On primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds

Woojin Jeon (joint work with Inkang Kim)

May 28, 2010

Table of contents

Hyperbolic 3-manifolds

Laminations on surfaces

Primitive stable representations

Cannon-Thurston map

Whitehead lemma

Proof of the main theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Basic notions of hyperbolic 3-manifolds

- \mathbb{H}^3 is the upper half space in \mathbb{R}^3 with a point at ∞ .
- The boundary of \mathbb{H}^3 can be identified with $\hat{\mathbb{C}}$.
- Aut(Ĉ) =PSL(2,ℂ)= The group of orientation preserving isometries of H³ with respect to the hyperbolic metric ds² = |dz|²+dt²/t².
- ► A Kleinian group is defined as a discrete subgroup of PSL(2,C).
- The limit set L_Γ of a Kleinian group Γ is defined as the set of limit points of the orbit Γx in Ĉ for some x ∈ ℍ³ ∪ Ĉ.
- A 3-manifold *M* is called a *complete hyperbolic 3-manifold* if it can be represented as ℍ³/Γ for a Kleinian group Γ.

I will assume that Γ does not contain any parabolic or elliptic isometries.

Compact core and convex core

- A compact core is a compact submanifold of M such that its inclusion is a homotopy equivalence.
- The convex core C_Γ of M = ℍ³/Γ is the smallest convex submanifold homotopically equivalent to M
- C_Γ can be constructed as a quotient of convex hull of L_Γ by Γ.

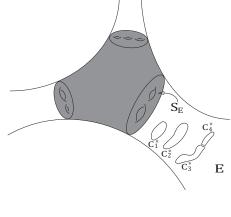


Figure: The dark region describes a compact core of *M*.

Geometrically finite and infinite hyperbolic 3-manifolds

- M is geometrically finite ⇔ C_Γ is compact ⇔ Every end E of M has a neighborhood disjoint with C_Γ.
- Every geometrically finite end *E* corresponds to a Riemann surface in $(\hat{\mathbb{C}} \setminus L_{\Gamma})/\Gamma$ which defines a point in Teichmüller space $\mathcal{T}(S_E)$.
- For a geometrically infinite end E, we have an ending lamination λ_E on S_E instead of a point in $\mathcal{T}(S_E)$.
- ► An ending lamination is roughly a limit of simple closed geodesics exiting *E*.
- Ending lamination theorem says the end invariants completely determine the geometry of hyperbolic 3-manifolds(Brock, Canary, Minsky).

Schottky groups

Choose 2n disjoint round disks $\{D_1, D'_1, \ldots, D_n, D'_n\}$ on $\hat{\mathbb{C}}$ and loxodromic isometries $\{g_1, \ldots, g_n\}$ s.t. $g_i(D_i) = \overline{D'_i^c}$.

- ⟨g₁,...,g_n⟩ becomes a rank n free discrete subgroup of PSL(2,ℂ) called a classical Schottky group.
- Every geometrically finite free Kleinian group is Schottky.
- For a geometrically infinite free Γ without parabolics, ^{III}³/Γ = H ∪ (∂H × [0,∞)) by the Tameness theorem and an ending lamination λ is defined on ∂H.

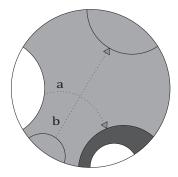


Figure: The grey region maps to the dark region by *a*. This figure describes the Schottky group with 2-generators $\{a, b\}$.

Geodesic and measured lamiations

- A geodesic lamination λ on a closed hyperbolic surface S is a closed subset which is a disjoint union of simple, complete geodesics called leaves of λ.
- A geodesic lamination λ is called *minimal* if every leaf is dense in λ.
- A geodesic lamination λ with a transverse invariant measure μ is called a *measured lamination*.

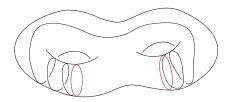


Figure: A geodesic lamination with a spiraling geodesic.

Filling laminations

- ► A measured lamination is called *filling* if every simple closed geodesic has a nontrivial intersection with it.
- Every filling lamination (λ, μ) has only one minimal component and its complementary regions are ideal polygons.
- An ending lamination λ_E is defined as the support of a limit in ML(S_E) of {c_n} where its geodesic representative c^{*}_n exits the end E, it is well defined by the intersection numer lemma(Bonahon, Canary).
- Every ending lamination is filling and belongs to Masur domain for compressible ends(Thurston, Canary).
- Originally Masur domain is a set of measured laminations which intersect compressible curves and their limits nontivially, but we can see that this definition is independent of the transverse invariant measure chosen.

Geometric decomposition of $PSL(2,\mathbb{C})$ -characters

Let F_n be a nonabellian free group on $n \ge 2$ generators. For any group G, Aut (F_n) acts on Hom (F_n, G) by $\alpha(\varphi) = \varphi \circ \alpha^{-1}$ where $\alpha \in Aut(F_n), \varphi \in Hom(F_n, G)$.

