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1. Trigonometric formulas for spherical and hyperbolic triangles

Spherical triangles. Consider a spherical triangle in the unit sphere having side-
lengths a, b, c ∈ (0, π) and corresponding opposite interior angles α, β, γ ∈ (0, π).

The following Delambre-Gauss formulas were discovered by Delambre in 1807
(published in 1809) and were subsequently discovered independently by Gauss.

Delambre (1749–1822): Director of Paris Observatory during 1804–1822.
Gauss (1777–1855): Director of Göttingen Observatory during 1807–1855.

Theorem 1.1 (Delambre-Gauss formulas for spherical triangles).

cos 1
2 (a + b) sin 1

2γ = cos 1
2 (α + β) cos 1

2c, (1)

sin 1
2 (a + b) sin 1

2γ = cos 1
2 (α− β) sin 1

2c, (2)

cos 1
2 (a− b) cos 1

2γ = sin 1
2 (α + β) cos 1

2c, (3)

sin 1
2 (a− b) cos 1

2γ = sin 1
2 (α− β) sin 1

2c. (4)

Remark. Note that a > b iff α > β, and a + b > π iff α + β > π.

Corollary 1.2 (Napier’s analogies for spherical triangles).

sin 1
2 (α− β)

sin 1
2 (α + β)

=
tan 1

2 (a− b)
tan 1

2c
, (5)

cos 1
2 (α− β)

cos 1
2 (α + β)

=
tan 1

2 (a + b)
tan 1

2c
, (6)

sin 1
2 (a− b)

sin 1
2 (a + b)

=
tan 1

2 (α− β)
cot 1

2γ
, (7)

cos 1
2 (a− b)

cos 1
2 (a + b)

=
tan 1

2 (α + β)
cot 1

2γ
. (8)
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Corollary 1.3 (Law of tangents for spherical triangles).

tan 1
2 (a− b)

tan 1
2 (a + b)

=
tan 1

2 (α− β)
tan 1

2 (α + β)
. (9)

Corollary 1.4 (Law I of cosines for spherical triangles).

cos c = cos a cos b + sin a sin b cos γ. (10)

Corollary 1.5 (Law II of cosines for spherical triangles).

cos γ = − cos α cos β + sinα sinβ cos c. (11)

Corollary 1.6 (Law of sines for spherical triangles).
sin a

sinα
=

sin b

sinβ
=

sin c

sin γ
. (12)

Hyperbolic triangles. Consider a triangle in the hyperbolic plane H2 having
side-lengths a, b, c > 0 and corresponding opposite interior angles α, β, γ ∈ (0, π).

Theorem 1.7 (Delambre-Gauss formulas for hyperbolic triangles).

cosh 1
2 (a + b) sin 1

2γ = cos 1
2 (α + β) cosh 1

2c, (13)

sinh 1
2 (a + b) sin 1

2γ = cos 1
2 (α− β) sinh 1

2c, (14)

cosh 1
2 (a− b) cos 1

2γ = sin 1
2 (α + β) cosh 1

2c, (15)

sinh 1
2 (a− b) cos 1

2γ = sin 1
2 (α− β) sinh 1

2c. (16)

Remark. Note that a > b if and only if α > β.

Corollary 1.8 (Law I of cosines for hyperbolic triangles).

cosh c = cosh a cosh b− sinh a sinh b cos γ. (17)

Corollary 1.9 (Law II of cosines for hyperbolic triangles).

cos γ = − cos α cos β + sinα sinβ cosh c. (18)

Corollary 1.10 (Law of sines for hyperbolic triangles).
sinh a

sinα
=

sinh b

sinβ
=

sinh c

sin γ
. (19)
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Convex right-angled hexagons in H2. Consider a convex right-angled hexagon
in H2 having side-lengths l1, · · · , l6 > 0 in cyclic order.

Theorem 1.11 (Delambre-Gauss formulas for convex r.a.h.’s in H2).

cosh 1
2 (l1 + l3) sinh 1

2 l2 = cosh 1
2 (l4 + l6) cosh 1

2 l5, (20)

sinh 1
2 (l1 + l3) sinh 1

2 l2 = cosh 1
2 (l4 − l6) sinh 1

2 l5, (21)

cosh 1
2 (l1 − l3) cosh 1

2 l2 = sinh 1
2 (l4 + l6) cosh 1

2 l5, (22)

sinh 1
2 (l1 − l3) cosh 1

2 l2 = sinh 1
2 (l4 − l6) sinh 1

2 l5. (23)

Remark. Note that l1 < l3 if and only if l4 < l6.

Corollary 1.12 (Law of cosines for convex r.a.h.’s in H2).

cosh ln = − cosh ln+2 cosh ln+4 + sinh ln+2 sinh ln+4 cosh ln+3. (24)

Corollary 1.13 (Law of sines for convex r.a.h.’s in H2).

sinh l1
sinh l4

=
sinh l3
sinh l6

=
sinh l5
sinh l2

. (25)

2. Trigonometric formulas for right-angled hexagons in H3

Hyperbolic 3-space: H3.

