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Introduction

The purpose of this lecture is the description of the construction of very
singular solutions (in any space dimension n ) of the incompressible Euler
equation.
Theorem Let Ω ⊂⊂ Rn , 0 < T <∞ and (x , t) 7→ e(x , t) > 0 a
continuous function with support in Ω×]0,T [ then for any η > 0 there
exists a weak solution (u, p) of the Euler equation with the following
properties

u ∈ C (Rt ; L2
w (Rn));

|u(x ,t)|2
2 = −n

2 p(x , t) = e(x , t)

supt∈R ||u(., t)||H−1(Rn) ≤ η
(u, p) = limk→∞(uk , pk) in L2(dx , dt) with (uk , pk) ∈ C∞ compact
support solution of the Euler equation with a convenient forcing fk
converging to 0 in D′ .
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Comments on the DeLellis -Szekelyhidi Constructions

On one hand the above theorem shows how non physical is the
incompressible Euler Equation. It generate solutions starting from
nothing dying after a finite time and in the mean time having their
own energy thus solving the energy crisis....

On the other since the Euler equation is the “limit in many senses ”
of more classical equations (incompressible and compressible
Navier-Stokes equations, Boltzmann equation and so on... ) this
shows how unstable such more realistic formulation may become
when some scaling parameters go to zero.

This theorem had several forerunners more precise due to Sheffer and
Shnirelman... However all these constructions share in common the
use of accumulation of terms with small amplitude and large
frequencies.
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Comments on the DeLellis

Both the statement and some steps of the proof share common point with
the problem of isometric imbedding:

Nash-Kuiper: For any n ∈ N and r ∈]0, 1[ there exists an isometric
imbedding C 1 from Sn(1) in Bn+1(r)

Cohn-Vossen: The above statement is not true if C 2 regularity is
required!!

Therefore in both problem appear an issue of threshold of regularity.

For the isometric imbedding the exact threshold is not fully
determined.

For regular solutions of the Euler equation C 0 is a threshold in the
class of Holder and Besov spaces...

For weak solution B
1
3
3,co seems to be a threshold for conservation of

energy (at least any solution with this regularity conserves the
energy)...

The construction provides, with corollary, solutions that will both
violate conservation of energy and uniqueness of Cauchy problem.
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Main steps of the proof

Differential inclusion

Plane wave solutions with Tartar wave cone

Λ convex hull of the wave cone

“Localised plane waves”

Subsolutions and functionnals

Improvement of the functionnals

Completion of the proof
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h-Principle

The proof consists in decoupling linear evolution and non linear constraint
by the introduction of a linear system and u ∈ L and a constraint K = {u
such that F(u) = 0} . The sub solutions u ∈ Kc (the convex hull or as it
will be shown below the Λ convex hull of K) are the functions u ∈ L such
that F (u) ≤ 0 . Then there will be two methods.
1 Starting from an element u0 ∈ L ∪ Kc contruct a sequence uk ∈ Kc

such that F(uk) < 0 , limk→∞F(uk) = 0.
2 Define on Kc ∩ L a convenient metric topology for which the function F
is lower semi continous. Hence its points of continuity form a residual
Baire set. Then one shows that the points of continuity must satisfy the
relation F (u) = 0 . In both case one shows that K ⊂ Kc is “big” enough.
For that one uses special oscillatory solutions (plane waves, contact
discontinuities) which are closely related to the constructions of the
forerunners. In the proofs below, for convenience F is changed into
J = −F implying the change of lower semi continuty into upper semi
continuity and so on..
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Differential inclusion

In the n × n identity matrix and Sn
0 the space of real valued symmetric

matrices with 0 Starting point is the following evident proposition:
Proposition 1 The two following systems are equivalent:

(v , p) ∈ L∞(Rn
x × Rt ; Rn × Rn)

∂tv +∇ · (v ⊗ v) +∇p = 0 ,∇ · v = 0

(v ,M, q) ∈ L∞(Rn
x × Rt ; Rn × Sn

0 × R)

∂tv +∇ ·M +∇q = 0 ,∇q = 0 ,∇ · v = 0 , q = p +
|v |2

n

M = v ⊗ v − |v |
2

n
In almost every where

System uncoupled a first order pde and a constraint described by

K =

{
(v ,M) ∈ Rn × Sn

0 ; M = v ⊗ v − |v |
2

n
In

}
Kr =

{
(v ,M) ∈ K ; |v | = r

}
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Plane wave solutions with Tartar wave cone

Tartar wave cone Λ = {(v0,M0, q0) ∈ Rn × Sn
0 × R} ⇔ ∃(v ,M, q)(x , t) =

(v0,M0, q0)h(ξ · x + ct) solution of the linear problem:
Proposition 2

• Λ =

{
(v ,M, q) ∈ Rn × Sn

0 × R; det

[
M + qIn v

v 0

]
= 0

}
• ∀(v ,M) ∈ Rn × Sn

0 ∃q such that (v ,M, q) ∈ Λ;

• ∀v0 ∈ Rn ∃p0, ξ such that (v0, p0)h(
x · ξ
ε

) stationnary plane wave sol.

