Delambre-Gauss Formulas in Hyperbolic 4-Space

Ying Zhang
(Suzhou University)

Joint work with S. P. Tan and Y. L. Wong

1. Trigonometric formulas for spherical and hyperbolic triangles

Spherical triangles. Consider a spherical triangle in the unit sphere having sidelengths $a, b, c \in(0, \pi)$ and corresponding opposite interior angles $\alpha, \beta, \gamma \in(0, \pi)$.

The following Delambre-Gauss formulas were discovered by Delambre in 1807 (published in 1809) and were subsequently discovered independently by Gauss.

Delambre (1749-1822): Director of Paris Observatory during 1804-1822.
Gauss (1777-1855): Director of Göttingen Observatory during 1807-1855.

Theorem 1.1 (Delambre-Gauss formulas for spherical triangles).

$$
\begin{align*}
\cos \frac{1}{2}(a+b) \sin \frac{1}{2} \gamma & =\cos \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2} c \tag{1}\\
\sin \frac{1}{2}(a+b) \sin \frac{1}{2} \gamma & =\cos \frac{1}{2}(\alpha-\beta) \sin \frac{1}{2} c \tag{2}\\
\cos \frac{1}{2}(a-b) \cos \frac{1}{2} \gamma & =\sin \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2} c \tag{3}\\
\sin \frac{1}{2}(a-b) \cos \frac{1}{2} \gamma & =\sin \frac{1}{2}(\alpha-\beta) \sin \frac{1}{2} c \tag{4}
\end{align*}
$$

Remark. Note that $a>b$ iff $\alpha>\beta$, and $a+b>\pi$ iff $\alpha+\beta>\pi$.

Corollary 1.2 (Napier's analogies for spherical triangles).

$$
\begin{align*}
& \frac{\sin \frac{1}{2}(\alpha-\beta)}{\sin \frac{1}{2}(\alpha+\beta)}=\frac{\tan \frac{1}{2}(a-b)}{\tan \frac{1}{2} c} \tag{5}\\
& \frac{\cos \frac{1}{2}(\alpha-\beta)}{\cos \frac{1}{2}(\alpha+\beta)}=\frac{\tan \frac{1}{2}(a+b)}{\tan \frac{1}{2} c} \tag{6}\\
& \frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)}=\frac{\tan \frac{1}{2}(\alpha-\beta)}{\cot \frac{1}{2} \gamma} \tag{7}\\
& \frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)}=\frac{\tan \frac{1}{2}(\alpha+\beta)}{\cot \frac{1}{2} \gamma} \tag{8}
\end{align*}
$$

Corollary 1.3 (Law of tangents for spherical triangles).

$$
\begin{equation*}
\frac{\tan \frac{1}{2}(a-b)}{\tan \frac{1}{2}(a+b)}=\frac{\tan \frac{1}{2}(\alpha-\beta)}{\tan \frac{1}{2}(\alpha+\beta)} \tag{9}
\end{equation*}
$$

Corollary 1.4 (Law I of cosines for spherical triangles).

$$
\begin{equation*}
\cos c=\cos a \cos b+\sin a \sin b \cos \gamma \tag{10}
\end{equation*}
$$

Corollary 1.5 (Law II of cosines for spherical triangles).

$$
\begin{equation*}
\cos \gamma=-\cos \alpha \cos \beta+\sin \alpha \sin \beta \cos c \tag{11}
\end{equation*}
$$

Corollary 1.6 (Law of sines for spherical triangles).

$$
\begin{equation*}
\frac{\sin a}{\sin \alpha}=\frac{\sin b}{\sin \beta}=\frac{\sin c}{\sin \gamma} \tag{12}
\end{equation*}
$$

Hyperbolic triangles. Consider a triangle in the hyperbolic plane H^{2} having side-lengths $a, b, c>0$ and corresponding opposite interior angles $\alpha, \beta, \gamma \in(0, \pi)$.

