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Introduction

The introduction

0.1 Notation

Noa,b,c,d,e,i,5,k,l,m,n,r st uv,wxy,z

N—N f,g,h

N =2 sets A, B,C,U,V.W,X,Y,Z

partial functions ¢, ¢, ...

Functionals ®, ¥, ... (continuous)

Strings «, 67 v 57 p,0,T

String notation functional form if o = (z1,...z,) then o(i) = ;41 (perhaps prefer
(x0,...2n_1)); dom(c) = n = |o| length of o; order by initial segments o C 7; restriction
for m <|o|,c | m C o and |o | m| = m. Apply to functions on all of N as well: o C f;

f1m.

vii
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Chapter 1

Beginnings

1.1 History, intuition, undecidability, formalization,
1.2 Formal definition, model of computation:

Turing machines (multitape with input, output and others)
Other notions: prim recursive + p (search); register machines; equation calcu-

lus?..

1.3 Relative computability: Turing machines with
oracles (on tape)

Recursive. (continuous) Functionals; oracles as inputs

1.4 Degrees, types of questions

algebraic, local...
second order, global: definability, automorphisms, theory
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Chapter 2

Basics

2.1 Turing machines and relative computability

Consider Turing machines with oracles. There is master (universal) primitive recursive
function,
p(o,e,z,8) =y

where the variables are o a string (initial segment), e a number (index), x a number
(input), s a number (steps, use); and the expression means that the Turing machine with
index e and oracle restricted to o given input z and run for s many steps converges and
outputs y.

Conventions, Actions if ask question outside domain or no convergence in s steps:
output *. Variables e, x,y range over natural numbers, N.

Properties:

(i) Use: If 0 C 7 and (0, e,x,s) |=y then p(7,e,x,5) =y
(ii) Permanence: If s < t and p(o,e,z,s) |=y then p(o,e,z,t) |[=y

(iv) Domain of ¢ is computable, in other words there is a procedure to decide whether
 converges on any given tuple (o, e, x, s). This procedure simply runs the machine
with index e on input x and oracle o. If the machine arrives at an output by step
s, then answer yes (and otherwise, answer no).

Definition 2.1.1 ®/(z) = y means that Jo C fﬂs[gp(a,e,x,s) 1= y] So ®/(z) is a
partial function (recursive in f). ?2We define the use of a computation ®/(z) = y as
the least n such that o(f [ n+ 1,e,2z,s) = y. We also say that o = f | n is the axiom
(about the oracle f) that gives this computation. Note that if f is changed at or below the
use then this axiom no longer applies and no longer have the same computation giving
the output y.

Note that this definition can be recast in terms of sets, ®4(x) =y

3
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Definition 2.1.2 @gfs(m) means that we run ®X on x for s steps and report the output.
So, p(o,e,1,5) = 7 (7).

Definition 2.1.3 We adopt two conventions when the oracle is a finite string o. First,
we run the Turing machine for only |o| many steps so we write ®%(x) for @Zlg‘(x),
Second, we require that for ®I(x) to converge we must have x < |o|.(Roughly speaking

we must read the input before giving an output.)
Definition 2.1.4 f <7 g means Je(P? = f).

Intuitive definition that there is a Turing machine with oracle g that compute f. Argue
that same. We use ®, to denote ®? the eth Turning machine with oracle the empty set
(constant function 0). This is equivalent (explain) to the list of Turing machines without
oracles and we will often simply identify these two versions.

Theorem 2.1.5 (s-m-n Theorem) There is a one-one recursive function s such that
Vg[@g(xl, e Ty YLy ey Yn) = @fw(ej)(g)].
In fact, can view m and n as variables as well.
Notion of uniformity?

Theorem 2.1.6 Padding Lemma: Y3 f(d] = &/

Proof. Exercise: Informal argument and formal one using s-m-n Theorem. m
Idea that s-m-n gives more: uniformity.

Theorem 2.1.7 Enumeration Theorem: List of partial recursive (in f) functions: ®.

Theorem 2.1.8 (Recursion Theorem aka Fixed Point Theorem) If f is a recur-
swe function then there is an e such that for all g, ®I = @?(e).

Kleene gave a one-line proof of the Recursion Theorem. But, it seems pretty magical.
We will soon see a different proof..

Intuitively the recursion theorem implies that we can call a function h within the
definition of f itself. This may seem counterintuitive or simply false. But think of the
procedure that we envision defining h except that it has calls to h. Replace the calls to f
by calls to ®.. this gives us a computation procedure whose index (as a Turing machine)
is clearly recursive in e. Let f be the function computing the index of this procedure. By
the recursion theorem f has a fixed point e. Now argue that @, is a function (at least a
partial function) as desired for h.

The Recursion theorem will also be used when we talk about approximation proce-
dures.



2.2. TREES, CANTOR AND BAIRE SPACE; TOPOLOGY; PERFECT SETS

Pairing functions: desiderata for (x,y).

2°3Y; 2(2? + 2zy + y* 4 3z + y)
<$,y, Z> = <«T; <y,z>> etc.

(x1,...2,) = (n, (x1,{T2...)))

Uniformity over length n.

[1p5t" — 1 for (zy,...2,)
“Define” uniformity by example.

sets

trees of sequences from alphabet (formally identify with subset of N)
binary trees, n-ary trees, finitely branching, f-branching

paths

Cantor space, Baire space
topology, open, closed, perfect sets
perfect trees

function trees

2.3 Partial orders and lattices

distributive

Boolean algebras
usl, Isl, susl, sls
universality issues
locally finite?
partial lattices??

2.4 Interpreting theories and structures

first and second order logic

5

2.2 Trees, Cantor and Baire space; topology; perfect



CHAPTER 2. BASICS



Chapter 3

The Turing Degrees

Since f <r g is a transitive relation, we can define the equivalence classes. These are the
Turing degrees, f = {g|f <r g & g <r f}. We then have the partial order < on D, the
set of Turing degrees, induced by <r.

Facts about the degrees:

e Has least element, 0, which is the degree containing all computable sets.

e There are elements of D other than 0. Two types of arguments. Counting and
construction /definition.

e There are 2% sets (subsets of N). By Cantor’s theorem 2% > R;. Moreover,
since there are countably many Turing machines, each degree is countable as a set
(f =r f+cany constant function ¢) and has at most countably many predecessors.
So, not only are there degrees other than 0, there are 2% many degrees. Specific
ones given later (DNR functions and the Halting Problem to start.)

e There is no largest degree because for each degree x, can find a DNR relative to x
and it is not below it. Relativization

e D is an upper semi-lattice. Can define join V on D: On sets/functions it is defined
by
f®g(2n) = f(n) f®g(2n+1) = g(n);

this is inherited by the degrees f V g = degree of(f @ g). Note that we can use the
join operator to produce a degree strictly above each degree because can take join
of a member of the degree with some DNR relative to it. Also by counting: take
any ¢ not recursive in f (only countably many) and consider f & g.

Note that we denote degrees in boldface, a or f and sets or functions in lightface, A

or f.

We summarize these facts as follows.
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Theorem 3.0.1 D is an uppersemilattice with 0 of size 2%° with the countable predecessor
property.

We will see later (7?7) that every countable partial order and even uppersemilattice
can be embedded in D. This also holds for ones of size X; (77). Indeed each is isomorphic
to an initial segment (downward closed subset) of D. For these results N; is as far as
we can go. There are models of ZFC in which 2% > X; with uppersemilattices (partial
orders) of size R, that cannot be embedded in (as initial segments of) D. 77

Exercise 3.0.2 There is a cofinal sequence of degrees if and only if CH (continuum
hypothesis) holds in which case the sequence can be chosen to have order type Wj.

Exercise 3.0.3 Every degree contains a set (i.e. characteristic function). (Graph(f))

Some more questions about D: how tall is it? how wide is it? is it a lattice?
Answers coming up.....

How do we “build” a nonrecursive function. We can “implement” the idea of the
proof of Cantor’s theorem that there are more functions on N than elements of N, i.e.
2% > Wy. This idea is a really a procedure called a diagonal argue

We extract the crucial property in our setting in the following definition.

Definition 3.0.4 (DNR) A function h is DNR (diagonally non-recursive) if Vn(h(n) #
®,(n)).

Proposition 3.0.5 If h is DNR then h is not recursive.

Proof. By the diagonal argument... m

We can now prove the recursion theorem.
Proof of Recursion theorem. Suppose not, i.e. Ye(®, # ®¢()). [Such an f is called
fix point free (FPF).] We try to build a recursive DNR h for the desired contradiction.

Since ®.(e) # Py for every e, we only need to make @) = ®rs.(e)) to get h(e) #
®.(e). “Obviously” (by the s—m—n theorem), there is such a recursive h: given e find the
index of the machine which first computes ®.(e) and if it converges then computes f of
the value and begins mimicking the machine with that index. This gives the description
a machine that computes ® s, ()) and so an index, h(e) for it. Going from e to h(e) is an
intuitively computable procure. Formally, the s-m-n theorem shows that it is a recursive
function. On the other hand, our assumption (that f is FPF) implies (as above) that h
is DNR for the desired contradiction. =

Now to recover the standard constructive version of the theorem that actually com-
putes the fixed point (with the usual uniformity), note that the index & for 4 can be found
recursively in that of f (again by the s —m —n theorem). Now @) = @, () = P(a. ()
and so if we let e = k then h(k) = ®4(k) is the desired fixed point: @5 = Po, k) =
D (@i (k)-



Chapter 4

R.e. sets and the Turing jump

4.1 The Jump Operator
Definition 4.1.1 On functions, define the jump as ' = {e : ®I(e) |}.

Proposition 4.1.2 f <p g implies that f' <r ¢ and so the jump operator is well-
defined on the degrees.

Proof. Since f <r g, there is i such that f = ®J. So
cef e al(e) o) ]

g
The s-m-n theorem gives a recursive one-one function k such that @Z(e H = CIDS ‘. In
particular,
c€ f e d,, lekei)ed

and so f' <r ¢’. Thus if f =¢ g then f’' =r ¢’ and the jump operator is well defined
onD. m

Proposition 4.1.3 f <p f’

Proof. We need to compute f(n) using f'?

If f is a characteristic function A (i.e. a set)then we can decide whether n € A
using A’ by recursively finding an e such that ®4(e) |«< n € A. Formally, we can
appeal to the s-m-n theorem to get a recursive one-one function k such that for each n,
@,f(n)(k(n)) < n € A. This gives the desired reduction.

We can now appeal to Exercise 3.0.3 for the theorem for all functions f. Or we can
prove it directly. m

Exercise 4.1.4 Give a direct proof that f <r f' for all functions. Solution: Instead of
finding index of machine which asks whether n € A, find a machine such that

®f ) (2) L& f(n) = m.

9
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Then successively ask k(n,0) € f'?, k(n,1) € f'?, etc. until find k(n,m) € f" in which
case output f(n) = m. This procedure halts because of the assumption that f is a function,
hence total.

Proposition 4.1.5 f <p f’
Proof. It clearly suffices to find an h <7 f’ which is DNR/, i.e.

v (h(n) # @f(n))

We compute h from f’ as follows: Given n, ask if ®/(n) | (in other words, if n € f’). If
s0, let y = ®/(n) and put h(n) =y + 1. If not, set h(n) =0. m

Conclusion: The jump is a strictly increasing, order preserving operator on the de-
grees.

The jump of the empty set is, of course, (Y. By our identification of the Turing
machines without oracles with those with oracle (), it is identified with the usual halting
problem K = {e|®.(e) |}, the set of indices e of Turing machines which halt on input
e. One often wants to consider alternate versions such as Ky = {(z,y) |®,(y) |}. We
can consider this as an alternative version of K or of the jump in general because the
produce sets of the same degree.

Exercise 4.1.6 For every f, f' =r {{z,y)|®/(y) |}.

In fact, more is true as we shall see in 77 (1-1 equivalence) and 77 (recursive isomor-
phism).

4.2 Trees and Konig’s Lemma

So we have two ways of “getting” nonrecursive sets - diagonalization and the halting
problem. Have seen that the second computes an example of the first. What about
the other way? Does every DNR function compute K7 If not, what can we say about
the needed complexity (if there is any)? We take a side trip to an example of reverse
mathematics and a comparison of the “strength” of versions of a well known combinatorial
principle: Koénig’s Lemma.

While there are many mathematical definitions of a tree (and we will see others later),
for now we take a simple representation. Remembering that we are in the world of the
natural numbers, it makes sense to sue (for now at least) the following definitions.

Definition 4.2.1 A tree T is a subset of NN, the set of finite strings of natural numbers,
that is closed downward under the natural partial order o C 7: o is an initial segment of
7. (Or in the functional notation o(n) = 7(n) for every n < |o|. (We use |o| to denote
the length of the sequence o or in the functional notation its domain with the ordering on
N given by € on the usual set theoretic representations of the natural numbers.) The root
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of any of our trees is then the empty string (or set) . A binary tree is a tree of binary
sequences, i.e. a downward closed subset of 2<N. A finitely branching tree is a tree T
such that for every o € T there are only finitely many 7 € T with 7 D o and |7| = |o|+1.
If T is a tree we say that a subset P of T is a path on T if P is infinite, linearly ordered
and downward closed (with respect to C). The set of paths on T is denoted by [T]|. The
elements of a tree are often called nodes and ones with no successors in the tree, leaves

Exercise 4.2.2 If you know some general abstract definition of a (binary, finitely branch-
ing) tree, do all of ours satisfy the definition you know?

Exercise 4.2.3 (Thought Problem) Think about what a “converse” might mean. We
are restricted to countable sets (trees) but can we think of any countable tree as (“iso-
morphic to”) one of ours? In general, what does it mean to code mathematical structures
in N?

Lemma 4.2.4 (Ko6nig’s Lemma) IfT is an infinite, finitely branching tree then T has
an infinite path.

Proof. We “construct” a path P in T' by recursion. At each step ¢ we have a node o
in T of length ¢ with infinitely many successors on T. We begin, of course, with the root
() = o relying on the fact that 7" is infinite to satisfy our condition. If we have o, we
consider its immediate successors in 7. By assumption there are only finitely many and
so one of them say o;"x has itself infinitely many successors on 7. We let z be the least
such x and let 041 = 04" 2. It is clear that P = {oy|t e N} isapathinT. =

Lemma 4.2.5 (Weak Ko6nig’s Lemma) If T is an infinite binary tree then T' has an
infinite path.

Is this proof (of Kénig’s Lemma) constructive or effective? If not could there be one
that is? Is it “easier” to prove Weak Konig’s Lemma than the full one? Is it easier
to construct a path in an infinite, binary tree than an arbitrary finitely branching one?
What might these questions mean? Not every infinite tree has a path at all but what
about arbitrary trees with paths? How hard is to construct one?

We begin with the first question. One way of making the question precise is to ask
if every infinite finitely branching (or binary) recursive tree 7' has an infinite recursive
path. Or more generally if every infinite finitely branching (or binary tree) 7" has an
infinite path recursive in T". If so, we might also want there to be a uniformly effective
procedure that produces such a path, i.e. an e such that ®.(7) is an infinite path in T’
for every finitely branching or perhaps every binary tree. The answer is no for all the
versions and the proof is intimately connected to the notion of DNR functions. On the
other hand, we claim that Konig’s Lemma is more complicated than the weak version,
i.e. it really is weaker. The analysis here is intimately connected to the jump operator.

Theorem 4.2.6 There is an infinite recursive binary tree with no infinite recursive path.
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Proof. We want an infinite binary tree 7" such that for every f € [T, f € DNR. If we
did not have to make 7" recursive, we could simply take all the binary strings o that satisfy
the definition of a DNR function on their domains; {7 € 2<N|(Vn < |o|)(a(n) # ®,(n))}.
However, this set is not recursive (Exercise%f’yj._Wé can however, eventually recognize
when a binary string o fails to be in this set by seeing at some stage s that ®,, s(n) |= o(n)
for some n < |o|. The picture for building the desired (or any) recursive tree is that we
are effectively going along deciding which strings are in 7T'. Say at stage s of our recursive
construction we must decide for every binary string of length s if it is in 7" or not. (This
makes 7" recursive.) We eliminate unwanted paths when we recognize that some o has
failed our test for being DNR. More precisely if at stage s we see that ®,, s(n) |= o(n)
for some n < |o| then no strings 7 O o are ever put into 7" at any stage ¢t > s. Formally,
T = {o € 2°N|(Vn < |o|)[=(®n,0)(n) |= o(n)]}. By our basic facts about our master
function ¢, T is clearly recursive. Consider now any f € [T]. If f ¢ DN R then there is
some n and s such that @, (n) |= f(n). By definition no ¢ C f with |o| > n, s can be
on T and so,of course, f ¢ [T] for the desired contradiction. m

Exercise 4.2.7 The tree S = {o € 2<N|(Vn < |o|)(c(n) # ®,(n))} is not recursive.

Theorem 4.2.8 There is an infinite recursive finitely branching tree T' such that every
path in T computes 0.

Proof. We want to code 0 into every infinite path f on a recursive tree T. Now T is
a subset of N<N the set of all finite strings. In analogy with the previous construction,
we might think of ourselves as beginning with the nonrecursive tree consisting of the
single path f such that f(n) = 0 if ®,(n) 7 and f(n) = s if s is the first stage ¢ such
that ®,,,(n) |. We now want to turn this into a recursive, finitely branching tree 7" such
that f is its only path. We follow the plan of keeping “bad” strings from extending to
paths of the last construction and set T' = {0 € NN|(Vn < |o|)(Dp0)(n) T = o(n) =
0& @, 5/(n) | = o(n) =s where &, (n) | but ®,,_1(n) T)}. Now 7" is easily seen to
be recursive from our basic facts about ¢. Moreover by definition for each n there are at
most two numbers 7 such that o(n) = r for any o € T (0 and the first stage ¢ such that
®,,+(n) |). Thus 7T is finitely branching.

T is also infinite as, by induction, for every o € T either 6”0 € T or 0" s € T for s the
first stage ¢ such that ®,,,(n) | (and perhaps both). We now claim that the f defined
above is the only path on 7. Suppose g € [T] and consider g(n) for any n. If ®,(n) T
then for every 7 € T with |7| > n, we must have 7(n) = 0 by the definition of 7. On the
other hand, if ®,(n) | then let s be the first stage ¢ such that ®,,(n) |. Again by the
definition of T, if 7 € T and |7| > n, s then 7(n) = s. As g | n+ s € T, we must have
g(n) = s as required. m

So solving the problem of finding a path in any infinite recursive finitely branching
tree provides a calculation of 0. Note that one might say that 7 is 2-branching but it is
not a binary tree under our current definitions. This is perhaps somewhat mysterious but
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an important distinction as well shall see. There are at most two immediate successors
of each o but we cannot recursively bound what they might be.

By relativization if we can find a path in every finitely branching tree, we can compute
the jump operator. What about binary trees? It is by no means obvious, and indeed
requires several ideas, to provide a proof but this is not the case for finding paths in infinite
binary trees. How can we make this precise. We can capture the idea that it is “possible”
to always be able to solve one problem (such as finding paths in infinite binary trees)
without being able to solve another (finding paths in infinite finitely branching trees) by
using the notion of a model. We understand ‘being able” to include the idea that if we
have some f then we have any g < f and similarly if we have both f and g then we have
f @ g. We make this precise by saying that there is a class C of functions closed under
<7 (and @) such that such that for every T" € C that is (the characteristic function of)
an infinite binary tree then there is an A € C which is a path in 7. So in C we can solve
the first problem. On the other hand, there is an infinite finitely branching tree T' € C
for which there is no path in C. Thus we have a “model” in which every infinite binary
tree has a path but not every infinite finitely branching tree has one. The proof of these
assertions will come in 77.

