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1. Trigonometric formulas for spherical and hyperbolic triangles

Spherical triangles. Consider a spherical triangle in the unit sphere having side-
lengths a,b, ¢ € (0,7) and corresponding opposite interior angles «, 3,y € (0, 7).

The following Delambre-Gauss formulas were discovered by Delambre in 1807
(published in 1809) and were subsequently discovered independently by Gauss.

Delambre (1749-1822): Director of Paris Observatory during 1804-1822.
Gauss (1777-1855): Director of Gottingen Observatory during 1807-1855.

Theorem 1.1 (Delambre-Gauss formulas for spherical triangles).

cos3(a+b)sinly = cosi(a+ ) cosic, (1)
sini(a+b)siniy = cosi(a—p)sinic, (2)
cos 3(a — b) cos 1~ sin 3 (o + 3) cos ic, (3)
sini(a—b) cosiy = sini(a—p) sinic (4)
Remark. Notethat a >b iff « > 3, and a+b>7 iff a4+ 3> 7.
Corollary 1.2 (Napier’s analogies for spherical triangles).
sin 3 (o — 3) _ tan s(a—b) 5)
sin 3 (o + 3) tangc
cos 3 (o — 3) _ tan s(a+b) (©)
cos 3 (a+ 3) tangc
sin 3 (a — b) _ tan F(a—p) 1)
sin 3(a + b) cot 37
cos 3(a — b) _ tan F(a+p) ®)
cos 3(a + b) cot 37y
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Corollary 1.3 (Law of tangents for spherical triangles).

tan 3 (a — b) tan 1 (a — )

= 9)

tan 3 (a + b) tan 1 (a+ )

Corollary 1.4 (Law I of cosines for spherical triangles).

cosc = cosa cosb+sina sinb cos~y. (10)

Corollary 1.5 (Law II of cosines for spherical triangles).

cosy = —cosa cos 3 + sina sin 3 cosc. (11)

Corollary 1.6 (Law of sines for spherical triangles).

sina _ sinb _ sinc (12)

sin o sin 3 siny’

Hyperbolic triangles. Consider a triangle in the hyperbolic plane H? having
side-lengths a, b, c > 0 and corresponding opposite interior angles a, 3,y € (0, 7).

Theorem 1.7 (Delambre-Gauss formulas for hyperbolic triangles).

coshi(a+b)singy = cosi(a+ ) coshic, (13)
sinh1(a+b) singy = cosi(a—f)sinhic, (14)
cosh £ (a — b) cos 37 sin 3 (o + 3) cosh 3c, (15)
sinh §(a —b) cos3y = sing(a — ) sinh3c (16)

Remark. Note that a > b if and only if o > £.

Corollary 1.8 (Law I of cosines for hyperbolic triangles).

coshc = cosha coshb —sinha sinhb cos+y. (17)

Corollary 1.9 (Law II of cosines for hyperbolic triangles).

cosy = —cosa cos 3+ sina sin 3 coshc. (18)

Corollary 1.10 (Law of sines for hyperbolic triangles).

sinh a sinh b _ sinh ¢

sin a sin 3 siny
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Convex right-angled hexagons in H2. Consider a convex right-angled hexagon
in H? having side-lengths Iy, --- ,lg > 0 in cyclic order.

Theorem 1.11 (Delambre-Gauss formulas for convex r.a.h’s in H2).

coshi(ly +13) sinh 1l = cosh(ly +lg) cosh 15, (20)
sinh1(l; +13) sinh 2l = cosh %(l4 — lg) sinh 115, (21)
cosh1(ly —3) cosh il = sinhi(ly+1lg) coshils, (22)
sinh 1(l; —l3) cosh il = sinhi(ly —lg) sinh 1ls. (23)

Remark. Note that [; <3 if and only if 4 < Ig.

Corollary 1.12 (Law of cosines for convex r.a.h’s in H?).

coshl, = —coshl, o coshl, 4+ sinhl, 4o sinhl, 14 coshi, 3. (24)

Corollary 1.13 (Law of sines for convex r.a.h’s in H?).

Sinhh - Sinhlg - sinhl5 (25)
sinhly,  sinhlg  sinhly’

2. Trigonometric formulas for right-angled hexagons in H?

Hyperbolic 3-space: H?®.