Theorem 1.7 (Delambre-Gauss formulas for hyperbolic triangles).

$$
\begin{align*}
\cosh \frac{1}{2}(a+b) \sin \frac{1}{2} \gamma & =\cos \frac{1}{2}(\alpha+\beta) \cosh \frac{1}{2} c \tag{13}\\
\sinh \frac{1}{2}(a+b) \sin \frac{1}{2} \gamma & =\cos \frac{1}{2}(\alpha-\beta) \sinh \frac{1}{2} c, \tag{14}\\
\cosh \frac{1}{2}(a-b) \cos \frac{1}{2} \gamma & =\sin \frac{1}{2}(\alpha+\beta) \cosh \frac{1}{2} c, \tag{15}\\
\sinh \frac{1}{2}(a-b) \cos \frac{1}{2} \gamma & =\sin \frac{1}{2}(\alpha-\beta) \sinh \frac{1}{2} c . \tag{16}
\end{align*}
$$

Remark. Note that $a>b$ if and only if $\alpha>\beta$.

Corollary 1.8 (Law I of cosines for hyperbolic triangles). $\cosh c=\cosh a \cosh b-\sinh a \sinh b \cos \gamma$.

Corollary 1.9 (Law II of cosines for hyperbolic triangles).

$$
\begin{equation*}
\cos \gamma=-\cos \alpha \cos \beta+\sin \alpha \sin \beta \cosh c \tag{18}
\end{equation*}
$$

Corollary 1.10 (Law of sines for hyperbolic triangles).

$$
\begin{equation*}
\frac{\sinh a}{\sin \alpha}=\frac{\sinh b}{\sin \beta}=\frac{\sinh c}{\sin \gamma} \tag{19}
\end{equation*}
$$

Convex right-angled hexagons in H^{2}. Consider a convex right-angled hexagon in H^{2} having side-lengths $l_{1}, \cdots, l_{6}>0$ in cyclic order.

Theorem 1.11 (Delambre-Gauss formulas for convex r.a.h.'s in H^{2}).

$$
\begin{align*}
\cosh \frac{1}{2}\left(l_{1}+l_{3}\right) \sinh \frac{1}{2} l_{2} & =\cosh \frac{1}{2}\left(l_{4}+l_{6}\right) \cosh \frac{1}{2} l_{5}, \tag{20}\\
\sinh \frac{1}{2}\left(l_{1}+l_{3}\right) \sinh \frac{1}{2} l_{2} & =\cosh \frac{1}{2}\left(l_{4}-l_{6}\right) \sinh \frac{1}{2} l_{5}, \tag{21}\\
\cosh \frac{1}{2}\left(l_{1}-l_{3}\right) \cosh \frac{1}{2} l_{2} & =\sinh \frac{1}{2}\left(l_{4}+l_{6}\right) \cosh \frac{1}{2} l_{5}, \tag{22}\\
\sinh \frac{1}{2}\left(l_{1}-l_{3}\right) \cosh \frac{1}{2} l_{2} & =\sinh \frac{1}{2}\left(l_{4}-l_{6}\right) \sinh \frac{1}{2} l_{5} . \tag{23}
\end{align*}
$$

Remark. Note that $l_{1}<l_{3}$ if and only if $l_{4}<l_{6}$.

Corollary 1.12 (Law of cosines for convex r.a.h.s in H^{2}).

$$
\begin{equation*}
\cosh l_{n}=-\cosh l_{n+2} \cosh l_{n+4}+\sinh l_{n+2} \sinh l_{n+4} \cosh l_{n+3} \tag{24}
\end{equation*}
$$

Corollary 1.13 (Law of sines for convex r.a.h.'s in H^{2}).

$$
\begin{equation*}
\frac{\sinh l_{1}}{\sinh l_{4}}=\frac{\sinh l_{3}}{\sinh l_{6}}=\frac{\sinh l_{5}}{\sinh l_{2}} \tag{25}
\end{equation*}
$$

2. Trigonometric formulas for right-angled hexagons in H^{3}

Hyperbolic 3-space: H^{3}.
Right-angled hexagon in H^{3}. A r.a.h. in H^{3} is a cyclically indexed six-tuple $\left(L_{1}, \cdots, L_{6}\right)$ of lines in H^{4} such that, for each n modulo 6 , lines L_{n} and L_{n+1} intersect perpendicularly. It is said to be oriented if all the lines are oriented.