In the other direction, as every binary tree is finitely branching, it is immediate that
if every infinite finitely branching tree in C has a path then so does every infinite binary
tree. Thus we will be able to conclude that solving the problem of finding paths for
infinite ﬁnitely branching trees is strictly harder than the analogous problem for binary
trees. result i tlmately related to a similar claim about how hard it is to prove
Lemmas 4 and .5 in the sense of what axioms are needed for the proof. This is
the subJect of reverse mathematics. We will return to such issues at a few points in this
book. Survey or introductory articles include...????. The basic text is Simpson 7?7

Relations with finding a DNR function: DNRy; = FPF, DNR; but DNR weaker? An
example of reverse mathematics. Arbitrary trees much harder.

some exercises

Finding solutions for Konig’s Lemma, even for recursive trees, requires more than (.
This is an example where closure under solving two problems is equivalent but one can’t
get by with a reduction that (effectively) transforms a problem of one type into one of
the so that any solution of the second computes one of the first.

Medvedev and Muchnik degrees. ...For later after do INF= 0""

Exercise 4.2.9 Show that every infinite, finitely branching tree T has a path recursive
in T". Build a recursive tree such that any path computes 0”.

Exercise 4.2.10 Show that not every infinite tree has a path.

Exercise 4.2.11 Relation to compactness, topological and logical.
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4.3 Recursively enumerable sets

We began with the notion of what it means for a set or function to be computable
(recursive). We now want to consider a weaker notion. The idea is that, for a set A,
while we might not be able to decide if n € A, we might nonetheless be able to list its
elements. That is we might have a recursive function whose values are the elements of
A (assuming A # ). For such sets we have a recursive way of enumerating its elements:
f(0), f(1),..., f(n),.... Soif z € A we eventually find out by enumerating that fact
when we get to f(n) = x for some n. If z ¢ A we may never discover that fact. (If we
could, A would be recursive by N,

Definition 4.3.1 The following equivalent conditions define the statement “A C N is
recursively enumerable (r.e.) in B”:

e A is the domain of a partial recursive in B function. Notation: W2 = dom ®5.
e A is the range of a partial recursive function.
e A is either the range of a total recursive in B function or is empty.
e A is either the range of a 1-1 recursive in B function or is finite.
Theorem 4.3.2 A is recursive if and only if both A and A =N — A are r.e.

Recall that A’ = {e : ®2(e) |}. So, A’ is r.e. in A because it is the domain of the
function that on input e runs the eth machine with oracle A with input e. We want to
show that A’ is the most complicated set r.e. in A in various precise ways.

We say that a set A is reducible to one B if there is some procedure that allows us to
decide membership in A using membership in B. We have already met the most impor-
tant and fundamental such reducibility that of Turing: A <; B. We can compute the
membership of A by asking questions about the membership of elements in B during the
computation. It may adaptively determine which questions it asks based upon answers
to previous questions. We now define some other notions of reduction which are stronger
than that of Turing in the sense that they imply but are not, in general, implied by
Turing reducibility.

Definition.

1. 1-1 reducibility(<;): A <; B if there exists a one-one recursive function f such
that Vo x € A if and only if f(x) € B.

2. m or many-one reducibility (<,,): Same as one-one reducibility except f is an
arbitrary (so possibly man-one) recursive function.

3. truth-table reducibility (<;): A <; B if there exists a recursive function f such
that f(x) is a propositional formula o in variables py, ..., p; such that for all z z € A
if and only if B satisfies 0. EXPLAIN
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4. weak truth-table reducibility (<, ): A <, B if there exists a recursive function
f and a Turing machine ®, such that ® = A and the use of computation in ®Z(z)
is at most f(z) for all . This is sometimes called bounded Turing reducibility
(<pr). EXPLAIN

Note that we have the following:

A< B— A<, B—=A<mwB—-A<,wB—-A<4B—A<pB.

Intuitively, we can think of the truth table reduction as giving a Boolean function which
when given the answer to the oracle queries, will produce the final answer of the reduction.
Note that all time bounded complexity classes are tt reductions

The first three reducibilities are total procedures in the sense that applied to any set
they always produce a set as output. The final one is not. It is like a ¢t reduction but
may be partial on some sets. In fact ¢t reducibility is characterized by its being total on
all set inputs.

Theorem 4.3.3 (Nerode’s Theorem) A <;; B if and only if there is e such that
A = ®B and ®X is a total (characteristic) function for every X .

Proof. Since tt is total by definition, one direction is immediate. For the other direction,
say ®X is total for all X and ®? = A. What happens when we run ®X(n) for some
unknown X? We can build a computation tree which branches (in two) whenever the
program asks a question m € X with the branches corresponding to the possible answers
0 or 1 to this question. We terminate the tree when the Turing machine halts (when it
gets the answers supplied along the route followed so far). Since the computation halts
for every oracle X, all possible paths are are terminated so (using even Weak Konig’s
Lemma) the tree is finite. We can build a truth table that corresponds to this reduction
(propositional variables encode branch points and return outputs at end of every path).
This is effective and gives a truth table reduction from A to B. =

Diagram

This theorem depends essentially on the fact that we restricted our attention to sets
rather than all functions. One way of looking at this is that 2" is a compact space (Cantor
space) but NV (Baire space) is not. (The paths through a binary tree form a closed (and
so compact) set in Cantor space. Each node at which we terminate the tree determine
an open set (all paths extending it). If they cover the space (no paths in the tree) then
by compactness some finite subset of these open sets cover the space and so the tree is
finite (all nodes are initial segments of one of the finitely many nodes determining the
open sets that form the cover of the whole space. Another (equivalent) one related to our
discussion in the last 77 section is that if we are dealing with binary trees (we branched
to 0 or 1 depending on whether some number is in our set) then if every path terminates,
the whole tree is finite. (The compactness of 2 is equivalent to WKL. (EXPLAIN). The
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theorem is not true?? for arbitrary functions in the oracle. They would allow for infinite
branching in our computation tree and Koénig’s Lemma fails for arbitrary trees (NV is
not compact).

We now want to show that ()’ is the most complicated r.e. set. We could show that
A <p (' for every r.e. set A but in view of these new reducibilities we have just defined
we can hope for more.

Definition 4.3.4 A set A is called an r-complete set for class C' if A is in C and for
every Be C, B <, A.

Proposition 4.3.5 A’ is 1-complete for the class of sets r.e. in A.

Proof. We already know that A’ is R.E. in A. So we only need to prove for all e,
WA <y A'. By definition, € WA iff ®2(z) |. So, the s-m-n theorem gives a recursive

one-one k such that ®/(x) = @?(e’x)(k:(e, z)). Hence, we have . € WA iff k(e,z) € A’. =

Proposition 4.3.6 If B <,, A’ then B is r.e. in A so for all A, B, B <,,1y A" if and
only if B is r.e. in A.

Proof. By definition of <,,, there is recursive f such that z € B implies f(z) € A’
implies @?(x)(f(x)) l. So, we can use the s-m-n theorem to get that x € B iff ®/(z) |
for some 4, hence B = W/. The rest of the assertion then follows from the previous
Proposition. m

We have seen that A <7 B implies A’ <7 B’. Now we present a similar result that
links Turing-reduction with m(1)-reduction.

Proposition 4.3.7 Proposition 4.3.8 A <r B < A <,, B and A <r B & A’ <
B'.

Proof. We first prove that A <r B = A’ <; B’. So, we want to determine whether
®4(x) | by asking a membership question in B’. We claim that ®7(x) | iff @?(x)(f(m)) !
for some recursive 1-1 function f. Why? because for each x, we can produce a machine
with oracle B which ignores its input and computes ®2(z) by simulating the machine ®4
and whenever it asks a question about A, compute A from B as given by assumption.
This gives a recursive method for producing index f(x), which can be made 1-1 by the
Padding Lemma. (or use s-m-n)

Now we prove A’ <,, B = A <7 B. In contrast, it is not the case that A’ < B’ =
A <p B. (see 77)

Recall that A <; A’ (hence A <,, A’) because A is r.e. in A (it is the domain
of procedure with oracle A which returns yes if x € A and loops forever otherwise).
Likewise, A <; A’, hence A <,, A’, because A is r.e. in A.

By earlier converse, A <,, A’ <,, B’ implies A is r.e. in B and A <,,, A’ <,, B’
implies A is r.e. in B. Since A is recursive in B iff A, A are both r.e. in B (??), A is
recursive in B. m
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Theorem 4.3.9 (Shoenfield Limit Lemma) A <; B’ < 3f <; B such thatVz(A(z)
lim, .o f(z,5)). Note that asserting that lim,_.o f(x, s) exists means that f(z,s) is even-
tually constant for fixed x.

?77Slogan: Effective in the jump just in case have eventually correct recursive approx-

imation.
Proof. Say A <; B', in other words A = ®?’ equating the set with the function means
that the characteristic function of A is ®%". We want f <; B such that lim,_ . f(z,s) =
A(z). Certainly, A(z) = lim,_o ®Z;(z). This is recursive in B’, but not in B. In order
to make it recursive in B, we want to approximate the oracle B’ recursively in B. Since
B ={e:®P(e) |}, B, = {e: ®F (e) |} is an approximation for B’ recursive in B. In
fact, B’ = lim,_,, B, because approximation changes at most once for each e.

We can approximate any W/ similarly by W2 = {n: ®Z (n) |} and lim,_.,, W7, =
WB. ?7Extract notation??

So, define f by As(x) = @5;(1‘) = f(z,s) (with the convention that if ® hasn’t
answered by time s, return “ no”). Then f <; B. It remains to verify that A(x) =
lim,_o f(z,5). Since A = ®F'(x), there is s such that A(z) = ®F () = ®Z)(x) for all
t > s. The computation of A only uses finite information about B, say ¢ C B. Moreover
there is s such that Bj(n) = B'(n) for all n < |o| (aka By [ |o| = B’ [ |o|) for all t > sy,
because of permanence and the properties of limits.

Conversely, suppose there is f <r B and A = lim,_ f(z,s). We want to show
that A <p B’. To find A(z), we could start computing f(z,0), f(z,1), f(z,2)... and we
know that eventually we get the right answer. But how do we know when to stop? By
definition

dsVt > s(f(x,t) = f(:v,s))
and for this s, A(z) = f(x,s). Define the following program recursive in B: @kB(s)(s) | iff

(3t > s)(f(z,s) # f(z,t)). Note that {s : ‘1)1?(5)(5) 1} <r B’. We can apply the program
iteratively: does f change after stage 07 If so, can find sy where it changes. Does it
change after so? etc. This procedure halts because f is eventually constant (since it is a
limit). m

In applications of the Limit Lemma, without loss of generality we adopt the convention
that we consider only functions f for which Vz(f(x,0) = 0).

Theorem 4.3.10 A is r.e. in B iff there is f <p B such that for all z, A(x) =
limg . f(x,s) and f(x,s) changes at most once (|{s: f(x,s) # f(x,s+ 1)} <1).

Proof. If there is such an f, let ®Z(x) be the program which searches for an s such that
f(z,s) =1, and halts if it finds one. Then A = dom ®% so A is r.e. in B. Conversely, if
Aisr.e. in B, then A = dom ®? for some e. Let f be the function

flo,s) = {1 it ®5 (x) |

0 otherwise.
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Then f <r B, limg . f(x,s) = A(x) and |{s: f(x,s) # f(z,s+1)}| <1. =

A is difference of sets r.e. in B if 3fVx f(x, s) changes at most twice. Then A = Cy—C}
both r.e. in B.

Continuing in this fashion, get the difference hierarchy (Putnam-Gold hierarchy).

Definition 4.3.11 A is an n-r.e. set if there is a recursive function f such that for all
x, A(x) = limg o f(z,s) = A(z) and [{s: f(z,s) # f(z,s+ 1)} < n.

We can connect this definition with difference of r.e. sets: A is n-r.e. iff

4 (Wey =Wy ) UWe,) -+ ) — We, if n is even
T (W, = W) UWL,)---) UW,, if n is odd,

where W, ..., W,, arer.e. sets.

Definition 4.3.12 A is w-r.e. if there are recursive functions f,g such that A(z) =
limg . f(x,s) and f(x,s) changes at most g(x) many times.

Exercise 4.3.13 Show that, for each o < w, there are a-r.e. sets which are not 3-r.e.
for any B < «. Hint: list all n-r.e.(for fived n or the for all n uniformly) sets and
diagonalize making only n + 1 (finitely) many changes .

Exercise 4.3.14 Show X is w-r.e. iff X <4z 0" iff X <, 0

Note that in general, tt reducibility doesn’t coincide with wtt reducibility. What do
we know so far about the reducibilities?

Proposition 4.3.15 <;#<,,, <r#<;

Proof. If X <,, A and X <,, A and A is r.e. then X is recursive. Why? X <,, A and
A r.e. implies that X isre; X <,, A & X <,, Aso X r.e. as well. However, 0/,0' <7 0,
and 0’ r.e. but not recursive. So <7#<,, and <7#<;. =

Exercise 4.3.16 Show that 1 — 1, m,tt,wtt,T are all distinct reducibilities. Hint: for
wtt and T make list of the reductions (applied to some finite oracle). How hard is it to
do this? Try for something recursive in 0 and then diagonalize. wtt but not tt is too
hard. again list total tt-functions but now build both A and B in stages. In A put in
only 0 except when might diagonalize. In B put in sequence of 1’s of length the next e
to diagonalize ending at a place where we will diagonalize in A and then at least one 0.
(Fill in A with 0’s until this point.) Then fill in B with 0’s until force convergence so
decide what to put into A. So for x to be in A must have x € B and x + 1 ¢ B then
check B | x to see how many 1’s in the list ending at x, say it is e, then compute how
many 0’s need to put into B to make ®.(x) | and find answer. A(zx) is the opposite.

The Ershov hierarchy extends the difference hierarchy into the transfinite. If we
exhaust the recursive ordinals produce precisely all the sets recursive in 0'.

Recursively inseparable sets. Godel’s incompleteness theorem.

One-one equivalence same as recursive isomorphism. Explain, prove.
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4.4 Arithmetic Hierarchy

Notion of language for first order arithmetic. Then for arithmetic. Tension between
expressiveness and simplicity. For our purposes want language to be recursive (and so all
typical syntactic properties are recursive) and each function and relation to be (uniformly)
recursive (and so all quantifier free relations are recursive). On the other hand want to
as much as possible to be expressible as “simply” as possible.

What at a minimum. Want say 0 then perhaps successor s(z) and/or addition = + y.
In what sense is addition definable from successor (by recursion; implicitly; second order)?
We want to restrict definability to first order formulas. Note that multiplication, x - y, is
not definable from addition.

Presburger addition is decidable.

Peano arithmetic or even Robinson arithmetic is not. Gédel’s incompleteness theorem.
(forward reference to proof). Idea of representation of recursive functions so decidability
would solve the Halting problem. So we need at least multiplication. Typically put in <
and 1 as well although they are definable from addition.

Exercise 4.4.1 Define < and 1 from +,0 in arithmetic.
May want to put in more to make all recursive functions easily definable.

Exercise 4.4.2 With a recursive language (and interpretation as uniformly recursive
functions and predicates) it is not possible to define all recursive functions by quantifier
free formulas.

So we need to go to formulas with at least one quantifier. We can make life simple
by adding in one master recursive predicate for ¢(o, e, x,s) = y (so capturing the partial
function). It is then immediate that every recursive predicate and function is definable
by an existential formula, i.e. one of the form dx;dzs...3x,0 where 6 is quantifier
free. Or we can cite the theorem of Matijasevich (Davis, Putnam and Robinson) solving
Hilbert’s 10th problem negatively by showing that every r.e. set W is the solution set
for a polynomial (with many variables), i.e. there is a polynomial p(z,y) such that
W = {z|3y(p(z,y) = 0}.

The language of arithmetic has symbols +, x, <,0, 1, ¢(0, e, z,s). The ¥, I1,, formu-
las of arithmetic are defined as follows:

e X = Il are quantifier free formulas
e X, JT(F(x)) for F €11,

o Il,,1: VZ(F (7)) for F € 3,



20 CHAPTER 4. R.E. SETS AND THE TURING JUMP

An intermediate route puts bounded quantifiers into the language (3= < s, Vo < s) as
well as a few select predicates or functions /3 for coding finite sequences (of variable length)
and the corresponding projection functions. (Explanation and/or thought exercise.) If
we do so, ¥y = IIy have only bounded quantifiers. Note that the predicates defined by
such formulas remain recursive.

Prenex normal form. Collapse like quantifiers. Move bounded quantifiers past un-
bounded ones.

A relation is ¥, or II, if it is defined by a ¥, or II,, formula. A relation is in A, if it
is defined by both a ¥, and a II,, formula. Note that the notion of A, is semantic rather
than syntactic.

Properties of X,,,11,,, A,, Relations:

e IfABcY,thn AUBeYX,, ANBeY,, Acll,.
o If Ac A, then A € A,.
e 3, is closed under projection. That is, if A(x,y) € X, then {y: IxA(z,y)} € X,,.
e Both ¥, and II,, are closed under bounded quantification. For F' € ¥,,,
dr < sF = Ju(F(z) Az < s),

and
Vo < s3yp F = Jy(y is an s-tuple AVz < sF(z,m,(y))).

Note that this is sufficient because both checking tuple-hood and the projection
functions are recursive so can use master function ¢ to represent them in our
language.

e Uniformity.

We can relativize IT12, ¥4 A4 by adding a syntactic predicate A(x) to the language
and interpreting it in the semantics as the particular oracle set A.

Proposition 4.4.3 When we add in extra unary predicates or function symbols, the

truth of 3o formulas (even with bounded quantifiers) depends only on the values of the

predicates (functions) below some value which can be computed recursively in the formula.
We now see that we can define the recursive predicates as simply as possible.

Proposition 4.4.4 B e X' & B isr.e. in A.

Move proof here.
So the recursive predicates (sets) in A are precisely the ones that are Af.
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4.5 The Hierarchy Theorem

Theorem 4.5.1 (Post’s Hierarchy Theorem) 1. B € X2, < B is RE in some
14 set.

2. A™ s ©A4 m-complete for n > 0.
3. BEXA & Bis RE in AM.
J BEAM, & B<p A,

Proof. We will need to use induction. Let’s start with base case for (3), i.e. B € ¥ & B
is RE in A. Suppose z € B < JyF(x,y, A) where F' has only bounded quantifiers.
Note that a formula which only contains bounded quantifiers is recursive in A. Let
®4(x) |< JyF(x,y, A) be the function which checks each value of y in turn and return
“yes” answer if it finds one. So, B = WA and is RE in A. Conversely, suppose B is RE
in A. Then B = WA. This means that z € B < EIJEIyEIS(go(J,e,x,s) Nao C A). Note
that o C A is a bounded quantifier formula so we have a 37! definition of B.

To prove (1): The base case is B € 1! & B is RE in some II{' set. Above we showed
that if B € X! then B is RE in A, which is II{!. Conversely, if B is RE in some other IT¢!
set, C, then since C' is recursive in A, B is also RE in A so also use (3) to get B € 34\

For the induction, suppose B € ¥4, ,. So z € B < JyF(z,y) where F(z,y) € II2.

In particular, B is Ef(x’y) so is RE in F(z,y) by the base case. Hence, B is RE in the
14 set F(z,y). Conversely, if B is RE in W € IIZ, by the base case, B is V. So,
r € B< do,y, s(go(a, e,x,8) =yANoC W) which is a I14 definition.

To prove (2): We’ve previously shown that A’ is the m-complete RE set. It remains to
do the induction step. A = (A(”)),, which by the n = 1 case is the m-complete ¥:"
set. By induction, A" € ¥4 so using (1) and that fact that being RE in X is the same
as being RE in X, we have that A+D) ¢ Eﬁﬂ. For completeness, suppose B € Z;‘L‘H.
Then by (1), B is RE in some 112 set C. So, B is RE in C' € ¥4. By the induction
hypothesis, A™ is ¥4 m-complete, so B is also RE in A™. But X’ is the 1-complete
RE set, so B <, (A™)" = A+,

To prove the induction step of (3): B € ¥z, if and only if B is RE in some II2 set,
C (by 1). This happens if and only if B is RE in C' € ¥4, which (by 2) happens if and
only if B is RE in A™,

For (4): Be A2, & BeXd NIIY, < BisRE in A™ and B is RE in A® &
B <r A(n) |

The hierarchy theorem tells us that one quantifier corresponds to one iteration of jump
operator. For example, we have that if F' is a predicate recursive in A, then JzF <p A’
and dzVyF <p A”.

