Some Mathematical Aspects of a Dirac Particle Interacting with the Quantum Radiation Field

Asao Arai

Department of Mathematics, Hokkaido University Sapporo 060-0810 Japan

E-mail: arai@math.sci.hokudai.ac.jp

Abstract

We consider a quantum system of a Dirac particle interacting with the quantum radiation field, whose Hamiltonian is given by $H := H_D(V) + H_{rad} - q \sum_{j=1}^3 \alpha_j A_j(x)$ $(x \in \mathbb{R}^3)$, where $H_D(V)$ is the Dirac operator with V a 4 × 4 Hermitian matrix-valued potential on \mathbb{R}^3 , H_{rad} is the free Hamiltonian of the quantum radiation field, $q \in \mathbb{R} \setminus \{0\}$ denotes the electric charge of the Dirac particle, $\alpha_j, j = 1, 2, 3$, are the Dirac matrices and $(A_1(x), A_2(x), A_3(x))$ is the quantum radiation field in the Coulomb gauge with momentum cutoffs. After reviewing basic properties of the operator H including essential self-adjointness and spectral properties, we present some results on the Heisenberg operators $x_j(t) := e^{it\bar{H}}x_je^{-it\bar{H}}$ of the *j*-th position operator x_j of the Dirac particle ($t \in \mathbb{R}, j = 1, 2, 3; \bar{H}$ is the closure of H) and their derivatives in t, the velocity operators. An effect of the quantum radiation field to the usual Zitterbewegung of the Dirac particle is described.