Right-angled hexagon in H3. A r.a.h. in H3 is a cyclically indexed six-tuple
(L1, · · · , L6) of lines in H4 such that, for each n modulo 6, lines Ln and Ln+1

intersect perpendicularly. It is said to be oriented if all the lines are oriented.

Complex (full) side-lengths σn of an oriented r.a.h. in H3.
For an oriented right-angled hexagon (~L1, · · · , ~L6) in H3, let σ1, · · · , σ6 ∈ C/2πiZ
be respectively the complex (full) side-lengths of its side-lines ~L1, · · · , ~L6.

Theorem 2.1 (Laws of cosines for oriented r.a.h.’s in H3).

cosh σn = cosh σn+2 cosh σn+4 + sinhσn+2 sinhσn+4 cosh σn+3. (26)

Theorem 2.2 (Laws of sines for oriented r.a.h.’s in H3).

sinhσ1

sinhσ4
=

sinhσ3

sinhσ6
=

sinhσ5

sinhσ2
. (27)

Remark. The above two laws for oriented r.a.h.’s in H3 were known to Schilling
as early as in 1891, but a correct treatment of signs seems to be given first by
Fenchel in “Elementary Geometry in Hyperbolic Space” published in 1989.
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Complex half side-lengths δn of an oriented r.a.h. in H3.
For an oriented r.a.h. (~L1, · · · , ~L6) in H3, let δn ∈ C/2πiZ be an arbitrary choice
of one its two complex half side-lengths for ~Ln, the other being δn + πi ∈ C/2πiZ.

We obtain Delambre-Gauss formulas for oriented right-angled hexagons in H3.

Theorem 2.3 (Delambre-Gauss formulas for oriented r.a.h.’s in H3). For
an oriented r.a.h.in H3, there exists ε ∈ {−1, 1}, depending on the choices of the
half side-lengths δ1, · · · , δ6, so that the following formulas (28)–(31) hold:

cosh(δ1 + δ3) cosh δ2 = ε cosh(δ4 + δ6) cosh δ5, (28)
− sinh(δ1 + δ3) cosh δ2 = ε cosh(δ4 − δ6) sinh δ5, (29)
− cosh(δ1 − δ3) sinh δ2 = ε sinh(δ4 + δ6) cosh δ5, (30)

sinh(δ1 − δ3) sinh δ2 = ε sinh(δ4 − δ6) sinh δ5, (31)

Remark. By suitably changing orientations of some of the side-lines, one may
obtain the three identities (29)–(31) from the single identity (28).

3. Generalized Delambre-Gauss formulas for oriented, augmented
right-angled hexagons in H4

Hyperbolic 4-space: H4.

Clifford algebra or the algebra of {e1, e2}-quaternions

A2 := Cl0,2 = R+ Re1 + Re2 + Re1e2

subject to e2
1 = e2

2 = −1 and e1e2 + e2e1 = 0.

Reverse involution ()∗ : A2 → A2 is defined by

(x0 + x1e1 + x2e2 + x12e1e2)∗ := x0 + x1e1 + x2e2 − x12e1e2,

with real coefficients x0, x1, x2, x12.

Hyperbolic functions cosh and sinh with an A2-variable are defined by:

cosh x :=
exp(x) + exp(−x∗)

2
, sinhx :=

exp(x)− exp(−x∗)
2

.

Line and plane in H4. By line and plane in H4 we mean respectively complete
geodesic line and totally geodesic plane in H4.

Right-angled hexagon in H4. A r.a.h. in H4 is a cyclically indexed six-tuple
(L1, · · · , L6) of lines in H4 such that, for each n modulo 6, lines Ln and Ln+1

intersect perpendicularly. It is said to be oriented if all lines are oriented.
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Line-plane flag. A line-plane flag in H4 is an ordered pair F = (L,Π), where L
is a line and Π is a plane in H4 such that line L is contained in plane Π. It is said
to be oriented if both the line L and the plane Π are oriented.

We say that a line L′ and a line-plane flag F = (L,Π) intersect perpendicularly if
L′ intersects each of L and Π perpendicularly.

Augmented right-angled hexagon in H4. An a.r.a.h. in H4 is a cyclically
indexed six-tuple (S1, · · · , S6) such that either S1, S3, S5 are all lines and S2, S4, S6

are all line-plane flags in H4, or S1, S3, S5 are all line-plane flags and S2, S4, S6

are all lines in H4, and such that, for each n modulo 6, Sn and Sn+1 intersect
perpendicularly. It is said to be oriented if all Sn, n = 1, · · · , 6 are oriented.

Two e2-complex half distances δ~F (~L1, ~L2) ∈ (R + Re2)/2πe2Z from ~L1 to ~L2

along a common perpendicular ~F = (~L, ~Π) in H4.

The two values of δ~F (~L1, ~L2) differ by πe2.

Two {e1, e2}-quaternion half distances δ~L(~F1, ~F2) ∈ A2 mod (period) from ~F1

to ~F2 along a common perpendicular ~L in H4.