- G =the noncompact Lie group PSL(2, \mathbb{C}), $X_n(G) = \text{Hom}(F_n, G)/\text{Inn}(G).$
- ► The decomposition X_n(G) = D(F_n) ∪ E(F_n) is invariant under the action of Out(F_n).
- D(F_n) =discrete faithful characters, E(F_n) =characters with dense image.
- Schotty characters S(F_n) is the interior of D(F_n) and Aut(F_n) acts on S(F_n) properly discontinuously(Sullivan).

Dynamical decomposition of PSL(2,C)-characters

Minsky and Lubotzky introduced another decomposition of $X_n(G)$ by *primitive stable* and *redundent* charaters.

- ► $X_n(G) \supset \mathcal{PS}(F_n) \cup \mathcal{R}(F_n)$, it is not known whether $\mathcal{PS}(F_n) \cup \mathcal{R}(F_n)$ is conull in $X_n(G)$ or not.
- ► Out(F_n) acts ergodically on R(F_n) and acts properly discontinuously on PS(F_n)(Gelander, Minsky).
- ► Minsky showed PS(F_n) is open and is strictly larger than S(F_n).

 Minsky's conjecture : Every geometrically infinite free representation without parabolics is primitive stable.

Primitive stability-1

- Let w be a primitive and cyclically reduced word in F_n. w is defined as in the figure.
- Given a representation ρ: F → PSL(2,C) and a fixed base point o in H³, define τ_{ρ,o}: VS¹ → H³ as the unique ρ-equivariant map sending the origin e of the universal tree to o and sending each edge to a geodesic segment.

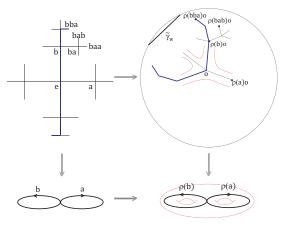


Figure: $\tau_{o,\rho}(\widetilde{w})$ for $w = bba \cdots$

Primitive stability-2

- Let ρ : F →PSL(2,C) be a Schottky representation. Then for any cyclically reduced word w, γ̃_w belongs to a C-neighborhood of τ_{ρ,o}(w̃) where C do not depend on w.
- A representation ρ : F →PSL(2,C) is called *primitive stable* if for any primitive cyclically reduced word w, τ_{ρ,o}(w̃) is a (K,δ)-quasi geodesic for uniform constants K,δ. Thus Schottky ⇒ Primitive stable.
- Key Lemma : If ρ : F →PSL(2,C) is a discrete faithful representation which is geometrically infinite without parabolics and is not primitive stable, we can find a sequence of primitive cyclically reduced words {w_n} such that d(o, γ_{w_n})→∞ as n→∞.

Sphere filling peano curve

Let's describe the original argument of Cannon and Thurston.

- ▶ Let S be a closed orientable hyperbolic surface and $\phi : S \rightarrow S$ be a pseudo-anosov diffeomorphism.
- ► The mapping torus M = M(φ) = (S × [0, 1]) / {(x, 0) ~ (φ(x), 0)} has a hyperbolic structure by Thurston.
- ► Let M_S be the infinite cyclic covering space of M such that its fundamental group is isomorphic to π₁(S). M_S becomes a double degenerate hyperbolic 3-manifold.
- ► The homotopy equivalence i : S → M_S can be lifted so that it induces a continuous embedding i : H² → H³.
- ▶ The continuous extension \hat{i} of \tilde{i} to $S^1_{\infty} = \partial_{\infty} \mathbb{H}^2$ is called the Cannon-Thurston map for M and $\hat{i}(S^1_{\infty})$ fills the sphere $\hat{\mathbb{C}}$.

Identified points of Cannon-Thurston map

For Hyperbolic metric spaces X, Y and an embedding $i: Y \rightarrow X$, A Cannon-Thurston map $\hat{i}: \hat{Y} \rightarrow \hat{X}$ is a continuous extension of i to their Gromov boundaries. Let $\rho: F_n \rightarrow \text{PSL}(2,\mathbb{C})$ be a discrete faithful representation which is geometrically infinite without parabolics.

- ► Tameness implies $\mathbb{H}^3/\rho(F_n) = H \cup (\partial H \times [0,\infty))$. Let $S_E = \partial H$.
- ▶ Let $\hat{i}: F_n \cup \partial_{\infty} F_n \rightarrow \mathbb{H}^3 \cup \hat{\mathbb{C}}$ be the ρ -equivariant CT-map. For $a, b \in \partial_{\infty} F_n$, suppose that $\hat{i}(a) = \hat{i}(b)$ and let γ_{∞} be the unique biinfinite geodesic on S_E which is homotopic to the biinfinite line in the tree with end points a, b. Then γ_{∞} is either a leaf of λ_E or an isolated geodesic joining two ideal boundary points of a complementary polygon of λ_E (Cannon, Thurston, Minsky, Mcmullen, Bowditch, Souto, Mj,...).