Moreover, the hierarchy theorem also shows that the jump hierarchy is real: there are

new sets at each levels. In particular, A <p A’ implies that we have a strict hierarchy
and A" € ¥, \ II,,. So we have II,, # ¥, and
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Diagram

4.5.1 Index sets

Define and samples

Exercise 4.5.2 Prove that {e|W = 0} is 1-complete for X
Exercise 4.5.3 Prove that {e|W, is infinite} is 1-complete for 113
Exercise 4.5.4 Prove that {e|®, is total} is 1-complete for I13.
Exercise 4.5.5 Prove that {e|W, is cofinite} is 1-complete for 3.

Exercise 4.5.6 Prove that {e|W, is recursive} is 1-complete for 3. Hint: movable
marker argument to fix location for diagonalization if not cofinite.

4.6 Jump Hierarchies

We would like a sense of what it means for a set to be small, or near 0.
Definition 4.6.1 X is low if and only if X' = 0.

This is as close as you can get to measuring smallness using the jump. It says that the
jump of X is as small (low) as possible. In many ways, such low sets look like recursive
sets.

If we consider sets below (', it is easy to see what it means for its jump to be as big
as possible.

Definition 4.6.2 For X < 0': X is high if and only if X' = 0".

Again, many constructions which can be done below 0/ can be done (more carefully)
below any high set. Can we extend these notions of smallness and largeness beyond the
degrees first jump?

Definition 4.6.3 X € Ly if and only if X" = 0"; for X < 0, X € Hy if and only if
X// — 0///’
X € L, if and only if X™ =0 ; for X <0/, X € H, if and only if X = 0+,

Now we generalize to degrees not necessarily below 0’ again trying to capture the idea
that the jump of a set is a small (low) or as large (high) as possible.

Definition 4.6.4 X € GL; if and only if X' = X vV 0'; X € GHy if and only if X' =
(X Vv0).
X € GL, if and only if XY = (X v0')™; X € GH,, if and only if X™ = (X v )™,
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Embeddings into the Turing Degrees

5.1 Embedding Partial Orders in D

So far the only degrees we know are 0 and the iterations of the jump beginning with 0.
Are there others? Is D a linear order? If not, how “wide” is it? How far away from being
a linear order? Where do these other degrees lie with respect to the ones we already
know? We begin answering these questions by considering what is perhaps the simplest
question and showing that D is not a linear order.

Notation 5.1.1 We write A|lpB, A is Turing incomparable with B, for A «r B and
B £ A.

Theorem 5.1.2 (Kleene and Post) JA,, A;(Ao|rA;).

How can we approach such a result. We will recast the desired properties of the sets
we want to construct into a list of simpler ones R, called requirements. Then we will
choose an approximation procedure so that we can build a sequence of approximations
a; s “converging” to A; so that the information in an an approximation («;,) can be
sufficient to guarantee that we satisfy one of the requirements in the sense that R, will
be true of any pair A; D «; 5.

Proof. We will build Ay, A;. The requirements necessary to guarantee the theorem are:

Riejy : @ # Ay

for all e € N, j € {0,1}. It is clear that if we the sets we construct satisfy each
requirement then the sets satisfy the demands of the theorem. Our approximations in
this case will be finite binary strings (so initial segments if characteristic functions) o
such that Aj = UjOéj7S.

The construction will not be recursive because Ay, A; can’t both be recursive and
incomparable. But, the approximations won’t change once defined at some x; in other
words, ;s C aj .41 S0 we get better and better approximations.

23
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What actions will satisfy a requirement? Given a;s (j =0,1), we want ;11 2 s
to guarantee that we satisfy R ;. For definiteness, let j = 0. We want oy 2 ag,
ay D aj s such that for any Ag O ap, 41 2 o, @fo # A;. In other words,

S0(20(x) # Ay(1))

We can choose x as the first place = at which «; s is not defined (formally z = dom(a; ) =
|ar ). Ask if g D g (P2°(x) | ). If so, we can choose “ least” such ag. Which order-
ing does the “least” refer to? We can make a master list of all convergent computations
o(o,e,x,t), i.e. {{o,e,x,t): p(o,e,z,t) |} and then “ least” refers to least quadruple
(av, e, x, s) in this list.

Then, set apsy1 = o and aj 11 = of (1 — ®2°(x)). By the use properties, if
Ag D ag = a1 and Ay D aq 441 then

©,0(z) = O (x) # 1 — €2 () = Ay ().

What if no such «g exists? We do nothing, i.e. we set a; ;41 = ;. This finishes the
construction.

A general principle of our constrictions is do the best you can, and if you can’t do
anything useful, then do nothing and hope for the best (i.e. that what you can is enough).
In this case, it is enough because if Ag 2 g then ®(z) 1. (If &2 (x) | for any A D
then the computation only requires finitely much information about A and so ®%(z) |
for some finite initial segment o of A. As Ay O ap, we can certainly take this a to
extend ag as well if ®20(z) |.) So @20 is not total and can certainly then not be the
characteristic function of a set, i.e. ®40 # A;.)

Thus we have actually verified that the construction satisfies all the requirements and
so provides the desired sets. Consider R ;). Look at the stage s at which we acted for
this requirement. Either we did something (defined «; 511 # ;) which guaranteed the
requirement by guaranteeing that P2 (x) |# Aj_j(x) at some z; or we did nothing by
setting o s11 = ;s but in that case we also guaranteed that the requirement is satisfied
by making ®." (x) 7 for some z. m

Questions:

1. How do we know that this construction keeps going...i.e. that there is no point
from which we “ do nothing”. If that was the case, then both Ag, A; are finite —
bad! Why doesn’t this happen? Is it necessary to include another requirement to
guarantee this: ). : o, > e (these are easy to satisfy). Whenever we do act on
a requirement, we make one of the a’s longer and since infinitely often there is an
index e which doesn’t look at its oracle and outputs 0, at stage where we deal with
requirement with index e, automatically extend the oracle approximation. Hence,
both strings get extended infinitely often. This is a common phenomenon that
constructions often do more than you expect that they do.
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2. How complicated are Ay, A;? We want a bound on their complexity, such as
Ag, A1 <p 00 (this also gives definability properties). To determine what n is,
let’s look back at the construction. By recursion, we have a; ;. To calculate o 41,
we asked one question:

dap 2 ap (@30@) ! )v

a X1 question so 0’ can answer it and tell us which case we’re in. The do nothing case
is easy to do. For the other case, we have to enumerate the master list {(o, e, x,t) :
(o, e,x,t) |}, which we can do effectively. So, once 0/ told us which case we’re in,
everything else is recursive. Hence, Ag, A; < 0.

3. Where do Ap, A; lie in the jump hierarchy? Because of the symmetry of the con-
struction, even though Ay #r Aj, they should have some of the same properties.
Are they low (or can we add something to the construction to make sure that
they’re low)?

Recall: Ay is low iff A) <7 0/ iff {e: ®Ao(e) |} <7 0.

We can add a new requirement:

N, : make ®%i(e) | if we can

7j
Suppose that at stage s we are acting on N, o, have o . Ask if
E|Oéo 2 Qo s ((I)go (6) l )

If the answer is yes, let o .11 be the least such oy and let g 441 = a1, On the
other hand, if the answer is no, then do nothing and put o ;11 = ;s This is called
forcing the jump.

Claim 1: Construction is still recursive in 0'. Why? Action for requirements P. ;
are still the same. For N, ;, 0’ can answer the question Jag 2O ag s (@2‘0 (e) | )
Claim 2: Can compute Af from 0’. Why? Since the whole construction is recursive

in 0, 0/ can go along the construction until it gets to the stage s at which we act for
Nep. Then, it sees what the construction does and can compute A; from this action.

Claim 3: We can relativize the construction to any degree x to get incomparables
AX between X, X' such that (A)) = X'. By relativizing, we mean that at each
part of the computation where we have oracle o, we instead have the oracle X ® ;.
At the end, we build X @ A;. The verification of the construction goes through as
before.
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Claim 4: It is easy to extend the construction to more than two incomparables.
We can change the requirements to

Pe,i,j . (I)?j 7£ Az l 7é ]

Thus, we can produce countably many low incomparables between 0 and 0'.
Exercise 5.1.3 Show that the sets A; of the original construction are already low.

We can strengthen the notion of lowness and prove a bit more:
Definition 5.1.4 A is superlow if A" <; 0.

KP
Exercise 5.1.5 Prove that the sets constructed in Theorem %3_.1 .2 are superlow.

In general, given a countable partial order P, can we embed it in D or in D(< ()
or in the low degrees? Let P = {po,p1,--..}, <p. Without loss of generality, we can
assume that pg is the least element of P. If P doesn’t have a least element, add it and
then embedding of this enlarged partial order gives embedding of suborder P. We will
build A; such that A; <p A; if and only if p; <p p;. To do so, we build C; and let
A; =@{C; i <p j}. Does i <p j imply that A; <p A;? By transitivity,

(k,x)e A, & € Cuy Nk <pi = (k,x)e A; & 2€C,Nk<pj

so if <p is recursive, ¢ <p j implies that A; < A;. We can use this fact to embed
recursive partial orders in the low degrees by using the construction above to guarantee
incomparability when needed and the recursiveness of P with this simple argument to
guarantee comparability when needed. If a partial order is not recursive, it is at least
recursive in some oracle so relativizing the proof for recursive partial orders gives em-
bedding into D. Perhaps this is the best we can do — it may not intuitively obvious that
D(< (') is a universal countable partial order.

KP
Exercise 5.1.6 The sets A; constructed in the proof of Theorem %71 .2 are already low.

Q as universal countable linear order. back and forth but we could construct one
without knowing that Q has the desired property. We do it for partial orders.

Proposition 5.1.7 There is a recursive universal countable partial order.

Proof. Fraissé. m
As for linear orders there is a natural example

Proposition 5.1.8 Every recursive partial order P = (P,<p) with 0 can be embedded
m D, ST) 0.
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Proof. Build sets C;, define A; = &{C; : p; <p p;} so pr <p p; implies A, <r A; since
<p is recursive.

Requirements: Ry ;. : pr <p p; implies A, < A; i.e. ‘v’eq)gj % Ch.

Approximations: have finitely many finite binary strings ;. We will want C; =
Uy, s- Then approximate

Ais = 0{v,, : pj <p pi}

i.e. A, is defined at (j,x) if v, () is defined. Think of each v, as partial function
and A; s is the sum of these partial functions. To ensure that A is a set (i.e. has a

characteristic function), if p; # p; make A;,i = 0 (for totality)... CHECK INDICES.
Suppose we act for Ry ;. at stage s = (k, j,e). We have A;,, A; s finite characteristic

functions determined by the v, ; so far defined. To guarantee P2 #+ Ag, can we take

r = |7, and ask if there is extension of the 7’s such that DL (x) |? However, an
extension of the v’s which guarantees convergence might also determine the value A(z),
so we might not be able to diagonalize!

To make z not interfere with Ay, want z = (n, y) such that p,, <p p;. Also, to be able
to define Ay, need p, £ pi (otherwise have empty column). And, need (n,y) > |y, |-
So we want p, £ px and p, £p p;. By assumption, py %, p;, so choose n = k. Then,
Tr = <k’ |’7k,s|>'

Now, ask for least extension of v’s which makes iy (z) | and only depends on 7,
for p; <p p;. If such an extension exists, put Ay(z) =1 — iy (x). If there is no such
extension, do nothing. Then, go to stage s + 1.

To verify that the construction satisfies all the requirements, for Ry, ;. consider stage
s = (k, j,e). Either we extended ~’s or we didn’t. If we extended, then there is x such
that ® (x) |# Ag(x). If we didn’t then no such extension exists, and since A; extends

7.8, @ (2) 1. m
Corollary 5.1.9 The one-quantifier theory of (D, <r) is decidable.
Proof. A one-quantifier sentence looks like

¢ =3w 3wy T (v S ay A Aap Lapg A Aay, = 3,,).

Note that if we can decide whether an existential sentence is true or false then we can
flip the answers to decide if universal sentences are true and false. Given such a sentence,
we can ask if there is a partial order that satisfies the sentence. If not, then (D, <r)
can’t because it itself is a partial order. So suppose (P,<p) F P. If we can embed P
into D then we’re done because embedding preserves atomic sentences. Not every partial
ordering can be embedded into D (for example, huge ones can’t). But if there is any
partial order that satisfies ¢ then there is a finite partial order that satisfies it, because
© only mentions n elements. So, we can assume that P is finite, hence recursive. Then,
the theorem above says that P embeds into D. The last piece of the proof is to verify
that we can answer the question of whether ¢ is satisfiable by a partial order. Well, we
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can enumerate all partial orders of size at most n and then check each one. And, if ¢ is
satisfiable by a partial order then it is satisfiable by a member of the list. =
Questions about proof of embedding theorem:

1. How complicated are the images of the partial order under the embedding? A; < 0/
uniformly: to check A;(z) we ask if z = (j,n) € A;. But, 3f <y 0'(f(j,z) =
Uq/m(x)). If p; < p;, can ask f(j,n) what construction does. If p; £ p;, ask 0’ how
construction goes. Hence, A; < 0/ and indeed ®A; < 0'.

2. Can we ensure that all A; are low? We can add requirements
N, : ®%4i(e) | if we can.

To act on N, still takes just a 0" question. Alternatively, instead of adding infinitely
many requirements we can add a top element 1 to P and then construction gives
Ay = @C; <0 and then just make sure that A, is low.

Corollary 5.1.10 The one-quantifier theory of (D(<p (), <r) is decidable.

The method of finite approximations is used to build sets which are not necessarily
though of in terms of Turing degrees.

Theorem 5.1.11 There is a recursive partial order P such that every countable partial

order Q can be embedded in P

Proof. We will build P by finite approximations, P = UP,. At state s we have a finite
partial order Py and extend it to Ps,q such that for every subset of Py, every one element
partial order extension is realized in P, ;. That is, for subset M C P, and a particular
partial order relation on M U {z} (z, a new element), add z to P and define its relation
to the elements in P \ M as that dictated by the axioms of partial orders. Thus we
have the lemma that given any partial order and any finite subset and any extension
by one element, there is a new partial order that realizes that extension. We can apply
this finitely many times to take care of each finite subset and each possible one-element
partial order extension. This construction is recursive so we have a recursive universal
countable partial order.

Given Q a countable partial order, we use a forth argument to embed Q into P. That
is, if @ = {qo,q1, ...} we define the embedding f by induction. Start with f(qo) = po
and then given f | n, define f(g,) to be element of P realizing the extension of f([n])
that g, does of {qo,...q,—1}. ®

Note that if we could run the back direction as well so that P is embedded in Q so we
have produced an ultrahomogeneous countable partial order. Other ultrahomogeneous
structures are dense linear orders and atomless Boolean algebras.

Corollary 5.1.12 FEwvery countable partial order can be embedded in D(<r ().
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Proof. The universal partial order P above can be embedded in D(<r 0') because P is
recursive. By universality, any countable partial order can be embedded in it. m

Definition 5.1.13 {A; : i € N} is independent means that no A; is computable from
the join of finitely many of the other A; {A; : i € N} is very independent means that
Ai fT @j#,‘AJ‘ fOT all 7.

Very independent implies independent because A;, ©--- ® A;, <p @A, if no 4, =1
(x € A; & (i,x) € B;A;) However, while mdependence is a degree theoretic notion,
very independence is not. This is proved in the following exercises.

Exercise 5.1.14 Find {4, : i € N} very independent. (Hint: either write down require-
ments and use finite approximations, or use partial order embedding).

Exercise 5.1.15 Find {A; : i € N}, {B; : i € N} such that {A; : i € N} is very
independent, {A; : i € N} is not, but A; = B;.

Definition 5.1.16 An upper semi lattice is a partially ordered set P such that every pair
of elements x,y in P, has a least upper bound, x \V y.

Exercise 5.1.17 Fvery usl L is locally countable, i.e. for any finite F' C L the subusl
F of L generated by F (i.e. the smallest one containing F') is finite. Moreover, there is
a uniform recursive bound on |F| that depends only on |F|.

Exercise 5.1.18 Given usls Q C P and an usl extension Q of Q generated over Q by
one new element (with QOP Q) ), prove that there is an usl extension P of P containing

0.

Exercise 5.1.19 Prove that there is a recursive usl L such that every countable usl can
be embedded in it (as an usl).

Exercise 5.1.20 FEvery countable upper semi lattice L can be embedded in D and even
in D(< 0') (preserving V as well as <). Hint: Use a very independent set C;. If

Exercise 5.1.21 Need definitions and hints: Alternatively the atomless Boolean algebra
18 countably universal for Boolean algebras, upper semilattices and partial orders. It also
has a recursive representation as a lattice of recursive sets.

We will see 77 that every countable lattice can be embedded in D but not by these
methods in the sense that there is no countable lattice £ which is countably universal,
let alone a recursive one. Indeed local finiteness fails and there are 2% many lattices
generated by four elements. (ref??)
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What about uncountable partial orders, usls and lattices? Of course, they must have
the countable predecessor property. It is known that all partial orders and even lattices
of size N; with the countable predecessor property can be embedded into D. However, it
is consistent that 2% = N, and there is an usl of size Ny with the countable predecessor
property which cannot be embedded in D. It is a long standing open question if every
partial order of size 2% with the countable predecessor property can be embedded in D.
ref??

5.2 Extensions of embeddings

We now look at extensions of embedding results which give information about the
2quantifier theory of (D, <r). Explain ....

Theorem 5.2.1 (Avoiding cones) For every A > 0 there is B such that A|lrB.

Proof. Given set A, we build B such that A €7 B, B «r A. There are two kinds of
requirements:

P :3®* 4B Q. : BB+ A

The construction is by finite binary string approximations [, for B. At the end, let
B = Usﬁs'

Suppose at stage s we work to satisfy F.. We have 3, and will construct 3,
guaranteeing that B meets the requirement. Ask for value of ®(|3,|). If ®(|5,]) 1
then P, is satisfied so do nothing. Otherwise, put 8,,; = 8, (1 — ®2(|5,])). So,
B(1B,]) = Boya1(185]) # ®2(|B,]). Observe that we ask an A’ question and then do a
recursive procedure.

Likewise, suppose at stage s we work to satisfy ().. Ask if there is extension o of [,
such that ®7(|5,|) |# A(|5,]). If no such extension exists, do nothing. If there is an
extension, let 3, , be least such extension. Note that this is a ¥1' question followed by
a recursive procedure, so this step is recursive in A’.

To verify that this works, observe that all P. are clearly satisfied. Suppose we fail to
satisfy (.. Then at stage s there was no extension o D 3, such that ®7(|5,]) |# A(|5,])-
But, if ®Z(|5,]) T then Q. is satisfied. Therefore, ®5(|3,|) |= A(|3,]). But, this means
that A is recursive. To compute A(x), look for extension of 3, which makes ®7(x) | and
this must be correct value. This is a contradiction with our original hypothesis on A.
Thus, (). is satisfied. =

Exercise 5.2.2 The B of the theorem can be made recursive in A" and indeed we can
guarantee (or the construction already does) that B' =p A’.

Theorem 5.2.3 (Minimal Pair) There are A, B > 0 such that AN B = 0. In other
words, for all C, if C <7 A, B then C' = 0.
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Proof. We build A, B by finite approximations ay, 3,. There are three kinds of require-
ments:

P,:®.#B Qe:P.#£A Ne, : CID’: = (ID? = (C = (' is recursive.