Claude Bardos Lecture 2 The wild solutions of DeLellis and Szekelyhidi



Comments

• The wave cone is very big it contains solutions (even time independent)
with spatial oscillations collinear to any direction.
• Below are considered special plane waves associated to rang 2 matrices.
They are time dependent but with prescribed velocity and pressure:

|v(x , t|2

2
= −n

2
p(x , t) = e(x , t) a priori prescribed

• They will generate the convex hull of K .
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Basic plane waves

a, b ∈ Rn , a 6= b|a| = |b| ⇒ (a− b, a⊗ a− b ⊗ b, 0) ∈ Λ

Proof

z ∈ (a−b)⊥, c = z · a = z ·b ⇒ det

[
a⊗ a− b ⊗ b a− b

a− b 0

] [
z
c

]
= 0

Λr =

{
tW (a, b); |a| = |b| = r ; a 6= ±b, t ≥ 0

}
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Λ convex hull of K

K’ Λ convex hull of K smallest set K ′ ⊃ K such that

∀a, b ∈ K ′ , b − a ∈ Λ⇒ [a, b] ⊂ K ′
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Proposition 3

(i) For any r > 0 the Λ convex hull of Kr coincides with the convex hull of
Kr which is equal to

K co
r =

{
(v ,M) ∈ Rn × Sn

0 : |v | ≤ r , (v ⊗ v −M) ≤ r 2

n
In

}
(1)

and Kr = K co
r ∩ {|v | = r} (2)

(ii) There is a constant C = C (n) > 0 such that for any r > 0 and
z = (v ,M) in the interior of K co

r there exists λ = (v ,M) ∈ Λr such that

[z − λ, z + λ] ⊂ intK co
r

|v | ≥ C

r
(r 2 − |v |2) and dist ([z − λ, z + λ], ∂K co

r ) ≥ 1

2
dist (z , ∂K co

r )
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Comments

• K co
r is for the Euler equation a set of subsolution

• In particular 0 ∈ K co
r is a subsolution. Therefore wild solutions will be

constructed from 0 .
• The point (ii) says that as long as a subsolution is not on the boundary
(a solution) it is the center of a segment of size bounded from below and
this will be used to add oscillations to make it converge to the boundary.

Claude Bardos Lecture 2 The wild solutions of DeLellis and Szekelyhidi



Proof of (i)

Let Cr the right hand side of (1) One has

Kr ⊂ Cr

then one shows (a) Cr is convexe; (b) Cr is compact; (c) Kr contains all
the extremal points of Cr then the Krein-Rutman theorem implies
K co

r = Cr

(v ,M) 7→ Φ(v ,M) = σmax(v ⊗ v −M) = max
ξ∈Sn−1(1)

((ξ · v)2 − (Mξ, ξ))

Φ(v ,M)convex and Cr = Φ−1([0,
r 2

n
]) ∩ {|v | ≤ r} ⇒ convexity ⇒ (a)

M ≥ v ⊗ v − r 2

n
In ≥ −

r 2

n
In trace(M) = 0⇒ Compacity

For (c) write v ⊗ v −M = diag(λ1 ≥ λ2 ≥ . . . ≥ λn) and show that any
point with |v | < r and λn < r 2/n is not extremal.
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Localised Plane waves

For any r > 0 and λ = W (a, b) ∈ Λr , |a| = |b| = r > 0, b 6= ±a introduce
the time dependent 3 order differential operator
A(∇) = (Av (∇),AM(∇)) : C∞c (Rn+1; R× Sn

0 ) :

Ai
v (∇) =

∑
k,l

(aibk − biak)∂kll

Aij
M(∆) =

∑
k

(biak − aibk)∂tkj +
∑
k

(bjak − ajbk)∂tki

Proposition 4
(i) For any φ ∈ C∞c (Rn+1) A(∇)(φ) is a solution of the linear system:

∇ · Av (∇)(φ) = 0 , ∂tAv (∇)(φ) +∇ · AM(∇)(φ) = 0

(ii) With φ(x , t) = ψ( (a+b)·x−st
ε ) with s = |a+b|2

2 = r 2 + a · b

A(∇)(φ) = 2s2ε−3((a− b), (a⊗ a− b ⊗ b))ψ′′′(
(a + b) · x − st

ε
)
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Corollary

For any r > 0, λ ∈ Λr and any ψ ∈ C∞c (R) there exists
(ξ, c) ∈ Rn × R, ξ 6= 0 such that

with φ(x , t) = ψ(ξ · x + ct) ,A(∇)φ = λψ(ξ · x + ct)

Proof: Above take: In the above formula take:

ε = (
|a + b|4

2
)

1
3 , ξ =

a + b

ε
, c = −|a + b|2

2ε
.
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Localised plane waves, Proposition 4

Let O ⊂ Rn open bounded subset of Rn,
I =]t0, t1[⊂ R, r > 0, λ = (v ,M) ⊂ Λr V ⊂ Rn × Sn

0 .
Let O′ ⊂⊂ O, θ ∈ [0, (t1 − t0)/2], Iθ = [t0 + θ, t1 − θ] .
Then for any η > 0 there exists

(v ,M, 0) ∈ C∞c (O × I ;V)

solution of the linear system with:

∀t , ||v(., t)||H−1(Rn) ≤ η and inf
t∈Iθ

1

|O′|

∫
O′
|v(x , t)|2dx ≥ |v |

2

3
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Proof

Introduce φ(x , t) with compact support in O × I equal to 1 in O′ × Iθ.
With λ = (v ,M) introduce ξ, c as above.

zε(x , t) = (vε,Mε, )(x , t) = A(∇)[ε3φ(x , t) cos(
ξ · x + ct

ε
)]

Leibnitz formula ⇒ zε(x , t) = λ sin(
ξ · x + ct

ε
) + O(ε)

On O′ use

1

|O′|

∫
O′
|v(x , t)|2dx = |v |2 1

|O′|

∫
O′

sin2(
ξ · x + ct

ε
)dx+O(ε) >

|v |2

3
+O(ε)

Eventually use for ζ ∈ H1(Rn)

lim
ε→0

∫
Rn

zε(x , t)ζ(x)dx = 0
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Space of super-solutions

X0 = {z = (v ,M) ∈ C∞c (Ω×]0,T [; Rn × Sn
0 )}

∂tv +∇ ·M = 0 ,∇ · v = 0 ∀(x , t)z(x , t) ∈ int K co√
2e(x ,t)

∀(Ω0 ⊂⊂ Ω, τ ∈]0,T/2[) Jτ,Ω0 = sup
τ≤t≤T−τ

∫
Ω0

[e(x , t)− |v(x , t)|2

2
]dx

Proposition 5

(i)z = (v ,M) ∈ X0 and p = − |v |
2

n ⇒ (v , p) solution of the Euler equation

with a forcing term f = ∇ · (v ⊗ v − |v |
2

n −M) ∈ C∞c (Ω×]0,T [; Rn).
(ii)zk = (vk ,Mk)k∈N → z = (v ,M) a sequence of elements of X0

converging in C (]0,T [; L2
loc(Ω)) such that:

∀(τ,Ω0) , Jτ,Ω0 → 0 .

Then v ∈ C (R; L2
w (Rn)) is a weak solution of the Euler equation which

satisfies |v(x ,t)|2
2 = e(x , t) = −n

2 p(x , t) and which in particular is 0, outside
Ω× [0,T ] .

Claude Bardos Lecture 2 The wild solutions of DeLellis and Szekelyhidi



Proof

The fact that v ∈ C (R; L2
n(Rn)) is a consequence of Proposition 3 and the

fact that it is a solution is a consequence of Proposition 5.
The construction of the sequence involves two steps...
First a step of improvement and second a step of iteration
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Improvement Proposition 6

A finite sequence 1 ≤ l ≤ L of increasing open sets Ωl×]τl ,T − τl [ with:
0 < τL < . . . < τl < . . . < τ1 ,Ω1 ⊂⊂ Ωl ⊂⊂ ΩL Assume that

∀l , Jτl ,Ωl
(v) > 0 . (3)

Then for every η > 0 there exists an element z ′ = (v ′,M ′) such that:

||z ′ − z ||C([0,T ];H−1(Ω)) ≤ η (4)

∀1 ≤ l ≤ L, Jτl ,Ωl
(v ′) ≤ Jτl ,Ωl

(v)− β(Jτl ,Ωl
(v)) (5)

with in (5) β(α) denoting a positive increasing function which with α
small behaves like Cα2
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Iteration

In the spirit Nash-Moser theorem: A sequence of regularizing function
ρεj (x , t) Assume for j ≤ k − 1 zj = (vj ,Mj), εj such that