Complex (full) side-lengths σ_{n} of an oriented r.a.h. in H^{3}.
For an oriented right-angled hexagon $\left(\vec{L}_{1}, \cdots, \vec{L}_{6}\right)$ in H^{3}, let $\sigma_{1}, \cdots, \sigma_{6} \in \mathbb{C} / 2 \pi i \mathbb{Z}$ be respectively the complex (full) side-lengths of its side-lines $\vec{L}_{1}, \cdots, \vec{L}_{6}$.

Theorem 2.1 (Laws of cosines for oriented r.a.h.s in H^{3}).

$$
\begin{equation*}
\cosh \sigma_{n}=\cosh \sigma_{n+2} \cosh \sigma_{n+4}+\sinh \sigma_{n+2} \sinh \sigma_{n+4} \cosh \sigma_{n+3} \tag{26}
\end{equation*}
$$

Theorem 2.2 (Laws of sines for oriented r.a.h.'s in H^{3}).

$$
\begin{equation*}
\frac{\sinh \sigma_{1}}{\sinh \sigma_{4}}=\frac{\sinh \sigma_{3}}{\sinh \sigma_{6}}=\frac{\sinh \sigma_{5}}{\sinh \sigma_{2}} \tag{27}
\end{equation*}
$$

Remark. The above two laws for oriented r.a.h.'s in H^{3} were known to Schilling as early as in 1891, but a correct treatment of signs seems to be given first by Fenchel in "Elementary Geometry in Hyperbolic Space" published in 1989.

Complex half side-lengths δ_{n} of an oriented r.a.h. in H^{3}. For an oriented r.a.h. $\left(\vec{L}_{1}, \cdots, \vec{L}_{6}\right)$ in \mathbf{H}^{3}, let $\delta_{n} \in \mathbb{C} / 2 \pi i \mathbb{Z}$ be an arbitrary choice of one its two complex half side-lengths for \vec{L}_{n}, the other being $\delta_{n}+\pi i \in \mathbb{C} / 2 \pi i \mathbb{Z}$.

We obtain Delambre-Gauss formulas for oriented right-angled hexagons in H^{3}.

Theorem 2.3 (Delambre-Gauss formulas for oriented r.a.h.'s in H^{3}). For an oriented r.a.h.in H^{3}, there exists $\varepsilon \in\{-1,1\}$, depending on the choices of the half side-lengths $\delta_{1}, \cdots, \delta_{6}$, so that the following formulas (28)-(31) hold:

$$
\begin{align*}
\cosh \left(\delta_{1}+\delta_{3}\right) \cosh \delta_{2} & =\varepsilon \cosh \left(\delta_{4}+\delta_{6}\right) \cosh \delta_{5}, \tag{28}\\
-\sinh \left(\delta_{1}+\delta_{3}\right) \cosh \delta_{2} & =\varepsilon \cosh \left(\delta_{4}-\delta_{6}\right) \sinh \delta_{5}, \tag{29}\\
-\cosh \left(\delta_{1}-\delta_{3}\right) \sinh \delta_{2} & =\varepsilon \sinh \left(\delta_{4}+\delta_{6}\right) \cosh \delta_{5}, \tag{30}\\
\sinh \left(\delta_{1}-\delta_{3}\right) \sinh \delta_{2} & =\varepsilon \sinh \left(\delta_{4}-\delta_{6}\right) \sinh \delta_{5}, \tag{31}
\end{align*}
$$

Remark. By suitably changing orientations of some of the side-lines, one may obtain the three identities (29)-(31) from the single identity (28).

3. Generalized Delambre-Gauss formulas for oriented, augmented right-angled hexagons in H^{4}

Hyperbolic 4-space: H^{4}.
Clifford algebra or the algebra of $\left\{e_{1}, e_{2}\right\}$-quaternions

$$
\mathbb{A}_{2}:=\mathrm{Cl}_{0,2}=\mathbb{R}+\mathbb{R} e_{1}+\mathbb{R} e_{2}+\mathbb{R} e_{1} e_{2}
$$

subject to $e_{1}^{2}=e_{2}^{2}=-1$ and $e_{1} e_{2}+e_{2} e_{1}=0$.
Reverse involution ()*: $\mathbb{A}_{2} \rightarrow \mathbb{A}_{2}$ is defined by