Right-angled hexagon in H3. A r.a.h. in H3 is a cyclically indexed six-tuple
(L1,-+-,Lg) of lines in H* such that, for each n modulo 6, lines L, and L,
intersect perpendicularly. It is said to be oriented if all the lines are oriented.

Complex (full) side-lengths o,, of an oriented r.a.h. in H3.
For an oriented right-angled hexagon (Li,---,Lg) in H?, let o1, ,06 € C/2miZ
be respectively the complex (full) side-lengths of its side-lines L1, - - , Lg.

Theorem 2.1 (Laws of cosines for oriented r.a.h’s in H?).

cosho,, = cosho,4o coshopig 4 sinhoy,4o sinho,14 cosho, 3. (26)

Theorem 2.2 (Laws of sines for oriented r.a.h’s in H?).

sinh o7 sinhos  sinhos (27)
sinho, sinhog sinhos’

Remark. The above two laws for oriented r.a.h’s in H® were known to Schilling
as early as in 1891, but a correct treatment of signs seems to be given first by
Fenchel in “Elementary Geometry in Hyperbolic Space” published in 1989.
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Complex half side-lengths §,, of an oriented r.a.h. in H3.
For an oriented r.a.h. (Ly,---, Lg) in H3, let §,, € C/27iZ be an arbitrary choice
of one its two complex half side-lengths for L,,, the other being §,, + 7i € C/2miZ.

We obtain Delambre-Gauss formulas for oriented right-angled hexagons in H3.

Theorem 2.3 (Delambre-Gauss formulas for oriented r.a.h’s in H?). For
an oriented r.a.h.in H3, there exists ¢ € {—1,1}, depending on the choices of the
half side-lengths 41, - - , dg, so that the following formulas (28)—(31) hold:

cosh(d; + d3) coshdy = € cosh(ds + d¢) cosh ds, (28)
—sinh(d; + d3) coshdy = € cosh(dy — dg) sinh d5, (29)
—cosh(d; — 03)sinhdy = & sinh(d4 + dg) cosh 05, (30)

sinh(d; — d3)sinhdy = ¢ sinh(d4 — dg) sinh J5, (31)

Remark. By suitably changing orientations of some of the side-lines, one may
obtain the three identities (29)—(31) from the single identity (28).

3. Generalized Delambre-Gauss formulas for oriented, augmented
right-angled hexagons in H*

Hyperbolic 4-space: H*.
Clifford algebra or the algebra of {e1, es}-quaternions

Ay := Clps = R+ Rej +Res + Rejes
subject to e% = e% = —1 and ejes + ese; = 0.
Reverse involution ()* : Ay — Ay is defined by

(w0 + z1€1 + T2 + T12€1€2)" 1= To + T1€1 + Toes — Ti2€1€,

with real coefficients xq, x1, T2, T12.
Hyperbolic functions cosh and sinh with an As-variable are defined by:

5 , sinhz := exp(z) —2exp(—w )

coshx :=

Line and plane in H*. By line and plane in H* we mean respectively complete
geodesic line and totally geodesic plane in H*.

Right-angled hexagon in H*. A r.a.h. in H* is a cyclically indexed six-tuple
(Ly,---,Lg) of lines in H* such that, for each n modulo 6, lines L, and L, ;
intersect perpendicularly. It is said to be oriented if all lines are oriented.
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Line-plane flag. A line-plane flag in H* is an ordered pair F' = (L, II), where L
is a line and II is a plane in H* such that line L is contained in plane II. It is said
to be oriented if both the line L and the plane II are oriented.

We say that a line L' and a line-plane flag F' = (L,II) intersect perpendicularly if
L' intersects each of L and II perpendicularly.

Augmented right-angled hexagon in H%. An a.r.a.h. in H* is a cyclically
indexed six-tuple (S1,- - ,Sg) such that either S1, Ss, S5 are all lines and Ss, Sy, Sg
are all line-plane flags in H*, or Si,Ss, S5 are all line-plane flags and S5, Sy, Se
are all lines in H*, and such that, for each n modulo 6, S,, and S, intersect
perpendicularly. It is said to be oriented if all S,,, n =1,--- ,6 are oriented.

Two es-complex half distances 513(51,[_:2) € (R + Res)/2wesZ from Ly to Ly
along a common perpendicular F = (L, Ti) in H%.
The two values of 61;(Ijh Eg) differ by me,.