Jτj ,Ωj
(vk−1) ≤ Jτj ,Ωj

(vk−2)− βj(Jτj ,Ωj
(vk−2))∀j ≤ k − 2

sup
t
||(zl − zl−1) ? ρεj ||L2(Ω) < 2−l∀j ≤ l ≤ k − 1

Then with the proposition 6 choose zk such that

Jτj ,Ωj
(vk) ≤ Jτj ,Ωj

(vk−1)− βj(Jτj ,Ωj
(vk−1)) ∀j ≤ k

sup
t
||(zk − zk−1)||H−1(Ω) ≤ ηk

with ηk small enough to imply

sup
t
||(zk−zk−1)?ρεj ||L2(Ω)<2−(k−1)∀j ≤ k−1 ; sup

t
||(zk−zk−1)||H−1(Ω)≤η2−k

Eventually choose εk such that

||zj − zj ? ρεk || < 2−k∀j ≤ k
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Iteration End of Proof.

The sequence (zk) is bounded in L2(Rn × R) hence converges weakly to
z ∈ L2(Rn × R) Moreover supt ||z ||H−1(Ω) ≤ η For (τj ,Ωj) and k ≥ j one

has in C (τj ,T − τj ]; L2(Ωj))

||zk − z || ≤ ||zk − zk ? ρεk ||+ ||zk ? ρεk − z ? ρεk ||+ ||z ? ρεk − z || (6)

Hence with the iteration process strong convergence in

C ([τj ,T − τj ]; L2(Ωj))

Now if lj = limk→∞Jτj ,Ωj
> 0 with the improvement process one has

lj ≤ lj − βj(lj)

hence a contradiction.
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One step improvement

Proposition

Ω0×]τ,T − τ [⊂⊂ Ω×]0,T [ , z = (v ,M) ∈ X0

with
Jτ,Ω0(v) ≥ α > 0 α ∈]0, 1[

Then for any η > 0 there exists an element z ′ = (v ′,M ′) ∈ X0 such that

||z ′ − z ||C([0,T ];H−1(Ω)) ≤ η and Jτ,Ω0(v ′) ≤ Jτ,Ω0(v)− β(α)
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Proof of the one step improvement for fixed value of t

Start with a convenient covering by N cubes such that on each cube the
oscillation of z is bounded by α/10 with notational abuse denote by
C ′ ⊂⊂ C ∈ C ,C ′ = 0.9C cubes their centers, sub cubes and introduce
c > 0 such that

c ≤ 1

40|C ′|N
With oscillations and Riemann sum type construction one has:∑

e(C)− |v(C)|2
2
≥cα

{|C ′|(e(C )− |v(C )|2

2
)} ≥ α

5
(7)
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(v ′,M ′) = (v ,M) +
∑
C

(vC ,MC ) , support(vC ,MC ) ⊂⊂ C ′

Jτ,Ω0(v)− Jτ,Ω0(v ′) =∫
Ω0

(e(x , t)− |v(x , t)|2

2
)dx −

∫
Ω0

(e(x , t)− |v
′(x , t)|2

2
)dx

=

∫
Ω0

(
|v ′(x , t)|2

2
− |v(x , t)|2

2
)dx

=
∑

e(C)− |v(C)|2
2
≥cα

∫
C

|vC (x , t)|2

2
dx +

∫
C

v(x , t) · vC (x , t)dx

≥
∑

e(C)− |v(C)|2
2
≥cα

∫
C

|vC (x , t)|2

2
dx

−
∑

e(C)− |v(C)|2
2
≥cα

||v(., t)||||vC (., t)||H−1(C)
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Use Proposition 3 (ii)

There exists λ = (v ,M) such that

z(C ) + [−λ, λ] ⊂⊂ K co√
2e(x ,t)

|v | ≥ C
(e(C )− |v(C)|2

2

||e||∞

By continuity there exists a neighborhood V of [−λ, λ] such that

z(x , t) + V ⊂ intK co√
2e(x ,t)

∀(x , t) ∈ C

With the proposition 4 one constructs a localised solution zC with support
in C value in V and such that

sup
t
||vC (.t)||H−1 small enough (8)

1

|C ′|

∫
|vC (x , t)|2dx ≥ |v(C )|2

3
≥ Cte(e(C )− |v(C )|2

2
) (9)

With
∑

e(C)− |v(C)|2
2
≥cα
{|C ′|(e(C )− |v(C)|2

2 )} ≥ α
5 the proof is completed .

Claude Bardos Lecture 2 The wild solutions of DeLellis and Szekelyhidi