$$
\left(x_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{12} e_{1} e_{2}\right)^{*}:=x_{0}+x_{1} e_{1}+x_{2} e_{2}-x_{12} e_{1} e_{2},
$$

with real coefficients $x_{0}, x_{1}, x_{2}, x_{12}$.
Hyperbolic functions cosh and sinh with an \mathbb{A}_{2}-variable are defined by:

$$
\cosh x:=\frac{\exp (x)+\exp \left(-x^{*}\right)}{2}, \quad \sinh x:=\frac{\exp (x)-\exp \left(-x^{*}\right)}{2} .
$$

Line and plane in H^{4}. By line and plane in H^{4} we mean respectively complete geodesic line and totally geodesic plane in H^{4}.

Right-angled hexagon in H^{4}. A r.a.h. in H^{4} is a cyclically indexed six-tuple $\left(L_{1}, \cdots, L_{6}\right)$ of lines in H^{4} such that, for each n modulo 6, lines L_{n} and L_{n+1} intersect perpendicularly. It is said to be oriented if all lines are oriented.

Line-plane flag. A line-plane flag in H^{4} is an ordered pair $F=(L, \Pi)$, where L is a line and Π is a plane in H^{4} such that line L is contained in plane Π. It is said to be oriented if both the line L and the plane Π are oriented.

We say that a line L^{\prime} and a line-plane flag $F=(L, \Pi)$ intersect perpendicularly if L^{\prime} intersects each of L and Π perpendicularly.

Augmented right-angled hexagon in H^{4}. An a.r.a.h. in H^{4} is a cyclically indexed six-tuple $\left(S_{1}, \cdots, S_{6}\right)$ such that either S_{1}, S_{3}, S_{5} are all lines and S_{2}, S_{4}, S_{6} are all line-plane flags in H^{4}, or S_{1}, S_{3}, S_{5} are all line-plane flags and S_{2}, S_{4}, S_{6} are all lines in H^{4}, and such that, for each n modulo $6, S_{n}$ and S_{n+1} intersect perpendicularly. It is said to be oriented if all $S_{n}, n=1, \cdots, 6$ are oriented.

Two e_{2}-complex half distances $\delta_{\vec{F}}\left(\vec{L}_{1}, \vec{L}_{2}\right) \in\left(\mathbb{R}+\mathbb{R} e_{2}\right) / 2 \pi e_{2} \mathbb{Z}$ from \vec{L}_{1} to \vec{L}_{2} along a common perpendicular $\vec{F}=(\vec{L}, \vec{\Pi})$ in H^{4}.

The two values of $\delta_{\vec{F}}\left(\vec{L}_{1}, \vec{L}_{2}\right)$ differ by πe_{2}.
Two $\left\{e_{1}, e_{2}\right\}$-quaternion half distances $\delta_{\vec{L}}\left(\vec{F}_{1}, \vec{F}_{2}\right) \in \mathbb{A}_{2} \bmod ($ period $)$ from \vec{F}_{1} to \vec{F}_{2} along a common perpendicular \vec{L} in H^{4}.