To satisfy P,, Q. (respectively): given o, (5,), ask if ®.(Jas|) T (or @.(|3,]) T). If yes, then
the requirement is already satisfied so put ag;1(Jas|) = 0 (B,41(]8,]) = 0). Otherwise,
put aep(|as]) =1 = Pe(las|) ( Bopa(18,]) =1 = Pe(|5,]))-

Suppose at stage s we work on N, ;. Askif (3a D a,) (38 D 3,)3x(®%(z) |# P (z) |).
If such extensions exist, pick the first pair (o, 5) which satisfy the condition and put
g1 = a, B, = . If no such extensions exist, do nothing.

To verify that the construction works, first notice that all P,, Q). are satisfied so
A,B > 0. For N.;, we may assume that <I>A ®B = (' as otherwise the requirement is
automatically satisfied. We want to show that C' is recursive; in particular, let’s compute
C(z). Consider ay, 3, for the stage s at which we work on N.,;. To compute C(z),
find any finite extension a@ O «ay such that ®%(z). (There is one since A O a, and
®4(x) |.) We claim that ®%(z) = C(x). If not, there is a 3 D 3, with 8 C B such that
PP (z) = ®B(x) = C(z) and so we would have acted at s with o and 3 contrary to our
assumption. =

We will frequently use the idea see in this proof of searching for an extensions that
give different outputs when used as oracles for a fixed ®. and if we find them doing some
kind of diagonalization. If there are none, we generally argue t Lat cthe;1 iil;)g‘ is recursive
(or recursive in the relevant notion of extension as in Theorem ; 7.7). We extract the
appropriate notion and provide some terminology.

Definition 5.2.4 We say that two strings o and T e-split (or form an e-splitting) if
Jz(®7 () |# ®[(z) |. We denote this relation bly oleT and say that o and T e-split at x.

Note that by our conventions in Deﬁmtzon , @7 (x) = @7, () is a recursive relation
as is Jx(PI(x) |# ®T(x) |), i.e. ol.T.

Exercise 5.2.5 We may make the A and B of the theorem low or note that as constructed
they are already low. We can also relativize the result: YVCIA,B(AANB = C & A =
B'=C").

We want a similar notion to minimal pairs, but above any countable ideal of degrees
rather than a single one.

Definition 5.2.6 C is an ideal in the upper-semilattice D if C is closed under joins, and
is closed downwards (i.e. if Y € C and X <r Y then X € C).

Theorem 5.2.7 (Exact Pair) If C is any countable ideal in D, there are A, B such
that C ={X : X <r A,B} ={X : X <p A} n{X : X <r B}.

An alternative statement of the theorem is the following:
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Theorem 5.2.8 If C) <7 Cy <7 --- is an ascending sequence, then there are A, B such

These two statements are equivalent because we can list all the elements D; of a
countable ideal and then consider the ascending sequence C; = @;;D;. More 7?7 We will
prove the second formulation of the theorem.

Proof. Given (C,,) ascending, we build A, B such that

e forall n, C,, <r A, B and

e (' <y A, B implies that C' < C,, for some n.

Therefore, we need to satisfy the requirements
R,:C,<r A B N : 02 =3P =C = 3n(C <r C,).

We will build A, B by finite approximations ay, 5,. But, instead of these being thought
of as finite strings, they are matrices. In each matrix, finitely many columns are entirely
determined, and there is finitely much additional information. Suppose at stage s we
work for R,,. Choose the first column in each of oy, 3, which has no specifications yet.
Let cg41 (B441) be the result of putting C,, into that column of o (5,) and leaving the rest
of the approximation unchanged. This action is computable in C),. Otherwise, suppose
at stage s we work to satisfy N,,;. Ask if 3z (3o D ) (38 2 5,)(®2(z) |= &7 (2) |). If
such extensions exist, set (as11,,,, to be the least such pair of extensions. If no such
extensions exist, do nothing.

A, B meet the condition that for all n, C,, <r A, B because all R,, requirements are
satisfied. Consider the stage s at which we deal with requirement N.;. We may assume
that @2 = ®F = (' as otherwise the requirement is automatically satisfied. We want
to prove C' < C,, for some n. Indeed let n be the largest m such that we have coded
C,, into A and B by stage s. To compute C(z), find any finite extension o O « such
that ®%(x). (There is one since A D a, and ®(x) |.) We claim that ®%(z) = C(z). If
not, there is a 3 O (3, with 3 C B such that ®*(z) = ®5(x) = C(x) and so we would
have acted at s with a and 3 contrary to our assumption. The crucial point now is that
checking whether o O ay is recursive in C),,. =

Exercise 5.2.9 What is a bound on the complezity (degrees) of the A and B of the
theorem in terms of the C, ¢ (®C,)" ¢ How about a better bound? How low can we make
this bound? If C,, = 0™ 22

Exercise 5.2.10 (Extensions of Embeddings ) Given a finite usl’P and a finite par-
tial ordering Q extending P and with no v € @ — P below any y € P and an (usl)
embedding f : P — D prove that there is an extension g of f embedding Q into D. ?%or
prove??
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5.3 The range of the jump

5.3.1 The Friedberg Jump Inversion Theorem

This theorem describes the range of the jump operator on all the degrees.

Theorem 5.3.1 (Friedberg Jump Inversion Theorem )
VC > 0'3A(A = C =p AV 0').

The Friedberg Completeness theorem says that the only restriction on jump degrees
is the obvious one: above ('. This was a small part of Friedberg’s undergraduate thesis!
Proof. Let C' >7 0/. We build A by finite approximations «. The requirements are:

o C <p A’ (coding C into A’)
o A" < C (keeping A’ low)
o A <y AV (forcing the jump)

At stage s we have ag. Ask if there is a D« such that ®(s) |. If so, we can choose
“least” such extension a and let a1 = a”C(s).

The construction is recursive in C' (because C' > (/). So (as) <p C. Moreover,
A’ <7 C because s € A" iff d2+1(s) | (if ®4(s) converges, it is forced to by stage s + 1).
To check if C < A" < AV (0 it suffices to check C <7 AV 0'. Moreover, it is enough
to check that the construction is recursive in A vV 0'. But, 0’ can answer o D «a, so then
recursively look for least extension and then if we know that A = Usa, asy = a”C(s)
is next element of A so C(s) = as1(|asi1|) = A(Jass1]) and we can read it off A. Thus,
C ST AV0D. m

Exercise 5.3.2 Prove that all pairs of relations between A and B on one hand and A’ and
B’ on the other not prohibited by the known facts that A < A" and A <y B = A" < B’
18 possible.

Exercise 5.3.3 Jump inversion preserving partial order.

Does not extend to preserving join. State noninversion theorem.

5.3.2 The Shoenfield Jump Inversion theorem

Is there a version of this theorem when we restrict the domain of the jump operator to
degrees below 0’7 If A <7 0/ then 0/ <7 A’ <7 0” and A’ is RE in (0’. But maybe all sets
above 0/ are Turing equivalent to some RE set?

Exercise 5.3.4 Prove that there is an A < 0/ such that Ve (A Zr W.) and so by rela-
tivization a C between 0" and 0" which is not r.e. in (/.
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Theorem 5.3.5 (Shoenfield Jump Inversion Theorem) For every C' > 0" which is
r.e. in 0, there is an A <7 0’ such that A’ = C.

Proof. 77 m

Prove this theorem. Hints: Work recursively in 0’ and enumerate C'. Use finite
approximations to A. For coding C' into A" use the Shoenfield limit lemma with the goal
being that is A" is finite if n ¢ C' and cofinite if n € C. Use lowness type requirements
to preserve computations of ®4(e).

Exercise 5.3.6 Strengthen the Shoenfield jump inversion theorem by making A <7 0.

Exercise 5.3.7 Use the existence of nonrecursive low degrees, the previous exercise, rel-
atiizations and induction to prove the there are degrees in L, and H,, for each n > 1.

We can strengthen the notion of highness as we did that of lowness in Definition [77:
Definition 5.3.8 A < 0/ is superhigh if 0" <;; A'.

Exercise 5.3.9 If we take C' in the proof, &frgﬁe u,?nhg)g‘rlzﬁeld Jump inversion theorem to be
0" then the set A constructed in Exercise15.3.6 15 superhigh.

5.4 'Trees and sets of size the continuum

There are several equivalent definitions of trees. One is that a tree is a connected undi-
rected acyclic graph. Another is that a tree is a subset of N<“ closed under initial
segments, ordered by C. (Note that binary trees are subsets of 2*; n-ary trees are sub-
sets of n¥.) A third definition is that a tree is a partially ordered sets with least element
such that {z : x < a} is linearly ordered for all a. Yet another definition uses the graph
of function I : § — S with single fixed point (root) where each element has parent F'(x).
Labelled trees are trees in any of these senses with an auxiliary function which labels
each node.

A path through a tree is linearly ordered, closed downward (if there’s an ordering).
For the graph theoretic definition, a path through a tree is a path through the graph. Do
we want to require that paths are maximal and/or infinite? Let’s decide that paths are
maximal, but need not be infinite. Denote by [T] the set of paths through the tree T.

Theorem 5.4.1 There is a set of pairwise incomparable degrees of size continuum, 2%°.

Proof. We will build a tree with enough branching so that the number of paths through
it is 2%, In particular, since we wish to construct sets, we will build a binary tree
T C 2<% such that if A, B € [T]|, A # B, then A|rB. We want control over the structure
of the tree: no dead ends, and perfect (every node has two incomparable extensions ).
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This guarantees that there are enough paths. Then, we identify a path P on T with
UP : w — 2, a characteristic function for some set.
The requirements on the tree are

R, : VA, B € [T|Ve(®? # B).

To meet these requirements, we construct 7' by finite approximations. At stage s, we have
a finite tree T,. This finite tree has maximal elements o4, ..., and any path through
the finial tree T" will have one of these as its initial segment. We consider what it means
to meet a requirement for o;,0;. In other words, let o, and o;; be extensions such
that ®;"" () # 0;(x) (if convergent not equal, otherwise no extension converges). We
can meet the requirement for s for each pair and finish in finite time (because there are
finitely many maximal elements of a finite tree). This guarantees that if path A goes
through o; and path B goes through o; then ®# £ A. Next, we split (add branching)
by adding on 0,1 to each path. This gives T§,;.

To verify the construction, suppose A, B € [T] . There is s,0 € T, 7 € Ty such that
oc# 7and 0 C A, 7 C B. Notice that by the Padding Lemma, there is ¢ > s, e such that
®, = P, ; so at stage t we ensured that @f #B. =m

Exercise 5.4.2 There is a size continuum set of degrees which are pairwise minimal.
Exercise 5.4.3 There is an independent set of degrees of size continuum.

This leads to many more embedding results. Using other ideas one can prove that any
size Ny partial order with the countable predecessor property can be embedded into D. it
is an open question if every size continuum partial order with the countable predecessor
property be embedded into D.
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Chapter 6

Forcing in Arithmetic and Recursion
Theory

6.1 Notions of Forcing and Genericity

Forcing provides a common language for, and generalization of, the techniques we have
developed so far. It captures the ideas of approximation to a desired object and how
individual approximations guarantee (force) that the object we are building satisfies
some requirement. Now approximations usually come with some sense of when one is
better or gives more information than another. Of course, one approximation may have
improvements which are incompatible , i.e. the set of approximations is partially ordered.
The intuition is that p < ¢ means that p refines, extends or has more information than
q. We are generally thinking that the conditions are approximations to some object
G : N — N (typically a set) and that if p < ¢ then the approximation p gives more
information than ¢ and so the class of potential objects that have p as an approximation
is smaller then the one for ¢q. In addition, we have some notion of what at least at a basic
level, the approximation p says about G. We formalize these ideas as follows:

Definition 6.1.1 A notion of forcing is a partial order P with domain a set P and binary
relation <p. For convenience, we assu %rtéli%t he partial order has a greatest element 1.
(For further restrictions see Definition [6.1.

Example 6.1.2 [f the notion of forcing is (2<“,2) then 0 < 7 =0 2 7. In many of
our previous constructions we used such binary strings o as approximations to a set G
such that o C G. So the longer the string, the fewer sets that “satisfy” it, i.e. have it as
an approximation (initial segment). This example is often called Cohen forcing.

Example 6.1.3 In ?7 we used finite binary trees with extension requiring that the ex-

tension add only strings that are extensions of leaves of the given tree. The object being
approximated was a binary tree T'.

37
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Example 6.1.4 In 27 we used partial characteristic functions o defined on some initial
segment of columns and some finitely many additional points. Again we were approxi-
mating a set G D «a.

Example 6.1.5 If the notion of forcing is the set of perfect (definition??) recursive
binary trees under C then S < T =S CT. Think of a tree T as approrimating the
set [T] of its paths so more information means fewer paths, i.e. more information about
which path is being approximated. This notion of forcing is often called Spector forcing
(or perfect forcing or Sacks forcing or other names for different variations).

What is it or what class of objects is it that a condition p approximates? For Cohen
forcing a condition (string) o approximates the class of sets {G|G D o}. So the collection
of all approximations to a single set G is simply {o]|oc C G}, the class of all the initial
segments of G. We want to isolate the salient features of this set of conditions or any set
G C P that might considered as an object its members are approximating. The general
notion that we want for an arbitrary notion of forcing begins with that of a filter.

The idea is rather than comparing any two elements, compare them with the imag-
inary end point that we’re approximating. That is, between current positions and end
goal, there is an element.

Definition 6.1.6 Two elements p,q are compatible if and only if Ir(r < pAr <gq). If
p,q are incompatible we write p L q (as opposed to incomparables which are written as

pla)

Definition 6.1.7 F is a filter on P if and only if F is upward closed its elements are
pairwise compatible.

Thus we are thinking of filters as connected with the object we are approximating.

Example 6.1.8 Suppose we want to approximate a set G € 2¥ and our notion of forcing
is (2<¥,D) (finite binary strings). Then the set {o : 0 C G} is a filter. In particular,
the union of this set (filter) is the characteristic function G. It will be common that the
object we want is defined from a filter by some “simple” operation such as union. Note
that for finite strings, being comparable is the same as being compatible.

Example 6.1.9 Suppose we want to approximate a set G € 2% and our notion of forcing
is some countable set of infinite binary trees (not necessarily perfect) such as the recursive
ones. Then the set {T : G € [T|} ={T : VYo C A(c € T))} is a filter: Suppose two trees
both have A as a path. Then the tree with just the path A is a common refinement. For
upward closure, if A is a path onT and T C S then A is also a path on S. In this case,
the intersection of this filter is the characteristic function G.
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Suppose F is a filter on some notion of forcing P. We can often associate some set
or function with F in a canonical way. For example, for Cohen forcing we can naturally
try UF For forcing with binary trees we might try N{[T]|T € F}. Does this always make
sense even for Cohen or Spector forcing? For Cohen forcing it might be that UF is a
finite string so itself a condition. For Spector forcing N{[T]|T € F} could be a the set
of paths through a binary tree with more than one branch which might not necessarily
be recursive or perfect. We need to add conditions on our filter to make sure we get a
total characteristic function, or a single set at the end. We might for example require
for Cohen forcing that F contain strings of every (equivalently arbitrarily long) length,
ie. (Vn)(do € F)(lo| < n). For Spector forcing we could require that there are trees
in F with arbitrarily long nodes ¢ before the first branching (i.e. ¢ has two immediate
successors in the tree but no 7 C ¢ does). We can represent meeting these requirements
as getting into dense subsets of P.

Definition 6.1.10 D C P is dense in P if
Vp € P3g € D(q <p p).
D is dense below r if Vp <p rdq € D(q < p).

In general we want the conditions guaranteeing (forcing) each of our requirements to
be dense.

Definition 6.1.11 If C is a class of dense subsets of P, we say that G is C-generic if
GND # 0 for all D € C. We say that a sequence (p,) of conditions is C-generic if
VD € C3an(p, € D). All collections of dense sets considered are assumed to include the

ones {p| [V(p)| = n}.

Proposition 6.1.12 If (p,) is a C-generic sequence then G ={p|an(p, < p} is a C-
generic filter containing each p,,.

Proof. G is C-generic because it contains an element, p,, of D, for all n. It is upward
closed because if p € G then p > p. for some e so if ¢ > p > p. and g > p. as well.
Finally, it is pairwise compatible because given p > p.,, ¢ > p., then p,q > p. where
e =min{e;,ex}. m

Example 6.1.13 For Cohen forcing let D,, = {0 : || > n} and consider C = {D,}. It
is easy to see that this is a collection of dense sets. Then if filter G is C-generic, it is
guaranteed that G = UG is a set (i.e. defines a characteristic function w — 2.

If our collection of dense sets is countable then generic sequences and filters always
exist.

Theorem 6.1.14 IfC is coumﬁqbl sg%ﬁeer P, then' there is a C-ge@eﬂc sequence (py)
with po = p and so, by Proposition 6. I 12, a C-generic filter G containing p.
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Proof. Let C = {D,|n € N}. Then we define (p,) by recursion beginning with py, = p.
If we have p,, then we choose any ¢ < p, in D,, as p,1. One exists by the density of D,,.
It is clear that (p,) is a C generic sequence and so G ={p|3n(p, < p} is C-generic filter
containing p. m

Exercise 6.1.15 If C is countable (as it always will be in our applications) and G is a
C-generic filter containing p, then there is a C-generic sequence. é@f ) with pg = p such

that G ={p|3n(p, < p}. (This is a converse to Proposition 16. 117,

We thus always have a C-generics for countable C. We want to standardize and
formalize the procedure of producing a generic object G (for us always a set or more
generally a function from N into N) from a generic filter or sequence. To do this we
incorporate a function V' associating approximations to G with conditions p.

Definition 6.1.16 We always require that a notion of forcing have a function V' into
W< which is recursive on P and continuous in the sense that if p <p q then V(p) 2 V(q).
Moreover, we require that the sets V,, = {p| |V (¢)| > n)} are dense. (When we say that
V' is recursive on P we mean that it is the restriction of a partial recursive function to V'
which is defined on all of V'.)?%define elsewhere 27 We also require that any collection

of dense sets that we consider for the construction of a generic filter or sequence include
the V,.

As is our general practice, we will often care about how hard it is to compute a
C-generic. We must begin with the complexity of P and then consider how hard it is
to compute the generic sequence (p.) and finally the associated filter G. We view the
elements of P as being (coded by) natural numbers. For convenience we let the natural
number 1 be the greatest element of P.

Definition 6.1.17 A notion of forcing P is A-recursive (or a-recursive) if the set P and
the relation <p are recursive in A (€ a). (As usual if A =10 (a=0) we omit it from the
notation.) If C = {C,} is a collection of dense sets in P then f is a density function for
C if Vp € P¥n € N(f(p,n) € C,,).

Proposition 6.1.18 If P is an A-recursive notion of forcing and C = {C,} is a uni-
formly A-recursive sequence of dense subsets of P and p € P then there is a C-generic
sequence (p,) with pg = p which is recursive in A. More generally, for an arbitrary notion
of forcing P, p € P and a class C of dense sets, if f is a density function for C, then
there is a C-generic sequence (p,) <r f with po = p. The generic G associated with these
filters or sequences are also recursive in A or f, respectively.

Proof. If P is an A-recursive notion of forcing and C = {C,} is a uniformly A-recursive
sequence of dense subsets of P, then we can define a density function f <r A by letting
f(p,n) be the least ¢ <p p with ¢ € C,. The desired generic sequence is now given by



6.2. THE FORCING LANGUAGE AND DECIDING CLASSES OF SENTENCES 41

setting pp = p and p,+1 = f(n,p,). As V is recursive and the dense sets V,, are by our
conventions included among the C,, the associated generic set G = U{V(p,)|n € N} is
recursive in f as required. =

. Eg that the generic filter G defined from the generic sequence (p,) in Proposition
%_?TZI_S%}_I%H é% ) but not necessarily recursive in it. While in the other direction

Exercise e sequence is recursive in the filter and &C,,.