Whitehead lemma-1

Fix a generating set $X = \{x_1, x_2, ..., x_n\}$ for F_n . For a cyclically reduced primitive word g, Wh(g, X) is a graph with 2n vertices labeled $x_1, x_1^{-1}, \dots, x_n, x_n^{-1}$ and two vertices x, y^{-1} is joined by an edge from x to y^{-1} if the string xy appears in g or in a cyclic permutation of g.

- If Wh(g, X) is connected and and has no cutpoint, then g is not primitive(Whitehead lemma).
- Wh(λ_E, Δ) can be defined for an ending lamination λ_E on ∂H with a disk system Δ dual to a generating set of F_n.
- For an ending lamination λ_E, there exist a Δ s.t. Wh(λ_E, Δ) is connected and has no cut point(Canary, Otal).

Whitehead lemma-2

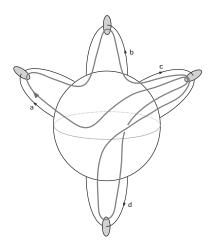


Figure: A loop representing $ab^{-1}cd^{-1}c^{-1}$

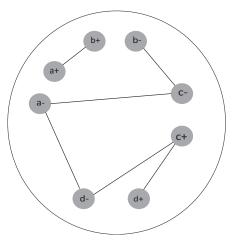


Figure: The Whitehead graph for $ab^{-1}cd^{-1}c^{-1}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Proof of the main theorem

Theorem : Every discrete faithful representation ρ : $F_n \rightarrow PSL(2,\mathbb{C})$ without parabolics is primitive stable. Proof :

- Suppose that ρ is not primitive stable. Then we get a sequence of primitive cyclically reduced words {w_n} s.t. d(o, γ̃_{w_n})→∞.
- ▶ By a variant of Cantor diagonal argument, we can assume that for all i > 0, w_{i+1} = w_iv_i for some word v_i.
- The two end points $a, b \in \partial_{\infty}(F_n)$ of \widetilde{w}_{∞} are identified by \hat{i} .
- w_{∞} can be straightened to a bi-infinite geodesic γ_{∞} on ∂H and its closure contains $\lambda_E \Rightarrow Wh(\gamma_{\infty}, \Delta)$ is connected and has no cut point.
- For a sufficiently large n, Wh(w_n, Δ) = Wh(γ_∞, Δ) but this contradicts to the Whitehead lemma.

Extension to the parabolic cases

A generalized version of Minsky's conjecture is the following : A discrete faithful representation of F_n is primitive stable if and only if every component of its ending lamination is blocking.

- ► An incompressible component E_i should be geometrically finite because if not, there exists a sequence of exiting primitive closed geodesics.
- λ is called *blocking* with respect to Δ if λ has no Δ-waves, and there exists some k such that every length k subword of the infinite word determined by a leaf of λ does not appear in a cyclically reduced primitive word.
- Doubly incompressible laminations satisfy the blocking property.
- A measured lamination λ is called *doubly incompressible* if for any essential disc or annulus A, i(∂A, λ) > 0.
- Under the additional assumption that every compressible component of its ending lamination is doubly incompressible, this conjecture can be proved.

References-1

- D. Calegari and D. Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006), no.2, 385-446.
- J. Brock, R. Canary, Y. Minsky, The Classification of Kleinian surface groups II: The Ending Lamination Conjecture, preprint, 2004.
- ► J. Cannon and W. P. Thurston, Group invariant Peano Curves, Geometry and Topology 11(2007), 1315-1356.
- Mahan Mj, Cannon-Thurston maps for Kleinian groups, preprint, 2010.
- R. D. Canary, Ends of hyperbolic 3-manifolds, J. Amer. Math. Soc. 6 (1993), no. 1, 1-35.
- ► A. Lubotzky, Dynamics of Aut(F_n) actions on group presentations and representations, Preprint, 2008.

References-2

- ► Y. Minsky, On Dynamics of Out(F_n) on PSL₂(C) characters, preprint, 2009.
- ► I. Kim, C. Lecuire and K. Ohshika, Convergence of freely decomposable Kleinian groups, preprint.
- ▶ I. Kim, Divergent sequences of function groups, Diff geom and its applications, vol 26 (2008), no. 6, 645-655.
- W. Jeon, I. Kim, On primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds, preprint, 2010.
- J.P. Otal, Courants géodésiques et produits libres, Thèse d'Etat, Université de Paris-Sud, Orsay (1988).