The two values of $\delta_{\vec{L}}\left(\vec{F}_{1}, \vec{F}_{2}\right)$ differ by πu for some $u \in \sqrt{-1} \subset \mathbb{A}_{2}$.
Theorem 3.1 (Delambre-Gauss formulas for oriented a.r.a.h.'s in H^{4}). For an oriented, augmented right-angled hexagon $\left(\vec{L}_{1}, \vec{F}_{2}, \vec{L}_{3}, \vec{F}_{4}, \vec{L}_{5}, \vec{F}_{6}\right)$ in H^{4} with arbitrary choices of $\left\{e_{1}, e_{2}\right\}$-quaternion half side-lengths $\delta_{1}, \delta_{3}, \delta_{5}$ and arbitrary choices of e_{2}-complex half side-lengths $\delta_{2}, \delta_{4}, \delta_{6}$, the following formulas hold:
$\left(\sinh \delta_{1} \cosh \delta_{2} \sinh \delta_{3}+\cosh \delta_{1} \cosh \delta_{2} \cosh \delta_{3}\right)^{*}$
$=\varepsilon\left(\sinh \delta_{4} \cosh \delta_{5} \sinh \delta_{6}+\cosh \delta_{4} \cosh \delta_{5} \cosh \delta_{6}\right) ;$
$\left(\sinh \delta_{1} \sinh \delta_{2} \sinh \delta_{3}-\cosh \delta_{1} \sinh \delta_{2} \cosh \delta_{3}\right)^{*}$
$=\varepsilon\left(\sinh \delta_{4} \cosh \delta_{5} \cosh \delta_{6}+\cosh \delta_{4} \cosh \delta_{5} \sinh \delta_{6}\right) ;$
$\left(\sinh \delta_{1} \cosh \delta_{2} \cosh \delta_{3}+\cosh \delta_{1} \cosh \delta_{2} \sinh \delta_{3}\right)^{*}$
$=\varepsilon\left(\sinh \delta_{4} \sinh \delta_{5} \sinh \delta_{6}-\cosh \delta_{4} \sinh \delta_{5} \cosh \delta_{6}\right) ;$
$\left(\sinh \delta_{1} \sinh \delta_{2} \cosh \delta_{3}-\cosh \delta_{1} \sinh \delta_{2} \sinh \delta_{3}\right)^{*}$

$$
\begin{equation*}
=\varepsilon\left(\sinh \delta_{4} \sinh \delta_{5} \cosh \delta_{6}-\cosh \delta_{4} \sinh \delta_{5} \sinh \delta_{6}\right) \tag{35}
\end{equation*}
$$

with $\varepsilon=1$ or -1 , depending on the choices of the six half side-lengths $\left\{\delta_{n}\right\}_{n=1}^{6}$.
Remark. Formulas (32)-(35) above can be abbreviated as follows:

$$
\begin{aligned}
(\mathbf{s c s}+\mathbf{c c c})_{123}^{*} & =\varepsilon(\mathbf{s c s}+\mathbf{c c c})_{456} \\
(\mathbf{s s s}-\mathbf{c s c})_{123}^{*} & =\varepsilon(\mathbf{s c c}+\mathbf{c c s})_{456} ; \\
(\mathbf{s c c}+\mathbf{c c s})_{123}^{*} & =\varepsilon(\mathbf{s s s}-\mathbf{c s c})_{456} \\
(\mathbf{s s c}-\mathbf{c s s})_{123}^{*} & =\varepsilon(\mathbf{s s c}-\mathbf{c s s})_{456}
\end{aligned}
$$

Remark. The formulas (32)-(35) above are left invariant under taking the reverse involution ($)^{*}$ and shifting the indices by $123456 \rightarrow 456123$.

4. Ideas of Proof

Theorem 4.1. For an oriented r.a.h. $\left(\vec{L}_{1}, \vec{L}_{2}, \cdots, \vec{L}_{6}\right)$ in \mathbf{H}^{3}, let $\mathbf{M}_{n} \in \operatorname{Isom}^{+}\left(\mathrm{H}^{3}\right)$, n modulo 6 , be such that $\mathbf{M}_{n}\left(\vec{L}_{n}\right)=\vec{L}_{n}$ and $\mathbf{M}_{n}\left(\vec{L}_{n-1}\right)=\vec{L}_{n+1}$. Then

$$
\begin{equation*}
\mathbf{M}_{6} \mathbf{M}_{5} \mathbf{M}_{4} \mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1}=\mathrm{Id} . \tag{36}
\end{equation*}
$$

Theorem 4.2. For an oriented r.a.h. $\left(\vec{L}_{1}, \vec{L}_{2}, \cdots, \vec{L}_{6}\right)$ in \mathbf{H}^{3}, let $\mathbf{M}_{n} \in \operatorname{Isom}^{+}\left(\mathrm{H}^{3}\right)$, n modulo 6 , be as in Theorem 4.1 and let $\mathbf{T}_{n} \in \operatorname{Isom}^{+}\left(\mathrm{H}^{3}\right)$ be a conjugate of \mathbf{M}_{n} such that $\mathbf{T}_{n}\left(\vec{L}_{1}\right)=\vec{L}_{1}$ if $n=1,3,5$ and $\mathbf{T}_{n}\left(\vec{L}_{2}\right)=\vec{L}_{2}$ if $n=2,4,6$. Then

$$
\begin{equation*}
\mathbf{T}_{1} \mathbf{T}_{2} \mathbf{T}_{3} \mathbf{T}_{4} \mathbf{T}_{5} \mathbf{T}_{6}=\mathrm{Id} \tag{37}
\end{equation*}
$$