[There are various connections between forcing, (generic) filters and topology. Order
topology on P...dense open sets , meager comeager, .generic..

In Cohen forcing the conditions correspond to (approximate) open sets in Cantor
space 2 i.e. o is an approximation to each set G D o and these form an open (even
clopen) set in 2¥. Then the intersection of all the clopen sets in a filter F is an open
set. If the filter is mildly generic it is the single set G which is the union of the filter.
In Spector forcing the intersection of the [T] for 7" in some filter is a closed set. It is
nonempty since the space is compact. If the filter is mildly generic the intersection is
also a singleton.]

6.2 The Forcing Language and Deciding Classes of
Sentences

An ad hoc approach to constructions is to look at the specific theorem we want to prove,
decide what are the specific requirements we need to meet, and then build accordingly.
For example, this is what we did to build A|7B. Our approximations were P = {(«, ) }.
The requirements were 4 # B (and ®5 # A). Given o, §, we could find (&, 3) < <a, B)
which would guarantee the requirement. In particular, if one exists, we chose (@, B} <
(o, B) such that Jx®%(z) |# B(J;) 15 if not, we took («, 5). In the terminology of forcing,
we had dense sets

De = {{a, B) : J2d2(z) |# B(x) | or (W&, B) < (o, B))(~T2d2(z) |# B(x) )}

Likewise, we define dense sets C., which guarantee ®Z # A. Then if G is { D, C. }-generic,
Go |r G-

In this manner, each of the proofs we did earlier by constructions with requirements
can be translated to dense sets and generics with the dense sets D, determined by the
conditions that guarantee (force) that we satisfy the eth requirement. (Exercises??)
However, the benefit of the forcing technology comes in the form of the generality it
allows. For example, we could try to tackle many of the constructions at once. We need
to define the forcing relation (IF) more generally, by induction on formulas ¢ that will
somehow say that if p IF ¢ then ¢(G) holds for the set G determined by any sufficiently
generic filter G.
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Thus we want a relation |- between elements p € P and sentences ¢(G) (where we use
G as the formal symbol that is to be interpreted as our generic set G). This relation should
approximate truth in the sense just described. We will use the language of arithmetic (in
a set theoretic forcing, one would use the language of set theory) augmented with another
parameter (G) for the set we are building, and possibly other parameters (X, Y, A) for
given sets. Recall that as in 7?7 we include bounded quantifiers and functions for coding
and decoding sequences of numbers in our language of arithmetic. If desired we also
include the recursive relation ¢(e, x, 0, s) = y which says that Turing machine e in input
x with oracle ¢ when run for s many steps converges with output y. Note that the
truth of ¢(G) for ¢ a Ay formula depends on only finitely much of G and, indeed the
amount of information needed is recursive in ¢ (and independent of G). (See 77 section
on arithmetic.)

We use G for the generic filter, G' for U{V (p)|p € G}, the set or function that we are
building and G for the symbol in language that stands for that set or function. We will
define the forcing relation p I ¢ for p € P and ¢ a sentence of our language by induction
on the complexity of sentences.

Definition 6.2.1 We define the relation p forces ¢ by induction.

o If p is Ay formulas forcing is truth as far as V(p) can determine it. By this we
mean that V(p) suffices to verify ¢ (in the sense of 77). Thus the forcing relation
for Ay sentences is a A; relation (in P).

e For existential formulas:
plF3zp & In(plke(n)).
e For conjunctions and disjunctions:

plFoANY < plkpand plka.

plFeViYy & plkporpl-.

e For negated formulas:
plF = < =39 < p(q - ¢).
or equivalently
plF —p < Vg < p(g k¥ ).

e For universal formulas: (remember that V = —3-)
plEVrp < VnVq < pIr < q(rlF ¢(n)).

or equivalently
pI-Vap < VnVg < p (g —p(n)).
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Theorem 6.2.2 If forcing for g relations is recursive (in A) and the partial order is
recursive (in A), then, for n > 1, forcing for ¥, (11,) sentences ¢ (i.e. whether p IF ¢)
is a ¥, (I1,) (in A) relation.

Proof. We proceed by induction on n and for notational convenience ignore A. If
© € ¥ then p IF ¢ is an existential quantifier applied to forcing of Aq relations which by
definition is A;. Thus p IF ¢ is a ¥ relation for ¢ € ¥,. If ¢ = Vaf(z) € II;, consider the
second version of the definition of p IF ¢. It says VnVq < p (¢ ¥ —0(n)). As =0 is also A,
q ¥ =0 is A; and so p IF ¢ is II;. By induction and the definition for forcing an existential
sentence, we see that for p € ¥ ¢, pIF ¢ is a ¥, relation. For Vaf(x) = ¢ € 1,4,
plE o & ¥nVqg < par < q(r Ik 0(n)). By induction r I 0(n) is X,, and so p IF ¢ is a 11,41
relation. m

Exercise 6.2.3 If plF ¢ and ¢ < p then q IF ¢.

Exercise 6.2.4 ??The order topology on a partial order P is defined by letting the sets
of the form {q|lq < p} be the basic open sets. Show that as far as which formulas are
forced by conditions in a C-generic filter are concerned we may as well assume that all
the dense sets in C are open as well. ??

We now want to tackle the question of how much genericity do we need to make
forcing equal truth for generic filters/sets in the sense that if p IF ¢, p € G and G is
sufficiently generic then ¢(G) holds and, in the other direction, if ¢(G) holds then there
is a p € G such that p IF .

Definition 6.2.5 G is n-generic (for n > 1)iff for every ¥, (in P) subset S of P,
FpeGpeSVVg<plgé¢s)).
We say that G is (w-) generic if it is n-generic for all n.
The following equivalence is now immediate.

Proposition 6.2.6 Let C,, be the class of sets {p :p € S. VVq < p(q & Se)} for all T,
(in P) subsets S of P. Then G is n-generic iff G is C,-generic.

Exercise 6.2.7 If D C P is dense and %, then D meets every n-generic G. If D is
dense below p and X, then D meets every n-generic G containing p.

To build an n-generic G we proceed as in the construction of a generic given a count-
able class of dense sets. We can calculate how hard it is to carry out this construction.

Proposition 6.2.8 If forcing for Ay sentences is Ay (in P), then, for eachn > 1, there
is an n-generic G <p 0™ (P™ ). There is also a generic G <; 0« (P®)),



44 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

Proof. Exercise.?? m
Definition 6.2.9 We say that a condition p decides a sentence ¢ if plF ¢ or pl- —p.
Theorem 6.2.10

1. If G is n-generic and ¢ € X, then there is p € G which decides p. Moreover, if
p - ¢ then ¢(G) holds while if p Ik = then —~¢(G) holds.

2. If pex, (11,), plk v and p € G which is n-generic then (G) holds.

Proof. We prove (1) by induction on n > 1. Consider ¢ = dai(z,G) with ¢ € II,_1.
Now the set S = {p : p IF Jap(z,G)} is X,, by Theorem %—72— So by the definition of
n-genericity, either there is p € G in S, i.e. p |- Jxyp(x,G), or there is p € G no extension
of which is in S. If p € G and p IF Jzp(z,G), then (by definition) there is an n such
that p I ¥ (n,G). Now by induction (or definition for n = 1), 1(n, G) holds and then
so does Jz1)(x, ) as required. On the other hand, suppose there is p € G such that
(Vg < p)qg I Fxp(x,G), i.e. plF —p. In this case, we claim that that =3z (x, G). If not,
there would be an n such that ¢ (n,G) and so by induction (or definition for n = 1), a
q € G such that ¢ I- ¢ (n,G). So, ¢ IF Jz(x,G). But, since p,q € G the Jare compatible
and hence there is r € G with r < p, ¢. This would contradict Exercise 6.2.3.

For (2) suppose p IF ¢ and p € G. If ¢ = Jx)(x,G) then p Ik ¢»(m,G) for some m
and so by induction (or definition for n = 1) ¢)(m, G) holds. If ¢ = Vzi)(z,G) but ¢ fails
then for some m, ¥ (m,G) holds and so by (1) there is a ¢ € G such that ¢ I+ ¥(m,G).
By the ¢ er}%)atibility of G there would be an r <p p, ¢ in G. This would again contradict
Exercise 16.2.3. m

We will now look at degree theoretic properties of sets with various amounts of gener-
icity. We begin with a connection between genericity and lowness.

Proposition 6.2.11 If G is n-generic for Cohen forcing then G™ = G v 0.,

Proof. It is immediate that for any G, GV 0™ <; G™. Thus, it suffices to show that
if G is n-generic then G <; G v 0™, The formula (e, G) which says that e € G® is
Y. Therefore, by above theorem and the n-genericity of G, either there is p € G such
that p IF ¢(e, G) or there is p € G such that p I —p(e, G). But forcing is ¥,, question and
forcing negation is II,, so to ask if e € G can search f rp e G such that p I- (e, G) or
p - —p(e,G). This is a GV 0™ question. By Theorem 6.2.10, the one forced is the true
fact about G. m

Exercise 6.2.12 If G is 1-generic for any notion of forcing then G' = GV (.

The next proposition gives almost all our previous incomparability and embeddability
results in one fell swoop.
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x)} form a very

)€ Cli £ j}.

Proof. For each e we want to show that ®C7 + GV, We consider the following set of
conditions:

Proposition 6.2.13 IfG is Cohen 1-generic then the columns Gt = {(i
independent set, i.e. Vj(GV <r G;) where we let G; = ®;;GY = {(i,x

Se = {p: Ju (O (x) 1# p"(2))}.

Here we use the natural extension of our notation for columns of a set to finite binary
strings: pVl = {{j,z)| (j,z) € p} and p; = {{(i,z) € p|i # j}. Since S. € ¥} and G is
1-generic, there is p € GN S, or there is p € G no extension of which isin S.. If p € GN S,
then p C G so the requirement is satisfied. Suppose that p C G and (Vg 2 p)q ¢ S, then
we claim that ®5” is not total. If it were, let (j, x) be outside the domain of p. We must
then have some ¢ C G with ¢ < p and ®F(z) |. Now let ((j,z)) = 1—q((j,z)) and
q(2) = q(z) for z # (j,x). So §; = q; and so @' (z) |= @' (v) | but ¢({j, z)) # ¢({j, )
and so one of ¢ and ¢ (both of which extend p) is in S, for the desired contradiction. m

Relativization to X:

Expand our language to include a symbol interpreted as X. Define forcing in the
ame way as above %1(1111%% genericity relative to X by using sets Y, in X. Theorem
77 and Proposition %.2.13 then relativize to X. The Proposition now says that if G

is 1-generic relative to X, then independence results hold even relative to X. That is,
Vi(GU £ X @& Gj).

Exercise 6.2.14 If G is Cohen 1-generic over X and A, B <p X then
A<rB& A G <y B®G.
Also, G |r X if X > 0.

Exercise 6.2.15 We say that Gy and Gy are mutually n-generic for P if each G; is
n-generic over Gi_; for P. Prove that if G is Cohen n-generic then the G are very
mutually Cohen n-generic in the sense that each G is Cohen n-generic over G =
{(j,x) € G|j #i}. ??Note notation use everywhere??

Exercise 6.2.16 Translate the Exact Pair Theorem into the language of forcing. Hint:
Given (C;), define a notion of forcing P with conditions {c, B,n) for o, € N<“ and
n € N. The ordering is given by (o, 3',n') < {a,8,n) if ' D, B D B, n' > n and, for
i<, if ((i,x)) | but a((i,z)) T then o/({i,z)) = Ci(x) and similarly for 3 and j.

Exercise 6.2.17 Construct a 1-tree T' such that every G € [T] is Cohen 1-generic. Show
that the Cohen 1-generic degrees generate D. Hint: Consider any F : N — {0, 1,2} which
is 2-generic for forcing over finite ternary (P = 3<% with extension). Let d, list the x
such that F(x) = 2 in increasing order and, for A € 2¥, let Fu(z) = A(n) if x = d,
for some n and Fa(x) = F(x) otherwise. Show that F4 is Cohen 1-generic for every
A. Let FUl(z) = F({j,x)) and FE](:C) = (FU4(x). Next show that for any j and A,
A <p FE] V FE]. Finally show that for any j # k, (FE] Y FE]) A (Ff[‘k] Vv Fgﬂ) =r A.
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Probably write out this proof as Theorem not exercise. D = {d,|n € N} is an
indifference set ....77

6.3 Embedding Lattices

Theorem 6.3.1 (Lattice Embedding Theorem) Every countable lattice L with least
element 0 is embeddable in D preserving the lattice structure and 0.

For later convenience, we actually want to prove an a prior: stronger statement about
partial lattices.

Definition 6.3.2 A partial lattice L is a partial order <, on its domain L together with
partial functions A,V which satisfy usual definition when defined, i.e. if t Ny = z then z
18 the greatest lower bound of x and y in <.; if t Vy = z then z is the least upper bound
of v and y in <p. We say that L is recursive (in A) if L and <, are recursive (in A)
and V and A are partial recursive (in A) functions on L with recursive (in A) domains.

It may seem that there is no reason to use partial lattices but both effectiveness
considerations and convenience come into play. It is certainly often more convenient to
specify a partial lattice than to decide all the meets and joins.

Proposition 6.3.3 If L is a partial lattice then there is a lattice L and an _embedding
f L — L which preserves order and all meets and joins that are defined in L.

Proof. Consider the lattice Z of ideals of £, i.e. subsets I of L closed downward and
under join in £ (when defined). The ordering on Z is given by set inclusion. Meet is set
intersection and the join of I; and I5 is the smallest lattice containing both of them. The
map that sends x € L to I, = {y € L|y <, x}, the principle ideal generated by z, is the
desired embedding into the sublattice LofT generated by the principle ideals. 77 m

?7?Not effective, i.e. if £ is recursive £ isn’t obviously so?? needn’t be??Put in effective
embeddings of p.o. and usl... all the way into Boolean algebras where do p.o. and usl
embeddings??

To prove our theorem we need some lattice theory. In particular, we will use a type
of lattice representations called lattice tables.

Definition 6.3.4 A lattice table for the partial lattice L is a collection, ©, of maps
a : L — N such that for every x,y € L and o, 3 € ©

1. a(0) = 0.

2. If x <g y and a(y) = B(y) then a(z) = p(x).
3. If v £,y then there are a, § € © such that a(y) = B(y) but a(x) # B(z).
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4. ffavy =z, a(2) = Blz) and aly) = B(y) then alz) = A(2).

5. If t Ny =z and a(z) = [(z) then there are vy,74,75 € O such that a(z) = v,(x),

1Y) = 72(), v2(x) = v3(2), v3(y) = B(y). Such v; are called interpolants for o
and § (with respect to z, y and z2).

Notation 6.3.5 We define equivalence relations on © for each x € L by o =,  if and
only if a(x) = p(x). For sequences p, q from © of length n and x € L, we say p =, q
if p(k) =2 q(k) for every k < n. In general, we say an equivalence relation E on a set
S is larger or coarser than another one E if for every (Ya,b € S)(a =5 b = a =g b).
Similarly, E is finer or smaller than E if (Va,b € S)(a =p b = a =4 b). With this
ordering on equivalence relations the lub of E and E s simply their intersection. Their
glb is the smallest equivalence class on S that contains their union. This is also the
transitive closure of their union under the two relations.

The conditions of Definition 16.3.4 can now be restated in terms of these equivalence
relations:

1. a = B for all @ and B and so =g is the largest congruence class identifying all
elements.

2. If x <y then o =, 8 implies a =, § for all @ and 5 and so =, is larger than =,,.

3. If # £, y then there are o and /3 such that o =, 8 but a #, § and so =, is not
larger than =,.

4. If xVy=zand a =, f and o =, § then a =, § and so =, is the glb of =, and

=y-.

5. If x ANy = z then there are 7, 7v,,73 € © such that o =, 7, =, v, =, 73 =, 8. So
=, is certainly contained in the lub of =, and =,,. It is part of the theorem that we
can arrange it so that chains of length three suffice to generate the entire transitive
closure.

Thus a lattice table produces a representation by equivalence relations with the dual
ordering. A reason for reversing the order is that D is only an uppersemilattice. So joins
always exist and we want them to correspond to the simple operation on equivalence
relations of intersection. On the other hand, meets do not always exist and they then
correspond to lub on equivalence relations which requires work to construct.

We now prove our representation theorem in terms of lattice tables.

Theorem 6.3.6 (Representation Theorem) If L is a recursive (in A) partial lattice
with 0,1 then there is a uniformly recursive (in A) lattice table © for L.
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?7?A versions of this result and proof are in Lerman 77 and Shore ?7. This version is
based on a Greenberg and Montalban 77.
Proof. Define 3, , for z,y € L, i =0,1 by

_ J (=, 0)ify #0 _JBeoy) ify <z

The set of these 3, ; satisfy (1), (2) and (4). We now want to sequentially close off under
adding interpolants as required in (3) for each relevant instance . To do so, we have some
dovetailing procedure which does the following. Consider xt Ay = z and o =, 5. We
want to add 4, 75,75 as required in (3) and preserve the truth of (1), (2) and (4) in the
expanded set. If z < y or y < z, it is easy to do so just using « and 3. If not (i.e. £y
and y £ x), then choose new numbers a, b, ¢, d not used yet and put for w € L

. T (w)if w <y Blw) if w <y
a(s)ifw <z _ :
71(10):{ o Yo(w) =g bifw<zandw £y yw)=Saifw<zandw Ly
CRwET ¢ otherwise d otherwise

This is a recursive procedure and can check that it works. (Exercise) m
Now we can turn to the proof of our embedding theorem.

latemb

Proof (of Theorem }m) We begin with a lattice table © for P recursive in L.
We define a notion of forcing P with elements p € ©<“, the natural ordering p <p ¢ if
p 2 q and the obvious choice of V. Our generics will then be maps G : N — L. Define,
forz € L, G, : N — N by G,(n) = G(n)(x). The desired embedding is the given by
x — deg(G,). We use a sufficient amount of genericity to prove that this map really
is an embedding tha‘; Dreserves all the required structure. We follow the numbering of
clauses in Definition 6.3.4.

1. Go(n) = 0 for all n and so 0 is preserved by our embedding.

2. Suppose v <y y. We must show that G, <r G,. Given n, want to compute
Gx(n) = G(n)(z). Find any a € O such that a(y) = G(n)(y) = Gy(n), ie.
a =, G(n). One exists because G(n) is one such. As © is unifor ly recursive we
can search for it. Then since z <, y and G(n) =, «a, by Deﬁnitionljg?.ﬂ'&) we have

that G(n) =, a so G(n)(x) = a(x) = G.(n).

4 Suppose z V y = z. We must show that G, =r G, ® G,. By the preservation of
order, G, >r G, & Gy, so it suffices to compute G,(n) = G(n)(z) from G,(n) and
Gy(n). We search for an a € © such that a(z) = G(n)(x) and a(y) = G(n)(y),
Le. o =, G(n). There is one and we can find it as above. Now as a =, G(n),
a =, G(n) by Deﬁnition%37f(%), so a(z) = G(n)(z).
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We can also say something about the image fa%rlelnder the embedding. Given n,
G1(n) = G(n)(1) so Gy =r G since by Deﬁnitionjmﬂ'&) the value of any o € © at 1
determines it uniquely and it can be determined uniformly recursively (in A). Thus the
greatest degree in the embedding is the degree of the generic G (G @ A if we send every
x to G, & A).

Until this point, we have not used any genericity. We now turn to nonorder and
infimum.