Two {e1, e2}-quaternion half distances (5E(ﬁ1, Fy) € Ay mod (period) from F
to Fy along a common perpendicular L in H4.
The two values of 5E(ﬁ1, FQ) differ by wu for some u € v/—1 C As.

Theorem 3.1 (Delambre-Gauss formulas for oriented a.r.a.h’s in H*). For
an oriented, augmented right-angled hexagon (El,fg,fg,ﬁ4,f5,ﬁ6) in H* with
arbitrary choices of {ej,es}-quaternion half side-lengths 41, 3,05 and arbitrary
choices of es-complex half side-lengths ds, d4, g, the following formulas hold:

(sinh &1 cosh d5 sinh d5 + cosh d; cosh 65 cosh d3)*

= ¢ (sinh &4 cosh 05 sinh dg + cosh 04 cosh d5 cosh dg); (32)
(sinh &7 sinh 5 sinh §3 — cosh 7 sinh d5 cosh d3)*

= ¢ (sinh &4 cosh 05 cosh §g + cosh d4 cosh 5 sinh dg); (33)
(sinh 67 cosh 09 cosh d5 + cosh 07 cosh g sinh d3)*

= ¢ (sinh 04 sinh J5 sinh dg — cosh d4 sinh d5 cosh dg); (34)
(sinh &7 sinh 5 cosh §3 — cosh 7 sinh §5 sinh d3)*

= & (sinh 04 sinh 05 cosh dg — cosh d4 sinh d5 sinh dg), (35)

with e = 1 or —1, depending on the choices of the six half side-lengths {5, }5_;.

Remark. Formulas (32)-(35) above can be abbreviated as follows:

(scs +ccc)ias = e(scs + cce)yse;
(sss —csc)fey = e(scc+ ces)yse;
(scc+ccs)ias = €(sss — €sC)as6;
(ssc —css)jay = € (ssc — css)yse.

Remark. The formulas (32)—(35) above are left invariant under taking the reverse
involution ()* and shifting the indices by 123456 — 456123.



4. Ideas of Proof

Theorem 4.1. For an oriented r.a.h. (L1, Ly, - - - , L) in H3, let M, € Isom™ (H3),
n modulo 6, be such that M,,(L,) = L,, and M,,(Ly,—1) = Ly 11. Then

Mg M My Ms M, M; = Id. (36)

Theorem 4.2. For an oriented r.a.h. (Ly, Ly, -+ , Lg) in H3, let M,, € Isom™ (H3),
n modulo 6, be as in Theorem 4.1 and let T,, € Isom™(H?) be a conjugate of M,,
such that T,,(L1) = Ly if n =1,3,5 and T,,(La) = L2 if n = 2,4,6. Then

T, T, T3 Ty T5Ts = Id. (37)

Theorem 4.3. For an oriented a.r.a.h. (§1, e ,§6) in H%, let M,, € Isom™ (H%),
n modulo 6, be such that Mn(§n) =5, and Mn(g’n,l) = §n+1. Then

M Ms M, Ms My M, = Id. (38)

Theorem 4.4. For an oriented a.r.a.h. (Sy,---,S5) in H4, let M, € Isom™ (H%),

n modulo 6, be as in Theorem 4.3 and let T,, € Isom™*(H*) be a conjugate of M,,
such that Tn(gl) =51 ifn=1,35and T,(S2) = S, if n =2,4,6. Then

T, T, T3 T, Ts T = 1d. (39)

Proof of Delambre-Gauss formulas for oriented a.r.a.h’s in H*. In the
upper half-space model of H"*2 =R + Re; + -+ - + Re,, + R*e, 11, we have

Isom™ (H") = PSL(2,T,, U0),
where I',, C A is the full Clifford group and a Vahlen matrix A € SL(2,T',, U0)
acts on H"*2 as a fractional linear transformation:

Az = (az + b)(cz + d) ™.
Note that I'y U0 = A; = C and I'> U0 = Ay. Now choose special positions for §1
and Sy as follows:
Si=Li=Lpep So=F =L 11011y enel)-

We obtain an identity of 2 x 2 matrices by replacing each isometry T, in (39) by a
Vahlen matrix A,, and the identity isometry by eI for some ¢ € {—1,1}. Precisely,
we have

A1A2A3 = 6(A4A5A6)71.
Working out the product matrices on both sides and equating the corresponding
entries, we obtain the Delambre-Gauss formulas by suitable manipulations. (I

THANK YOU!