The two values of δ~L(~F1, ~F2) differ by πu for some u ∈ √−1 ⊂ A2.

Theorem 3.1 (Delambre-Gauss formulas for oriented a.r.a.h.’s in H4). For
an oriented, augmented right-angled hexagon (~L1, ~F2, ~L3, ~F4, ~L5, ~F6) in H4 with
arbitrary choices of {e1, e2}-quaternion half side-lengths δ1, δ3, δ5 and arbitrary
choices of e2-complex half side-lengths δ2, δ4, δ6, the following formulas hold:

(sinh δ1 cosh δ2 sinh δ3 + cosh δ1 cosh δ2 cosh δ3)∗

= ε (sinh δ4 cosh δ5 sinh δ6 + cosh δ4 cosh δ5 cosh δ6); (32)
(sinh δ1 sinh δ2 sinh δ3 − cosh δ1 sinh δ2 cosh δ3)∗

= ε (sinh δ4 cosh δ5 cosh δ6 + cosh δ4 cosh δ5 sinh δ6); (33)
(sinh δ1 cosh δ2 cosh δ3 + cosh δ1 cosh δ2 sinh δ3)∗

= ε (sinh δ4 sinh δ5 sinh δ6 − cosh δ4 sinh δ5 cosh δ6); (34)
(sinh δ1 sinh δ2 cosh δ3 − cosh δ1 sinh δ2 sinh δ3)∗

= ε (sinh δ4 sinh δ5 cosh δ6 − cosh δ4 sinh δ5 sinh δ6), (35)

with ε = 1 or −1, depending on the choices of the six half side-lengths {δn}6n=1.

Remark. Formulas (32)–(35) above can be abbreviated as follows:

(scs + ccc)∗123 = ε (scs + ccc)456;
(sss− csc)∗123 = ε (scc + ccs)456;
(scc + ccs)∗123 = ε (sss− csc)456;
(ssc− css)∗123 = ε (ssc− css)456.

Remark. The formulas (32)–(35) above are left invariant under taking the reverse
involution ()∗ and shifting the indices by 123456 → 456123.
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4. Ideas of Proof

Theorem 4.1. For an oriented r.a.h. (~L1, ~L2, · · · , ~L6) in H3, let Mn ∈ Isom+(H3),
n modulo 6, be such that Mn(~Ln) = ~Ln and Mn(~Ln−1) = ~Ln+1. Then

M6 M5 M4 M3 M2 M1 = Id. (36)

Theorem 4.2. For an oriented r.a.h. (~L1, ~L2, · · · , ~L6) in H3, let Mn ∈ Isom+(H3),
n modulo 6, be as in Theorem 4.1 and let Tn ∈ Isom+(H3) be a conjugate of Mn

such that Tn(~L1) = ~L1 if n = 1, 3, 5 and Tn(~L2) = ~L2 if n = 2, 4, 6. Then

T1 T2 T3 T4 T5 T6 = Id. (37)

Theorem 4.3. For an oriented a.r.a.h. (~S1, · · · , ~S6) in H4, let Mn ∈ Isom+(H4),
n modulo 6, be such that Mn(~Sn) = ~Sn and Mn(~Sn−1) = ~Sn+1. Then

M6 M5 M4 M3 M2 M1 = Id. (38)

Theorem 4.4. For an oriented a.r.a.h. (~S1, · · · , ~S6) in H4, let Mn ∈ Isom+(H4),
n modulo 6, be as in Theorem 4.3 and let Tn ∈ Isom+(H4) be a conjugate of Mn

such that Tn(~S1) = ~S1 if n = 1, 3, 5 and Tn(~S2) = ~S2 if n = 2, 4, 6. Then

T1 T2 T3 T4 T5 T6 = Id. (39)

Proof of Delambre-Gauss formulas for oriented a.r.a.h.’s in H4. In the
upper half-space model of Hn+2 ≡ R+ Re1 + · · ·+ Ren + R+en+1, we have

Isom+(Hn) ≡ PSL(2,Γn ∪ 0),

where Γn ⊂ A×n is the full Clifford group and a Vahlen matrix A ∈ SL(2,Γn ∪ 0)
acts on Hn+2 as a fractional linear transformation:

Ax = (ax + b)(cx + d)−1.

Note that Γ1 ∪ 0 = A1 ≡ C and Γ2 ∪ 0 = A2. Now choose special positions for ~S1

and ~S2 as follows:
~S1 = ~L1 = ~L[0,∞]; ~S2 = ~F2 = (~L[−1,1], ~Π[−1,1]∨[−e1,e1]).

We obtain an identity of 2× 2 matrices by replacing each isometry Tn in (39) by a
Vahlen matrix An, and the identity isometry by εI for some ε ∈ {−1, 1}. Precisely,
we have

A1A2A3 = ε (A4A5A6)−1.

Working out the product matrices on both sides and equating the corresponding
entries, we obtain the Delambre-Gauss formulas by suitable manipulations. ¤

THANK YOU!