3 Suppose x % y. We want to prove that P # G, for every e. Suppose that G
is 1-generic (in A which we will generally omit repeating for brevity) and consider
the sets

Se={p € O : In®(n) |# ps(n)}

where p, € w<“ is defined in the obvious way by p,(m) = p(m)(z). S. € ¥; because
given ¢ we can compute p(n)(z) (since © is uniformly recursive ). Therefore, the
1-genericity of GG implies that there is a p € GN S, or there is a p € G no extension
of which is in S.. Suppose p € G N S, then B (n) # Go(n) as py C Gy and
P C G so we’ re done. Otherwise, no extension of p is in %{ but, for the sake of a
contradiction, @5 = G,. Let o and 8 be as in Definition %37[&) for z and y. By
the obvious density of the sets D,, = {p|3m > n(p(m) = a} and the 1-genericity
of G, there is a ¢ < p and an m > |p| such that ¢(m) = a and ¢ € G. Moreover
as & (m) | by our assumptions, we may also guarantee that ®¢’(m) | by simply
choosing ¢ as a long enough initial segment of G. Consider now the condition ¢
such that §(k) = q(k) for k # m and §(m) = . Our choice of «, § and ¢ guarantees
that ¢ < p, ¢ =, ¢ and q %, ¢. Thus &% (m) |= L (m) | but g.(m) # §.(m). So
one of ¢ and ¢ is in S, by definition for the desired contradiction.

5 Suppose that z Ay = z and (IDG% = CIDGy = D. We want to prove that D < G..

Now the assertion that ®¢+ and P are total and equ 1s 2 So let us assume
that G is 2-generic (in A) and so there is (by Theorem a p € G such that
p forces this sentence. So for each n and ¢ < p there is an r < ¢ such that
r Ik ®%(n) |= ®’(n) |. We now wish to compute D(n) from G,. As above,
we can recursively find a ¢ < p such that ¢ IF ®%(n) |= @fy(n) l and ¢, C G,
(since some initial segment of G does this). We claim that ®%(n) = D(n). To see
this consider a ¢t € G such that ¢ < p and ¢ I ®% (n) |= ®5(n) |. Necessarily,
dl=(n) |= ®(n) |= D(n) and t =, ¢q. By suitably lengthening ¢ or ¢ we may
assume that they have the same lengtlE . Let [ = |p| < m. We now use both the
interpolants guaranteed by Definition ) and the fact that p forces ®%= and
®5" to be total and equal.

For each k with | < k < m we choose interpolants ~,; (for i € {1,2,3}) between
q(k) and t(k) as in Definition 6.3.4(5). We let ¢;(k) = p(k) = t(k) for k < [ and
qi(k) = vy for [ <k <m. Wealsolet g =qand ¢4 =t. Soq=qo = ¢1 =
@2 =z q3 =y q4 = t. We now extend the ¢; in turn to make them force convergence
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at m but remain congruent modulo z. In fact, we make a single extension for all of
them. By the fact that p IF &% = 5" and ¢1 < p, we can find an r; = ¢;"s1 such
that 7, IF ®%(n) |= S (n) |. We now extend ¢;"s1 to 19 = ¢2" 81" 82 such that
ry IF ®%=(n) |= @eGy(n) |. Finally we extend ¢3"s1 sy to 73 = q3751 82" s3. Let
s = s1 S92 s3 and consider ¢;"s for ¢+ < 4. Looking at each successive pair we see by
the alternating congruences (between = and y) that they all force the same equal
values for ®=(n) and v (n). Thus, by transitivity of equality and permanence of
computations under extension, ®%(n) = &= (n) = D(n) as required.

|

?7?70mit "in j ({'e case in proof and say relativize as exercise to save having to ..7
embﬁg Theorem 6.2.2, the embedding of £ given by the generic G produced in Theorem
}?‘.’Wl be taken to be into the degrees below the double jump of £. We can improve this
by a direct construction 7?7 or the following result.

Exercise 6.3.7 The above proof that infima are preserves used 2-genericity. Give a
proof (Antonio??) that uses only 1-genericity. ??Hint: Suppose that x Ay = z and
G+ =S¥ = D. Consider the $ sets T, = {t|3n(®(n) |#£ ®¥(n) |} and S, = {s :
In, 3q, so, 2, 7(0f the same length) ®4=(n) |= &% (n) |# ®7=(n) |= ®.;"(n) | and q =,
So =y S =y S2 =, T S0 ¢ =, r} restricted to the conditions extending a t witnessing the
1-genericity condition for T..

Exercise 6.3.8 If L is a recursive lattice with 0 and 1 then it can be embedded in both
D(<0') and D(< g) preserving both 0 and 1 for any 1-generic g. (GM??)

??Direct construction below 0 search for interpolants find them of condition with no
extensions forcing convergence at a particular location??

Next, we disprove the homogeneity conjecture for D' = (D, <r,/). The conjecture,
like that for D, was based on the empirical fact that every theorem about the degrees or
the degrees with the jump operator relativizes and so if true in D (or D’) then it is true
in D(> c¢) or D'(> c) for every c. The conjectures asserted then that D = D(>c) and
even that D' = D'(>c) for every degree c.

Theorem 6.3.9 There is ¢ such that (D, <)) 2% (D(>¢),<)).
Corollary 6.3.10 The homogeneity conjecture for D' does not hold.

Proof. If it did, then [0,0"] = [¢, ¢’]. To find a contradiction, it’s sufficient ﬁfaftiggp%gcial
lattice recursive in ¢ which cannot be embedded in [0,0”]. (Using Exercise 6.3.7 one can
replace 0" and ¢ by 0" and ¢, respectively.)

There are continuum many finitely generated lattices (fact of lattice theory, true for
> 4 generators). But, only countably many finitely generated lattices can be embedded
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n [0, 0”] (because the lattice embedded is determined by image of its generators). Choose
fagerllnigely generated but not embeddable in [0, 0]. £ has some degree, say c¢. By theorem
%Tmelativized to ¢, £ is embeddable in [c, ¢’]. Thus [0,0”] 2 [c, ¢”] as required. m

7?Feiner, 1969 or so, gave X; presentable Boolean algebra which cannot be recursively
presented. As a corollary to, this and difficult but known initial segment results he gave
the first proof of Theorem %‘3‘9’

?7Put in when need it and can prove theorem?? For later applications, we would like to
have {)aetceiniflg more com lzii(%%gl%(} lggtices embedded below 0 than are given directly by The-
orem 6.3.1 or Exercise %.3. 7. To do so, we consider effectively generated successor struc-
tures. Explain/define w/o g; then add?? Consider the generators ey, e1, do, fo, f1, 90, g1
with relations

(dan V €0) A f1 = donya (dant1 V e1) A fo = dana.
So eg, e1,dy, fo, f1 give lattice structure. gg, g1 will pick out the set. Given set S,
n€S<:>dn§go,g1

Thus, we code S into partial lattice Lg. How complicated can S be? How hard is it to
recover S from Lg7 If {d,} formed an independent set, then for every S, get go, g1 and
ideals generated by S are distinct. That is,

Is ={z:2<gy,q}.

To guarantee this, can write down axioms in terms of join, order that yield independence
of {d,}. Or, can add elements to the lattice: d, above d,, for all m # n and d, A d,, = 0.

Suppose we have eg, ey, dg, fo, f1, 8o, 1<0" . Given the lattice generated by them,
how complicated is S7 To answer these questions, we need to understand the complexity
of the structure D(< 0'). That is, how hard is it to compute the various lattice operations
in D? ®X being total is a [I5 question. To ask if ®X <p & means

L2 X X . X,
Elj(<1>j =9)) & 3jVn3s(®, *(n) = P, s(X)(n)).
Hence, order is ¥5°. What about join? There is a recursive f such that
Y VO =dF o OF, <r P & Pj, =1 D).

So join is 33 on indices. Finally, infs ®X A ®X = CIDX is I1y.

Infima add another quantifier alternation. We may try to get around them: instead
of dy, consider cone below d; (which we can get using only order) excluding 0. To exclude
0, we need to say “ not below 0”. This is a II3 statement — better than I, but still not
great. Is there a positive way of saying that you're not equal to 07

Start by defining positive ¥; formulas ¢, in <,V such that ¢,(z) iff x < d,. By
recursion on n,

@o(r) = 2 = do; Pont1(2) = Y (02, (y)&x < (y V eo), f1);
()02n+2(x) = Ely(SDQn—&—l(x)&x S (y \ 61)7 fO)



52 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

These ¢ pick out equivalence classes below each d,. Is this enough to determine S7
Suppose we have x such that ¢, () and 2 < go, g;. We still need to ensure that x # 0. Is
there a way to say this with a positive formula? Add parameters p, ¢ to the lattice with
the properties

p2q Vn(pVd, > q).

Then we can modify ¢, by adding (z V p > ¢) to all of them.
The condition on independence of the d,, ( d, Ad, = 0 ) implies that -3z(0 < = <
dy, dpy,) for n # m. So,

2n+1€ S & Jx(pg, ()& < go, 1)
2n+2 € S & Fx(pypo(x)&x < go, g1).

Therefore, if have a lattice Lg embeddable below degree of set X, then S € .

Notice that if leave out g, g1, the partial lattice that remains is recursive. So, we
know that it is embeddable below any 1-generic. Recall that in the Exact Pair theorem,
the construction was recursive in (®A;)’. We will see that can build S recursive in 0/
using these lattice embeddings.

Exercise 6.3.11 Given S € X3, show that can embed Lg below 0', and probably below
any 1-generic. (May be hard.)

77Do now or later??



Chapter 7

The Theories of D and D(< 0)

In the previous section, we talked about isomorphisms and embeddability issues. We
need to consider more in order to understand theory of the degrees. We now approach
theorems which say that the theories of (sets of sentences true in) D and D(< () are as
complicated as possible. More precisely they are of the same Turing (even 1 — 1) degree
as true second and first order arithmetic, respectively.

7.1 Interpreting Structures

77Explain interpreting one structure in another for first order structures. Example of
D(< (') in arithmetic. Then second order arithmetic and logic (on countable structures).
Equivalence. Role of parameters, equivalence relations. So for D we need to code count-
able subsets and quantification over arbitrary relations on them. For D(< (') will want
to code arithmetic??

In the next section, we will show that we can code and quantify over all countable
relations on D by quantifying over elements of D. We use this coding to show that
Th(D) =, Th*(N, <,+, x,0,1). Clearly, any sentence of Th(D) can be interpreted in
Th(N, <,+, x,0,1) because the relation X <7 Y is arithmetic. To interpret Th?*(N, <
,+, %,0,1) inside Th(D), we need to encode the standard model of arithmetic. Such an
encoding will be a set N of degrees, relations R<, R;, R« on N, and degrees ng,n; € N
such that the axioms of Robinson arithmetic hold when

e quantification is over N, and

o < +, x are interpreted as R<, R4, Ry, and

e 0,1 are interpreted as ng,ny, and

e every nonempty subset of N has a least element.

Such encodings are definable from parameters, and we quantify over subsets of NV
by quantifying over degrees p defining countable sets. Thus, given a sentence ¢ of

53
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second order arithmetic, we test whether ¢ is true by asking if there is such a model
(n, R<, Ry, R«,ng,n1) as above for which the translation of ¢ is true in D.

We begin with D and coding countable subsets of pairwise incomparable degrees. To
prove this, we will use Slaman-Woodin forcing. We will then show how to deal with
arbitrary countable sets of, and relations on, degrees.

7.2 Slaman-Woodin Forcing and Th(D)

Let S = {c;|i € N} be a countable set of pairwise incomparable degrees. We want to
make S definable in D from three parameters c, gy and g;. The definition will be that S
is the set of minimal degrees x < ¢ such that (x V g;) A (x V g;) # x in the strong sense
that there is ad < xV gy, x V g, such that d £ x.

Theorem 7.2.1 For any set S = {Cy, C1, ..., } of pairwise Turing incomparable subsets
of N let C' = @®C;. There are then Gy,G1 and D; such that, for everyi € N and j < 2,,
D; <r C; © G while D; ﬁT C;. Moreover, the C; are minimal with this property among
sets recursive in C' in the sense that for any X <p C for which there is a D such that
D<r X®G; (j <2)but D %« X there is an i such that X <r C;.

Proof. Without loss of generality we may assume that each C; is recursive in any of its
infinite subsets: simply replace C; by the set of binary stings ¢ such that ¢ C C;. We
take C' to be &}, the uniform join of the C;. We build G; as required by forcing in such
a way as to also uniformly define the D; from Gy and C; so that D; will also be recursive
in G & C; as well. We begin with the coding scheme that says how we compute the D;.

Let {cio,¢i1,...} list C; in increasing order. Our plan is that D;(n) will be Go(c;n).
To make sure that D; <p G; & C; as well, we will guarantee that Gg] =* G[f]. (Recall
that =* means equality except possibly on a finite set.) We now turn to our notion of
forcing P.

The forcing conditions are p of triples the form (pg, p1, F,) where po, p1 € 2<%, |po| =
|p1], and F), is a finite subset of w. We let the length of condition p be |p| = |po| = |p1]-
Refinement of the forcing conditions is defined by

p<q < po2q,p1 2 q,F, 2D F,, and
if i € F, and |q| < (i, ¢in) < |p| then po({i, cin)) = p1({7, Cin))-

This is a finite notion of forcing with extension recursive in C'. Our generic object defined
from a filter G will be Gy & G; where G, = U{px|p € G}. We use G in our language
to mean the k" coordinate the generic object. The function V is defined in the obvious
way: V(p) = po® p1. Note that C' < P as well (Exercise) and so n-generic for P means
generic for all X¢ sets.

We call (i, k) a coding location for C; if k € C;. The definition of extension above
implies that extensions of p agree at the coding locations for C; for ¢ € F},. As the sets
{pln € F,} are
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Note that for any ¢ € X, if p IF ¢ then (pg, p1,0) IF . Soif ¢ < p and ¢ I ¢ for ¢ €
Y1 then (qo, q1, Fp) IF ¢ as well.

Suppose that G is 1-generic for P. It is immediate from the definition of <p and the
density of the recursive (in P) sets {p|i € F},} that G([)ﬂ and G[f] differ on at most finitely
many n € C;. (Ifi € F, and p € G then G([)ﬂ(m) = G[f](m) for m € C; and m > |p|.)
Thus D; <r G; ® C}; as required.

We next show that D; ﬁT C;, that is <I>§i # D; for each e. Suppose for the sake of a
contradiction that D; = ®¢i for some e. Consider the % set

Sie = {p 1 Im(po((i, cim)) # B (m))}.

Then S; is dense because if p € P and m is such that (i, ¢; ) > |p| then define ¢ < p by
Fy = Fy and for [p| < j < (i) put ao(j) = a1(j) = 1 — ©% (m). So g € Si. and g < p
as desired. Thus, there is p € G N S; . for which

Di(m) = Go({i, cim)) = pol(i, cim)) # B (m),

contradicting D; = ®¢:.
Now, we have to ensure minimality. In other words, we want to prove that if

PrO0 = @X® =D X<pC, D£rX

then C, <7 X for some k. Consider the sentence ¢ that says that ®X®%0 are ®X®C1 total and equal.
It is II; in C (because X <7 () and true of G = Gy @ G;. So, if we now assume that
G is 2-generic, there is p € G such that p IF ¢. Suppose first that —=3n (o O pp)
(37 D po)[@X®7(n) |#£ ®X®(n) |]. Then D is computable from X: to compute D(n)
search for any o O py such that ®X%°(n) | and output this as the answer. There is
such a o C Gy by the totality of ®X®% . Our assumption that there is no pair of ex-
tensions of py that give two different answers implies that any such o gives the answer
PX®Co(n) = D(n).

On the other hand, suppose there is such a splitting for n given by py o, po 7. By
extending one of o and 7 if necessary, we may assume that |o| = |7|. We claim that py~o
and po "7 differ at a coding location (k, ¢k ) for some k € F),. Let 7/ be such that

(pg(@(pfff’)(n) |= (I)g(@(poyw')(n) l.

There must be such a 7" as (po"7,p1 7, F,) < p and so it has a further extension
q = (po" 7" pg,p1 7" p1, F,) which forces ®X®%(n) |= ®X®C1(n) |. Next consider
4= (po 7" po,p1 T po, Fp) < p. It also has an extension (po 7" py " o, P17 po " i1, Fp) IF
PXBCo(p) |= PX®Ci(n) |. It is now clear that 7' = p, p; has the desired property.
Next, consider the condition ¢ = (po"c 7/, p1"7°7', F,). Notice that ¢ £ p because:

L @0 () = @F 7 (n) as po"o" 7' 2 pyo.

2. 9107 (n) = @F* 7 (n) by choice of 7/, but
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3. o) (n) # P Opo’T) (n) because n, py" o, po” T were chosen to be splitting.

Hence, @5@@0%%,)(71) # <I>§®<p1ATAT/)(n) and so ¢ does not extend p. However,
po o T D poand p;"T "' D pi, so it must be that py "7 and p"7 "7’ differ at a
coding location. Therefore, py"o and py”7 differ at a coding location (k,n) with k € F,,.

We now show that there must be such py“o and py” 7 which differ at only one number
(which then must be a coding location (k,n) for some k € F),). Suppose o, T are strings

as above with |o| = |7| = £. Let 0 =43,70,...,7% = 7 be a list of strings in {0, 1}* such
~ 0~

that 79,~Y,, differ at only one number for each i. Let § be such that CD;XEB(p 0N (n) |

(such a 3 exists by the same argument as before). Set v; = 7?3 for each 0 < i < 2.

. . . X@(po”yﬁfﬁ)
Repeat this process for each j < z. At step 7+ 1, let 5 be such that &, (n) |,

and set ﬁ“ = v‘gAﬁ for each 0 < i < 2. At the end, we have strings 7¢,7Y,...,~Z such
that O 'yi)(n) | for each 4, and po"v7,po 77, differ at only one number for each i.
Since

@f@(pmé)(n) — q)g(ea(po%) (n) # (I)gfea(po“f) (n) = @f@(poAvi)(m’

there must be an 7 for which @f@(pmf)(n) + @féa(powf“)(n). The strings po™ i, o Vi

differ at only one number and it must be a coding location (k,m) for some k € F, as
required.

Next, we show that X can find infinitely many coding locations (k, m) for some fixed
k € F,. Suppose we want to find such a location (k,m) with m > M. Search for strings
po o and po” 7 that agree on the first M positions, differ at only one position, and satisfy
PXro7) (n) # &2 ®™ 7 (n). Such strings must exist because we could have started the
above analysis at any condition ¢ € G with ¢ < p (so we can find such strings agreeing on
arbitrarily long initial segments). The position at which py“o and py”"7 differ must be a
coding location bigger than M. Since F), is finite infinitely many of these coding locations
must be for the same k. so can be given to X as data, X can find infinitely many coding
locations (k, ¢y ,) for any fixed k. Hence, X can enumerate an infinite subset of C}, and
so can compute a (perhaps smaller) infinite subset of C} and hence all of Cj, by our initial
assumption on the C;. m

As 2-genericity sufficed for the proof of the theorem above , we ca ) oet the required
G, <g C" and,indeed with (Go®G1)" =r C". We see below (Theorem [7.31 and Exercise
.3.3) that we can do better.
Now we work toward coding arbitrary countable relations on D.

Proposition 7.2.2 If H is a Cohen 1-generic relative to C then for any X, Y < C if
XeoHV<Y @ HU theni=j and X <Y.

Proof. Suppose that for some e, X,Y <7 C, ®Y®H" = X ¢ HI! and consider the set

Se={0 €2 :3n ((DEY@“U] (n) |# X @ U[i](n)>}.
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Se € 31(C) so either there is 0 € S, N H or there is ¢ C H no extension of which is
in S,. The first alternative clearly violates our assumption that ®Y®# = X @ H and
so there is a ¢ C H such that 7 ¢ S, for all 7 D ¢. Let n = |ol!|. If i # j and there
were 3 D ol such that ®Y®5(2n + 1) |, we could extend ¢ to 7 such that 7V = 5 and
7ll(n) =1 — ®Y®5(2n + 1) (as the value of 71 (n) is independent of 7V!. In this case, we
have

Yo (2 4 1) |#£ 7 (n) = (X @ 717)(2n + 1)

and so 7 € S,, contradicting our choice of o. Therefore, there can be no 8 O ol
making ®Y®%(2n + 1) converge while ®Y®#" ig total by assumption and o ¢ HU! for
a contradiction. Thus i = j.

