{1}^{*} \otimes L_{2}\right)<0 \Rightarrow \operatorname{dim} H^{0,1}\left(L_{1}^{*} \otimes L_{2}\right)$ constant.
- $\operatorname{deg}\left(L_{1}^{*} \otimes L_{2} \otimes K_{M}\right)$ is not necessarily negative, so $\operatorname{dim} H^{1,0}\left(L_{1}^{*} \otimes L_{2}\right)$ can jump.
- Can still prove $H_{\mathcal{G}}^{*}\left(X_{d}, X_{d-1}\right) \simeq H_{\mathcal{G}}^{*}\left(\nu_{d}, \nu_{d} \backslash\{0\}\right)$
- But the exact sequence
$\cdots \longrightarrow H_{G}^{*}\left(X_{d}, X_{d-1}\right) \longrightarrow H_{G}^{*}\left(X_{d}\right) \longrightarrow H_{G}^{*}\left(X_{d-1}\right) \longrightarrow \cdots$ does not split in general.

Theorem
For the case of Higgs bundles, Kirwan surjectivity holds for $\mathrm{GL}(2, \mathbb{C})$ but fails for $\operatorname{SL}(2, \mathbb{C})$.

And in fact, the Torelli group acts nontrivially...

Outline

Introduction

Higgs bundles

Equivariant Morse theory

Prym representations

Prym representations

- $\Gamma_{2}=H^{1}(M, \mathbb{Z} / 2) \simeq \operatorname{Hom}(\pi,\{ \pm 1\})$
- Γ_{2} acts on $\operatorname{Hom}(\pi, \operatorname{SL}(2, \mathbb{C}))$ by $(\gamma \rho)(x)=\gamma(x) \rho(x)$
- This action commutes with conjugation by $\operatorname{SL}(2, \mathbb{C})$, and hence it defines an action on the ordinary and equivariant cohomologies.

Prym representations

- $1 \neq \gamma \in \Gamma_{2}$, defines an unramified double cover $M_{\gamma} \rightarrow M$
- $H^{1}\left(M_{\gamma}\right)=W_{\gamma}^{+} \oplus W_{\gamma}^{-}$(± 1 eigenspaces of the involution)
- Lifts of elements of $\mathcal{I}(M)$ that commute with the involution may or may not be in the Torelli group of M_{γ}.
- Hence, there is a representation

$$
\Pi_{\gamma}: \mathcal{I}(M) \longrightarrow \operatorname{Sp}\left(W_{\gamma}^{-}, \mathbb{Z}\right) /\{ \pm I\}
$$

called the Prym representation of $\mathcal{I}(M)$ associated to γ.

- The image of Π_{γ} has finite index for $g>2$ (Looijenga).

Action of the Torelli group

Set: $H_{\text {eq. }}^{*}=H_{\mathrm{SL}(2, \mathrm{C})}^{*}(\operatorname{Hom}(\pi, \mathrm{SL}(2, \mathbb{C})))$

Theorem (DWW)

1. $\mathcal{I}(M)$ acts trivially on $\left(H_{\text {eq. }}^{*}\right)^{\Gamma_{2}}$
2. For $q \in S=\{2 j\}_{j=1}^{g-2}$ the action of $\mathcal{I}(M)$ splits as

$$
H_{e q .}^{6 g-6-q}=\left(H_{e q .}^{6 g-6-q}\right)^{\Gamma_{2}} \oplus \bigoplus_{1 \neq \gamma \in \Gamma_{2}} \Lambda^{q} W_{\gamma}^{-}
$$

3. $\mathcal{I}(M)$ acts trivially on $H_{e q .}^{6 g-6-q}$ for $q \notin S$