Theorem 4.3. For an oriented a.r.a.h. $\left(\vec{S}_{1}, \cdots, \vec{S}_{6}\right)$ in H^{4}, let $\mathbf{M}_{n} \in \operatorname{Isom}^{+}\left(\mathrm{H}^{4}\right)$, n modulo 6 , be such that $\mathbf{M}_{n}\left(\vec{S}_{n}\right)=\vec{S}_{n}$ and $\mathbf{M}_{n}\left(\vec{S}_{n-1}\right)=\vec{S}_{n+1}$. Then

$$
\begin{equation*}
\mathbf{M}_{6} \mathbf{M}_{5} \mathbf{M}_{4} \mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1}=\mathrm{Id} . \tag{3}
\end{equation*}
$$

Theorem 4.4. For an oriented a.r.a.h. $\left(\vec{S}_{1}, \cdots, \vec{S}_{6}\right)$ in H^{4}, let $\mathbf{M}_{n} \in \operatorname{Isom}^{+}\left(\mathrm{H}^{4}\right)$, n modulo 6 , be as in Theorem 4.3 and let $\mathbf{T}_{n} \in \operatorname{Isom}{ }^{+}\left(\mathrm{H}^{4}\right)$ be a conjugate of \mathbf{M}_{n} such that $\mathbf{T}_{n}\left(\vec{S}_{1}\right)=\vec{S}_{1}$ if $n=1,3,5$ and $\mathbf{T}_{n}\left(\vec{S}_{2}\right)=\vec{S}_{2}$ if $n=2,4,6$. Then

$$
\begin{equation*}
\mathbf{T}_{1} \mathbf{T}_{2} \mathbf{T}_{3} \mathbf{T}_{4} \mathbf{T}_{5} \mathbf{T}_{6}=\mathrm{Id} \tag{39}
\end{equation*}
$$

Proof of Delambre-Gauss formulas for oriented a.r.a.h.s in H^{4}. In the upper half-space model of $\mathrm{H}^{n+2} \equiv \mathbb{R}+\mathbb{R} e_{1}+\cdots+\mathbb{R} e_{n}+\mathbb{R}^{+} e_{n+1}$, we have

$$
\operatorname{Isom}^{+}\left(\mathrm{H}^{n}\right) \equiv \operatorname{PSL}\left(2, \Gamma_{n} \cup 0\right),
$$

where $\Gamma_{n} \subset \mathbb{A}_{n}^{\times}$is the full Clifford group and a Vahlen matrix $A \in \operatorname{SL}\left(2, \Gamma_{n} \cup 0\right)$ acts on H^{n+2} as a fractional linear transformation:

$$
A x=(a x+b)(c x+d)^{-1} .
$$

Note that $\Gamma_{1} \cup 0=\mathbb{A}_{1} \equiv \mathbb{C}$ and $\Gamma_{2} \cup 0=\mathbb{A}_{2}$. Now choose special positions for \vec{S}_{1} and \vec{S}_{2} as follows:

$$
\vec{S}_{1}=\vec{L}_{1}=\vec{L}_{[0, \infty]} ; \quad \vec{S}_{2}=\vec{F}_{2}=\left(\vec{L}_{[-1,1]}, \vec{\Pi}_{[-1,1] \mathrm{V}\left[-e_{1}, e_{1}\right]}\right)
$$

We obtain an identity of 2×2 matrices by replacing each isometry T_{n} in (39) by a Vahlen matrix A_{n}, and the identity isometry by εI for some $\varepsilon \in\{-1,1\}$. Precisely, we have

$$
A_{1} A_{2} A_{3}=\varepsilon\left(A_{4} A_{5} A_{6}\right)^{-1} .
$$

Working out the product matrices on both sides and equating the corresponding entries, we obtain the Delambre-Gauss formulas by suitable manipulations.