Next, we show that X <7 Y. To compute X (n) from Y, search for a 7 O ¢ such that
Y™ (21) converges (such a 7 exists because ®Y®H" s total and ol ¢ HU!). Then, as
usual, we claim that ®Y®™" = (X @ 7)(2n) = X (n) for if not, 7 € S, and extends o for
a contradiction. m

Theorem 7.2.3 Every countable relation R(xo,...,x,—1) on D is definable from para-
meters. Indeed for eachn there is a formula o(x, ..., T,_1,7y) withy of length some k > 0
(depending only on n) which includes the clauses that x; < yo for each i < n such that
as p ranges over all k-tuples of degrees, the sets of n-tuples of degrees {a|D E ¢(a,p)}
range over all countable n-ary relations on D.

Proof. We want to define R from parameters. As R is countable the degrees in its
domain are countable and so we may assume they are all uniformly below some degree c
(c is the degree of a set C' which is a uniform upper bound for all the sets X of degrees
in the domain of R) which we take to be our first parameter. Let H be Cohen 1-generic
over C' € ¢ and h;; be the degree of HI™/)]. Suppose {x;} lists all the degrees < c. We
code R using the following countable sets of pairwise incomparable degrees.

H; = {h,;|j € N} fori <n

Fi={x; Vh;|j € N} fori<n
R = {h07]0 \/ h]-7j1 \/ T \/ hn—l,jn—l : R(Xj07 le) e 7Xjn—l)}

Each of these sets consists of pairwise incomparable degrees. The first and third by
the fact (Exercise ??) that for a Cohen 1-generic H the sets H*! form a very independent
set. (So, for any finite A a‘nd.B,.\/{X|x €A} < V{x|x GB} if and only if A.g B.) The
elements of each JF; are pairwise incomparable by Proposition i 7. Our defining formula
@ for R is now

&icn(x; <€) & (E'yi)i<n<}"i EH & &icn(x; VY:) € Fi & \/ Vi €R)

<n
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where we understand membership in the sets H;, F; and R as being defined by the ap-
propriate parameters. The verification that this formula defines the relation is straight-
forward. If R(X) then every element of the sequence X is below ¢ and is therefore equal
to an x;, (for i < n). The degrees h;; € H; then are the witness y; required in ¢.
In the other direction, if ¢ holds of any n-tuple then all its elements are below ¢ and
we need to consider the situation where ¢(x;,,...x;, ,) for some j;, i < n. Let the
required witnesses be y;. Asy; € H; and (x;, Vy;) € F;, ¥ = hij. Then as \/ yi €R,
<n

R(ij Kijyy oo e 7Xjn—1)'

The assertions in the Theorem about the form of the required formulas ¢ are now
1mmed1at§. ] _ . '  linter

Our discussions of coding second order arithmetic in §7.1T now show that we have
precisely determined the complexity of the theory of the Turing degrees.

Theorem 7.2.4 Th(D, <) =, Th*(N,<,+, x,0,1).

Slaman Woodin "Definability in the Turing Degrees" IL. J. Math 30 (1986), 320-334
Odifreddi, Shore "Global Properties of Local Degree Structures" 1971 Bul. U. M. 1.
Greenberg, Montalbdn "Embedding and Encoding Below a 1-generic" JSL 2003

7.3 Th(D <0

We want to now improve our coding results so that they become applicable below 0’. We
begin with the Slaman and Woodin coding of sets of pairwise incomparable degrees.

Theorem 7.3.1 For any set S = {Cy, C1, ..., } of pairwise Turing incomparable subsets
of N let C = &C;. There are then Go,Gy <7 C' and D; such that, for every i € N and
Jj<2,D; <rC;®G; while D; fT C;. Moreover, the C; are minimal with this property
among sets recursive in C' in the sense that for any X <p C' for which there is a D such
that D <r X ® G; (j <2) but D %1 X there is an i such that X <r C;.

Proof. We build D; < Gog & C;, G; & C; such that D; ﬁT C;. The requirements for
diagonalization here are:
P.;: 0% + D;.

Let X; = q)jc. We also have requirements for minimality:
R, j: ®5%% = 91%% = D = D <r X; or 3i(C; <r X;).

We list all the requirements as ();. We build Gy, G1 by finite approximations 7, g, 71
of equal length. As before we let D;(m) = Go((%, ¢im)) where {c;,,} is enumeration
of C; in increasing order. So D; <r Go & C;. We guarantee that D; <p G; & C; as
before by making sure that, for each i, Go({i,m) # G1((i,m) for at most finitely many
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m € C;. In particular we institute a rule for the construction that when we act to
satisfy requirement @), at stage s by extending the current values of v, (k = 0,1) we
require, for i < n, (i, m) > |yo,| = |71, and m € C;, that the extensions v, are such
that v4((i,m)) = v, ((i,m)). As we will act to satisfy any @), at most once, this rule
guarantees that there are at most finitely many relevant differences between Gy and G,
for each .

At stage s, if Q, = P.;, we act to satisfy ;. Choose m such that (i, c;m) > |7 -
Ask if ®5i(m) |. Ifnot, let v, .1 = 74, for k = 0, 1. (As usual this satisfies P.;.) If it does
converge, extend each of v , v, , by same string o to vy ;11,71 41 With 7o .11 ((3, cim)) #
®% (m). This also satisfies the requirement because D;(m) = Go((i,c;m)) by definition
and trivially obeys the rule of the construction.

Note that C’ can answer the question ®¢i(m) |, so this action is recursive in C".

If Qs = R.;, this stage will have a substage for each requirement @), = R, ;; with
n < s that has not yet been satisfied. For notational convenience we write 7, for 7, , in the
description of our action at stage s. At the end of each substage we will define successive
extensions 7, of v, satisfying the rule of the construction. We first try to satisfy R ;
(which, of course, we have not attempted to satisfy before). We ask if 3xJo O v, which
satisfy the rule of our construction and such that the o ® X e-split, i.e.

OO (2) |# 07N (2) |

(Note that when we are acting to satisfy any @), checking if extensions of the current
values of v, satisfy the rule of the construction is recursive in ®{C;|li < n} and so
uniformly recursive in C'. Thus this question can be answered by C’. There is one
subtlety here. We must be careful with what we mean by a computation from X; as
there is no list of all the sets recursive in C' that is uniformly recursive in C'. So what
we mean here is that there is a computation of <I>JC providing long enough initial segment
of X, so as to make the desired computations at m converge. This makes the whole
question one that is 3¢ and so recursive in C".) If the answer is yes, choose as usual the
first such extensions (in a uniform search recursive in C') as v, ,7;,;. Note that we have
now satisfied R, ;. If the answer is no, ask if 3z30,7 ((7, 0 ® X;)|c(7 7 @ X)). (This
question is also X1 (C)).

.o £ Go®X;
if @0

e If not, let v, ;o = 715 Then, as usual, is total, it is recursive in X as we

will have Gy 2 7. To calculate it at , find any o such that &0 "% (1) |. This
computation must give right answer. So in this case we have also satisfied R, ; ;.

e If so,we can find such o and 7 (recursively in C'). We interpolate between o, 7 with
strings 0 = 09 = 01,...,0, = 7 which differ successively at exactly one number.
Ask if 3oy such that ®7° " 7*®¥(z) |. If not, let Yro = Vi 01. Note that this

extension satisfies the rule of the construction and that we have satisfied R, ; by
guaranteeing that &S0 (x) 7. If yes, consider 05" ¢ and ask again if there is a o9
such that @2 ™ 729X (1) |. If not, let Yro = 02 01 as before obeying the rule of
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the construction and satisfying R. ;. If so, we continue on inductively through the
Ok-

Eventually we either define v, o and satisfy R.; or we find oy,...,0, such that
@10 " *%% (1) | for every | < z where p = 01" ... .. In the second case, we set
Yko = Vi Lhis action does not satisfy R.; but it demonstrates that there are
6 and 7 which differ at exactly one number and for which (v, 6 ® X)|.(v," 7T @
X). The point here is that, as ®1° ° *®% (z) |= @20 “®¥ () |£ @) "V (2) |=
PJo 0= <N (x) |, there is an [ such that PJo 0 PEXS (x) |# @ZOA&“AP@X]'(:E) | while
0;"p and 6,41 p differ at exactly one number. Now consider v, 6. If there is no
i such that P17 HON () | then we can again satisfy R.; by setting v, ., =
Vs 0. If there is such a p, we compare O TN (1) | with %0 7 *¥Y () | and
O () |. As the last two are different one of them must be different from
the first. If @7 7 *&% (x) |# PJo 7 HEN () |, we would contradict our assumption
that the answer to our very first question was no as v, ¢ p and 7, 6" u certainly
satisfy the rule of the construction. If ®7' 7 *®%(z) | £ &1 " #*% () |, the only
way we would not have the same contradiction is if the one point at which & and
7 differ must be a coding location (k,ck ) with k& < s. Thus the only was our
actions at this stage do not satisfy R j is if there are 6" p and 7"y which differ
at at exactly one point such that (v, 6" 1 ® X;)|ev, 7 1 @ X; and for any such &
and 7 the point of difference must be a coding location (k, ¢k ,,) with k < s.

In this last case we set 7o = 7 and 7, g = 7, ;- In any event, we now proceed to
extend 7, o (and then 7,) in the same way but attempting to satisfy each Q,, = Rer ;v
with n < s that has not yet been satisfied. After some finite number of such
attempts we have tried them all, satisfying some and for the others producing
one more example of an x and two strings 6 and 7 differing at one number only
(after |y,|) such that (v, 6 & Xj/)|e(7, 7@ X;) for each (¢, j') which we have not
yet satisfied and a guarantee that any two such strings differ at a coding location
(k, ckm) With k < s.

At the end of this process we let v, .., be the final extension of v, that we have
produced.

We now claim that all the requirements are satisfied. It is immediate that P, ; is

satisfied when we act for Q)5 = P.; at stage s. Consider any R.; = Q5. If we ever act so
as to satisfy it at some stage s of the construction, it is clearly satisfied and we never act
for it again. As we violate the rule of the construction at some (k, ¢y ,,) only when we act
to satisfy requirement @), for n < k and we do so at most once for each n, D; <r G;® C;
as required.

Finally, suppose that the first requirement that we never act to satisfy during the

construction is @,. It must be some R, ;. Suppose that all requirements @), for r < n have
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been satisfied by stage sy > n. At each stage s > so with (); = R/ j» we attempt to satisfy

: . S0®X 51X
R, ; as some substage of the construction. As we fail, there are (IDQ?@X] (z) |# @, % (z) |

with d; 2 v, 2 Vg, which differ at exactly one point and any such pair differ at a
coding location (k, ¢, ) with & < n. Recursively in X; we can then search for and find
infinitely many extensions 0 of 7, with this property with the points at which they
differ becoming arbitrarily large (as |y, ,| is clearly going to infinity). As there are only
finitely many k£ < n, there must be one k& < n for which infinitely many of these d;, differ
at a point of the form (k, z) with infinitely many different 2. As every such point is a
coding location, recursively in X we can compute an infinite subset of C}, so by our
initial assumption that each C; is recursive in everyone of its infinite subsets Cj, <r Xj
as required to satisfy R, ; in the end. =

07
Exercise 7.3.2 It is easy to show that the G; of Theorem S7?73.1 can be made to have (or
already have) jumps below C'. What about (Go & G1)"'?

Exercise 7.3.3 With the notation as in Theorem %2.1 show that for any G 1-generic
for P, Gy and Gy have the properties required by the Theorem. Hint: Greenberg and
Montalban.

?7?7This step-by-step construction is the same as the forcing argument we saw before,
but grittier and we gain a quantifier. This helps us to determine the true complexity of
Th(D,< 0"). We'd like to show Th(D,< 0') =, Th(N, +, x, <).

If ®C; = C is low (that is, C' =7 (') then can get coding < 0. By the Lattice
Embedding Theorem (Theorem ?77), get effective successor model with top element 1-
generic so low. Then get parameters via Slaman-Woodin forcing which code {d, }. Can
also code relations of arithmetic on them.

If start with 1-generic and add more things which are 1-generic relative to it, or
low relative to it, then stay 1-generic so keep everything below 0. Thus, can code
arithmetic below 0’. That is, can code set N, and relations +, X, < so that satisfy
Robinson arithmetic. How do we say that this is a standard model of arithmetic? We
can’t quantify over all subsets of (D, < 0') because there are only countably many codes
but continuum many subsets. It is enough to show that the standard part has a code in
the model. Using our coding below 0’, we can find parameters below 0’ which code the
{d,,} of the successor model , and arithmetic on them. The ideal generated by {d,} is
Y3 if allow the top element of the lattice as a parameter (because it is effective successor
model). So need to show that 33 in C' ideal has exact pair below 0’, where C' is arbitrary
complete RE degree below 0".77

7.3.1 Definability in D(<0')

jump classes
invariant under double jump
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Chapter 8

Domination Properties

8.1 Introduction

Notions and ideas.

Definition 8.1.1 1. The function g dominates the function f (f < g) if, for all but
finitely many z, f(x) < g(x).

2. The degree g dominates the function f if some g € g dominates f.
3. The function g dominates the degree f if g dominates every function f € f.

4. The degree g dominates the degree f if for every f € f there is a g € g which
dominates f.
We also sometimes express these relations in the passive form saying, for example,
that f is g-dominated or f is g-dominated for the first two relations. A function g that
dominates the degree 0 s called dominant.

In the literature a degree f that is not 0-dominated (i.e. there is an f € f which is not
dominated by any recursive function) is, for historical reasons unrelated to our concerns,
called hyperimmune. If f is not hyperimmune, i.e. it is 0-dominated, is also called hyper-
ég?ﬁl%g Hfree. For example, we will see that every 0 < a < (s)’ ggt}é}ggiegimmune (Theorem

.2.3) while the minimal degrees constructed by Spector (§b%j%®perimmune free.

Exercise 8.1.2 Prove that if a is 0-dominated and B <y A € a then B <;; A. So
any 0-dominated Turing degree consists of exactly one tt (and so wtt) degree. Hint: if

B = ®Z then consider the function f such that f(n) = us(®L(n) ).

63
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8.2 R.E. and A) degrees

Theorem 8.2.1 If A > 0 is r.e. then there is a function m =r A which is not 0-
dominated, i.e. it is not dominated by any recursive function. Indeed, any function g
which dominates m computes A.

Proof. For Ar.e., let A; be the standard approximation to A at stage s.7? Let m be the
least modulus function for this approximation: m(x) = ps(Vt > s)(As [ x = A; [ x). For
r.e. sets, the approximation changes its mind at most once and is correct in the limit, so
m(z) is also the pus(As | © = A | x) and is clearly of the same degree as A. Moreover, if
g(z) > f(x) for almost all =, then A <p g as A [ v = Ay [ « for all but finitely many
x. Thus, if A >7 0, then f is not dominated by any recursive function and any g that
dominates f computes A. m Limitlemma

The Shoenfield limit lemma (Theorem hTBTQEWS us a recursive approximation hA(z, s)
to any A € AJ (or equivalently A <7 (). So the least modulus function m makes sense
for such an approximation as well. So does the second version used in the above proof.
Here we call it the computation function: f(z) = u(s > x)(Vy < x)(h(y, s) = A(y)) (for
technical reasons, we don’t consider first few stages). It calculates the first stage after x
at which the approximation is correct up to x. But, since we are no longer looking at
r.e. sets, the approximation might change even after it’s correct and the computation
function f need not be the same as the least modulus m. The two functions may not be
the same even up to degree.

Exercise 8.2.2 Find an A <rp 0' and an approximation h(x,s) to A for which the least
modulus function m computes 0. On the other hand, the computation function f for h
1s always of the same degree as A.

redom 0
We can, nonetheless extend Theorem %.2.1 toall A € As.

Theorem 8.2.3 If A is AY, then there is an f =1 A which is not 0-dominated. Indeed,
any function g which dominates f computes a.

Proof. By the Shoenfield limit lemma, there is a recursive h(z, s) such that lims_,, h(x, s)
A(x). Let f(x) be the computation function for this approximation. Suppose f < g. We
claim that even though h(z,s) may change at z < x for s > f(z), we can still compute
A from g. Let so be such that (Vm > s¢)(f(m) < g(m)). To calculate A(n) for n > s
find an s > n such that h(n,t) is constant for ¢ € [g(s), gg(s)]. Since h(n,t) is eventually
constant, such an s exists. Moreover, we can find it recursively in ¢g: compute the inter-
vals [g(n+ 1), gg(n+ 1)], [g(n 4+ 2), gg(n + 2)], [g(n + 3), gg(n + 3)], ... checking to see if
h is constant on the intervals. By the clause that makes f(x) > x in the definition of the
computation function and our choice of sg, gg(s) > fg(s) > g(s), so the first ¢ > g(s) at
which h is correct for all elements below g(s) is in [g(s), gg(s)]. For this ¢, h(n,t) = A(n).
As we chose s so that the value of h(n,t) is constant on this interval, A(n) = h(n,t) for
any t € [g(s), gg(s)] and we have computed A recursively in g as required. =
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Exercise 8.2.4 What are the correct relativizations of the previous two Theorems?

Exercise 8.2.5 The above results can be extended by iterating the notions of “r.e. in”

or more generally “AY in” as long as one includes the lower degrees. We say that A
1-REA if it is r.e. then we define n-REA by induction: A isn + 1-REA if A is of the
form B & W2 where B is n-REA. (REA stands for r.e. in and above.) Prove that any
n-REA set A has an f =7 A such that any g > f computes A. Do the same with A
replacing r.e. These results can be carried into the transfinite. Prove, for example, that
0“) has the same property.

Theorem 8.2.6 If A > 0 is r.e. and P is a recursive notion of forcing then there is is
1-generic G such that (the corresponding) G is recursive in A.

Proof. We will build a 1-generic sequence p, recursive in A. Let f <r A be the least
modulus function for A. The requirements are

R, : for some s, p; € S, or (Vg < ps)(q & Se.), where S, is eth 3 set of conditions.

At stage s, we have a condition ps;. Note that we are thinking of P as a subset of N
and so have the natural ordering < on its members (and all of N) as well as the forcing
ordering <p. We say that R, has been declared satisfied by stage s if there is a p, with
n < s such that p, € Se f(;). Find the least e < s such that P, has not yet been declared
satisfied and such that (3¢ <p ps)(q < f(s) & q € Se f(s))- For this e, choose the least
such ¢ and put v, ; = ¢. If there is no such e, let ps1 = ps.

To verify that the construction succeeds, suppose for the sake of a contradiction that
ep is least such that

—3s(ps € Sep V (Vg <p ps)(q ¢ Sey))-

Choose sy > eg such that Vi < ey if there is a p, € S; then there is on with s < sg
and ps € Se (s,) (so by this stage we have already declared satisfied all higher priority
requirements that are ever so declared). We claim that we can now recursively recover
the entire construction and the values of f(s) for s > so. As this would compute A
recursively, we would have our desired contradiction. Consider what happens in the
construction at each stage s > sq in turn. Suppose we have p,. At stage s we look for the
least e < s such that (3¢ <p ps)(q < f(s) & q € Se f(s)). There is no such e < ¢y by our
choice of s¢. If g itself were such an e, we would act for it and declare P, to be satisfied,
contrary to our choice of eg. On the other hand, by our choice of eq there is a ¢ <p p,
with ¢ € S,,. We can find such a ¢ recursively (because we know it exists). We did not
find this ¢ in the construction at stage s because either ¢ > f(s) or ¢ € Sey — Seq,f(s)-
So we can now find a bound ¢ on f(s) by finding the stage at which ¢ enters S,,. Given
t > f(s) we can calculate f(s) as the least z such that A, [ s = A; | s. Once we have
f(s) we can recursively determine what happened at stage s of the construction and in
particular the value of p,;1. Thus we can continue our recursive computation of f(s) as
claimed. m rolgen

Relativizing Theorem %TZ%_tO C gives, for any C recursive notion of forcing P, a
G <1 A which is C' 1-generic for P for any A > C' which is r.e. in C.
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Exercise 8.2.7 The crucial property of the function f used in the above construction was
that there is a uniformly recursive function computing f(x) from any number greater than
it. Prove that if there is a partial recursive p(x,s) such that (Vs > f(x))(p(z,s) = f(x))
then f 1s of r.e. degree.

Corollary 8.2.8 Ifa > 0 is r.e. then there is Cohen 1-generic G <p A and so, for
example, every countable partial order can be embedded in the degrees below a.

Similarly we have

Corollary 8.2.9 Ifaisr.e. inb and strictly above it, then every partial lattice recursive
in b can be embedded into [b,a).

Corollary 8.2.10 If a is r.e. then every mazimal chain in (D(< a), <r) is infinite. In
fact, there is no maximal element less than a in (D(< a), <r).

%Iioglf. Suppose b < a. Then a is r.e. in and strictly above b. Relativizing Theorem
%.2.% to a B € b and using Cohen forcing gives us a G <7 A which is Cohen 1-generic
over B. So the degrees of B @ Gl are in fact all between b and a and even independent.
]

Exercise 8.2.11 Prove that every recursive lattice L with O and 1 can be embedded in
D(<a) preserving 0 and 1 for any r.e. a.??

relgen . L. . o
We now apply Theorem %2% to provide the missing way of identifying the standard
parts of effective successor models coded below 0’ that we need to calculate the complexity
of Th(D(<0)).

Theorem 8.2.12 If A >; C, A is r.e. in C and I is an ideal in D(< C) such that
W = {e:® € I} € X then there is an exvact pair Gy, Gy for I below A.

Proof. We provide a C-recursive notio reqf g(?lrcing ‘P such that any 1-generic for P gives
an exact pair for / and apply Theorem 8.2.6 relativized to C'. The conditions of P are of
the form p = (po, p1, Fp, ny,) wWhere p; € 2<%, |po| = |p1| = |p|, F, € w<¥, n, € w such that

(Vi € {0, 11)(V{e, 2,9)) (3= (w,m)) ((e, 2,5, w,m) € p;).

We define V' as expected V (p) = po @ p1. So for a 1-generic G, we have G; = U{p;|p €
G}. If e € W, we want ®¢ to be coded into G;. The unusual restriction above on
conditions in P suggests how we intend to do this coding. Since W € X we have
a relation R <r C such that e € W & JzVy3zR(e,x,y,z). We denote the pairs of
elements of W and their witness by W = {(e,z) : Vy3zR(e,z,y,2). To calculate ®
for e € W, our plan is to first choose an = such that (e,z) € W. We then search for
{(w, m) such that (e, x,y, w,m) € G; and announce that ®%(y) = m. The definition of P
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guarantees that this procedure gives at most one answer. The definition of the partial
order <p below will guarantee that this procedure makes only finitely many mistakes
for any 1-generic. Genericity will also guarantee that, when (e, z) € W, it gives a total
function.

The number n, in our conditions acts as a bound for how far we can verify the Il
assertion that x is a witness that e € W (and so also that ®¢ is total). The set [}, will

tell us for which (e, z) we can make no further mistakes in our coding of ®¢ into G
when we extend p. With this intuition, we define extension in P by q¢ <p p iff

¢ 2 pi, Fy 2 F,, ng > Ny,
and

(Vi € {0,1})(V(e,x,y,w,m) € [|p|, [q])({e,x) € F}, & (e, z,y,w,m) € g;
— @gnq(y) =m & Vy <y3z <n,(R(e,z,y,2))

Note that P is recursive in C'.
o 1Sellllppose that Gg, G are given by a C-1-generic sequence (ps) <7 A as in Theorem
%TZ%_relativized to C'. We claim that Gy, Gy are an exact pair for /.

First assume that (e, z) € W. We show that ®¢ <, G;. As the sets {p| (e, z) € F,}
are obviously dense in P, there is an s such that (e, z) € F, . For any (e, z,y, w,m) € p;
with ¢t > s, ®Y(y) = m by definition and so as noted above, the prescribed search
procedure which is recursive in G; returns only correct answers for y > |ps|. Next,
we claim that for each y > |ps], i € {0,1} and m = ®Y(y) the B¢ sets Sesymi =
{r|Fw({e, z,y,w,m) € r;} are dense below p,. This guarantees that (p;) meets each of
these sets and so the search procedures are total and correctly compute ®¢(z) for all
but finitely many z. To see that these sets are dense below pg, consider any ¢ < p;
with no w such that (e, z,y,w, m) € ¢;. Choose any w > |q| and define an r <p ¢ by
making |r| = (e, z,y,w, 2 (y)) + 1), r; = ¢; U {{e, z,y, w, ®(y))} (i.e. we let them be 0
at other points below the length), F,. = F, and letting n, be the least n > n, such that
vy < y3z < n(R(e,z,y,z) & B¢, (y) |) (one such exists since we are assuming that
(e,x) € W) Then r<pq and r € S, ; .m,; as desired.

We next want to deal with the minimality conditions associated with the G; being
an exact pair for I. Suppose then that ®%° = ®%1 = D is total. We want to prove that
D < ®{®Y : e € F} for some finite F C W. Consider the 3; set S, of conditions p:

Se =A{p: In (P (n) |# O (n)) 1}

By our assumption there is no ps € S, so we have a ps; = p such that Vg <p p(q & Se).
We claim that D < &{®C : (e,z) € F, N W} For every (e,z) € F, \ W, let y(e,x)
be the least y such that —Vy' < yEIzR(e z,y,2) VOl (y) 1. Tt is clear that there is
no ¢ <p p with any (e,z,y,w,m) € ¢; for (e,x) € F, \ W and y > y(e,z). Choose
q <p pin (ps) so that it has the maximal number of y’s with some (e, z,y, w, m) € g; for
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y <y(e,x)and i € {0,1}. To compute D(y) for y > |g|, we find a ¢ € P such that t; D ¢;,
®(y) |= B (y) |, no elements not in ¢; are added into ¢; in columns (e, z) € F,\IW and
for any (e, z,y,w,m) € t; with (e,z) € F, "W, ®7(y) = m. Such an extension exists
because ®¢°(y) |= ®¢1(y) | and by the maximality property of ¢ and the definition of
<p, Gl = gl for (e 2) € F,\ W and so there is such a f € (p,). Finding one such
t is clearly recursive in @{®C : (e,z) € F, N W}. Thus we only need to show that any
such t; provide the right answer. If one such gave an answer different than that given by
t (and so Gy and G) then (to, 1, Fj,,n) (where n > n, is large enough so that ¢, (y) |
for every (e, z,y,w,m) in t or t; with (e,z) € F,N W) would be an extension of p in S,
for the desired contradiction. m

8.3 High and GL, degrees

We now look at stronger domination properties and their elat%lon to the jump classes H;
and Ly below 0’ and their generalizations. Recall from §4. at fora<0,acH; &
a = 0" aely, & a’” = 0”. For degrees a not necessarily below 0, a € GLy <
(av0) =a’iac GH; & a = (aVv0'). It is also common to say that a is high if
a’ > 0”. As it turns out these are the degrees of dominant functions. Of course, a €GL,
means that a ¢ GLs.

Let’s begin by showing that there is there a dominant function. In fact, if C is any
countable class of functions { f;} then there is function f which dominates all the f;. For
example, put f(z) = max{fi(z) : i < 2} + 1. This construction requires a uniform list of
all the functions f;. For the recursive functio s we know that 0” can compute such a list.
Indeed, Tot = {e : @, total} =7 0” (Exercise 4.5.4) and so there is a sequence f; uniformly
computable from 0” which then computes a dominant function as described. We can do
better than this and avoid using totality. If f(z) = max{®.(x):e <z & ®.(z) |} then
f <r 0" and is also clearly dominant. We can even do a bit better and get away with
functions of high degree.

Theorem 8.3.1 (Martin’s High Domination Theorem) A set A computes a dom-
inant function [ if and only if 0" <p A’.
Proof. Suppose first that 07 <; A’. By the Shoenfield limit lemma (Theorem W
and the fact that Tot <7 0", there is an h <7 A with lim,_, h(e, s) = Tot(e). We want
to compute a function f recursively in A such that, for every e for which ®. is total,
f(z) is larger than ®.(z) with at most finitely many exceptions. Any such f will be
dominant. To compute f(z) we compute, for each e < x, both ®.,(z) and h(e,t) for
t > x until either the first one converges, say to ., or h(e,t) = 0. As if ®, is not total,
lim h(e,t) = 0, one of these outcomes must happen. We set f(z) to be one more than
the maximum of all the y. so computed for e < x. Note that f <r h < A. It remains
to verify that if ®, is total then ®. < f. By our choice of h, Jso(Vs > s¢)(h(e,s) = 1).
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So for x > sy when we calculate f(x) we always find a ¢ such that ®.;(x) |= y. and so
f(x) > ®.(x) for all z > s.

For the other directions, suppose we have a dominant f. As Tot is II3 and computes
0”, it suffices to show that it is also ¥5(f) as it would then be Ay(f) and so recursive in
1. We claim that

Vods®. () | & Vo, pa)4c(x) | .

Suppose P, is total (if not, then of course both conditions fail). Let k(z) = pus®y () |.
Then k is recursive (because we know thatVz®.(z) |). By hypothesis, f dominates k.
Thus, the right hand side holds. This is a X5(f) formula as desired. =

‘Now. a look a.bt the deﬁnitior.ls.sbows that for a <o 0’, a ¢ Ly is equivalent to 0’ not
being high relative to a. Relativizing Theorem %73._170 an a <7 0’ we see that a ¢ Ly
if and only if no f <7 0 dominates every (total) function recursive in A. We can then
handle GL, by relativizing to a V 0’ to prove the following:

Proposition 8.3.2 A set A <7 0" has degree in Ly if and only if (Vg <7 0(3f <r
A)(f £ g). An arbitrary set A has degree in GLy if and only if (Vg <r AV 0)(3f <r
A)f £ 9).

This says that, while sets that are not high do not compute dominant functions, if
they are not too low they compute functions which are not dominated by any recursive
function. This suffices for many applications.

Theorem 8.3.3 If A ¢ G Ly then for any recursive notion of forcing P there is 1-generic
G <r A.

Proof. For any g <p AV (/, there is an f < A not dominated by g. Without loss of
generality we may take f to be strictly increasing. We first construct the function g that
we want and then using the associated f, we construct a 1-generic sequence p, recursively
in f (and so A). We again make use of the natural order < on P C N,

Let S, list the X; subsets of P. As usual, we declare S, to be satisfied at s if
(3n < s)(pn € Ses). We define ¢ by recursion using 0. Given g(s), we want to determine
g(s+1). For each condition p < g(s)+1, ask 0 if (3¢ <p p)(q € S.) for each e < g(s)+1.
If such an extension exists, let x. be the least x such that (3¢ <p p)(¢ < x & ¢ € S, ).
Put g(s + 1) = max{z.|le < g(s) + 1}.

We cannot use ¢ itself in the construction of the desired 1-generic because want
G <r A. But, since ¢ <7 AV 0/, we can use an increasing f <r A not dominated
by g. The construction of G will be recursive in f (hence in A). At stage s, we have
finite a condition p;. For each e < s not declared satisfied at s, see if (3¢ <p ps)(¢ <
f(s+1) & q € Se p(s+1))- If so, take the smallest such ¢ for the least such e and let it be
psi1- If not, ps11 = ps. The construction is recursive in f, hence in A. Thus (ps) <r A
and the associated generic G <r A as well. Note that p; < f(s) by induction. Indeed
ps < g(s) as well because ¢(s) gives a bound on the witness required in the definition of

Ps-
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To verify that G is 1-generic suppose, for the sake of a contradiction, that there is a
least eg such that
—3s5(ps € Sep V (Vp <p ps)(p & Sep))-

Choose sg such that (Vi < eg)(3s)(.S; is declared satisfied at s) — S; is declared satisfied
at sg). Consider any s > s at which f(s+ 1) > g(s+ 1). By our choice of e, there is a
q <p pssuch that ¢ € S,,. Moreover, as ps < ¢(s), by definition of g there is one < g(s+1)
such that it belongs to S, 4(s+1) as well. By our choice of s, ¢ < g(s+1) < f(s+1). Thus
at stage s+ 1, we would act to extend p, to a ps41 € S, for the desired contradiction. m

Remark 8.3.4 The function g we used in the above proof was actually recursive in 0.
In fact, for Cohen forcing g <. 0. Thus we used the weaker property that for every
function g <., 0" there is an f <r A not dominated by g. This property is called array
non-recursiveness and is discussed in the next section.

As with r.e. degrees, having a 1-generic below a degree a ¢ G rgcgﬁg;{ides a lot of
information about the degrees below a. For example, as in Corollary 8.2.8, we can embed
every countable partial order below any a ¢ GL,. It is tempting to think that we could

renomax ) o
also prove the analog of Corollary RZ10 that every maximal chain in the degrees below
a is infinite. This is true for a < 0" (Exercise 7?7 ) but was an open question in Lerman
[1983]. Cai 7?7 has now proven that it is not true. There are a ¢ GLy which are the tops
of a maximal chain of length three.

Exercise 8.3.5 Prove that if a € Ly then any mazimal chain in the degrees below a 1is
infinite.

On the other hand, we can say quite a bit about the degrees above a as well when
a ¢ GL; that is not true of arbitrary r.e. degrees.

Definition 8.3.6 A degree a has the cupping property if (Ve > a)(3db < c)(aV b = c).

Theorem 8.3.7 If a €GL, then a has the cupping property. Indeed, if A ¢ GLy and
C >1 A then there is G Fr A such that AV G =r C and G is Cohen 1-generic.

121gen
Proof. We need to add requirements R, : ®¢ # A to the proof of Theorem %.‘Z’Cf'ﬁ)r
Cohen forcing (making all the requirements into a single list ).) and code C' into G as
well (so as to be recoverable from A @ (). In the definition of g(s + 1) in that proof,
for each p < g(s) + 1 look as well for ¢p,¢1 2 p and z such that golcq;. Then make
g(s+1) also bound the least such extensions 7q, 71 for each e, p < g(s)+1 for which such
extensions exist.

Again choose f < A strictly increasing and not dominated by g. The construction is
done recursively in f @ C. At stage s we have p, and we look for the least e such that ().
has not yet been declared satisfied and for which there is either a ¢ <p p with ¢ < f(s+1)
that would satisfy Q. as before if it is an S; or gy, ¢1 2 ps with ¢; < f(s+ 1) such that
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Qoleqr if Q. = R;. Let e be the least for which there are such extensions. If Q. = S;
choose g as before. If it is R; Let ¢ be the ¢; such that ®&(x) |# A(x). We then let
psi1 = ¢ C(s) and declare Q. to be satisfied. If there is no such e, we let p, 1 = ps"C(s).
Note that p, 1 < f(s+ 1) + 1 (the extra 1 comes from appending C(s)).

Since the construction is recursive in f & C and [ <; A <¢ C, we have G <p C.
But, C' <7 (ps) because C(s) = psi1(|ps+1|). However, (ps) <r AV G because f <r A
tells how to compute each stage from the given p, to the choice of q. Then G tells us the
last extra bit at end of ps,q.

To verify that G has the other required properties suppose ey is least such that (), fails.
Assume that by stage so we have declared all requirements with ¢’ < ey which will ever
be declared satisfied to be satisfied. Consider a stage s > s¢ at which f(s+1) > g(s+1).
If Q. = S; then we argue as in the previous theorem. If (). = R; and there were any
do, (1 =2 ps with goleq1 then would have taken one of them as our ¢ and declared Q. = R;
to be satisfied contrary to our choice of e5. On the other hand, if there are no such
extensions, then as usual ®¢ is recursive if total and so R; would also succeed contrary
to our assumption. m

Remark 8.3.8 Not every r.e. degree has the cupping property [?27].
L. 121gen
For other results about GLy degrees it is useful to strengthen Theorem 8.3.3 o deal
with notions of forcing recursive in A rather than just recursive ones.

Theorem 8.3.9 For A € GL,, given an A recursive notion of forcing P and a sequence
D,, of dense sets (including the sets {p| |V (p)| > m} for each m) uniformly recursive in
ANV 0 there is a generic sequence (ps) <p A meeting all the D,,. Of course, the generic
G associated with the sequence is recursive in A as well.

Proof. Let my be the least modulus function for K = 0" and let U1K = D, i.e. the
¥,, uniformly compute membership in D,,. We define g <p AV 0’ by recursion. Given
g(s) we find, for each p,n < g(s) + 1 the least ¢ such that ¢ <p p and ¢ € D,,. We then
find the use u (from A @ K) needed to compute ¥,, at each number less than or equal to
any of these g. We then let g(s + 1) be the least number larger than ¢, u and mg(u) for
all of these ¢ and u as well as mg(g(s) +1). As g <r AV (' and A € GL, there is an
increasing f <r A not dominated by g.

We construct the sequence (ps) recursively in f <, A. At stage s we have p,. Our
plan is to satisfy the requirement of meeting D,, for the least n for which we do not seem
to have done so yet and for which we can find an appropriate extension of p, when we
restrict our search to ¢ < f(s + 1) as well as our use of 0’ to what we have at stage
f(s 4+ 1). More formally, we determine (recursively in A) for which D,, (n < s) there is

a t < s such that \IJ%A@K”S“)W(SH)(pt) = 1. Among the other n < s, we search (again

recursively in A) for one such that (3¢ <p p,)(¢ < f(s+1) & \P%A@Kf““))[f(sﬂ)(pt) =1).
If there is one we act for the least such n by letting p,,1 be the least such ¢ for this n. If
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not, let psy1 = ps. Note that psy1 < f(s+ 1) by the restriction on the search space and
Pst1 < g(s+1) as well since g(s+ 1) also bounds the least witness by the definition of g.

We now claim that for each n there is a ps € D,,. If not, suppose, for the sake of a
contradiction, that n is least counterexample. Choose sy such that for all m < n there is
t < s¢ such that p;, € D,, and indeed such that \I/,(f@KSO”sO (pr)=1land Ky, [u=K [u
where v is the use of this computation of ¥,, at p;. Thus, by construction, we will
never act for m < n after sg. As g does not dominate f we may choose an s > sy with

f(s+1) > g(s+1). At stage s we have p, and p; ¢ D,, for all ¢ < s in the sense required,

. A . . . . .
l.e. \Ifgl B “mf(sﬂ)(pt) = ( since any computation of this form gives the correct answer

by our definition of g(s + 1) and the fact that f(s+ 1) > g(s + 1). There is a ¢ <p p;

with ¢ € D,, and the least such is less than f(s + 1) and \DgA@Kf(S“))rf(sH)(q) = 1 with

the computation being a correct one from A @ K by the definition of g(s+1) < f(s+1).
Thus we would take the least such g to be psy1 € D, for the desired contradiction. =
We now give a couple of applications that will play a crucial role in our global analysis
of definability in D and, in particular, of the jump operator [?7]. The first is a jump
inversion theorem that ??strengthens and (check original)?? generalizes Shoenfield’s 77.

Theorem 8.3.10 (GL, jump inversion) If A € GLy, C >7 AV, and C is r.e. in
A, then there is B <t A such that B' =7 C.

Proof. Let C, be an enumeration of C' recursive in A. We want a notion forcing recursive
in A and a collection of dense sets D,, such that for any (D,) generic G, G’ = C. This
time, our notion of forcing has conditions p € 2<“. The definition of extension for P is
a bit tricky. If ¢ O p and

{e,) €llpl; lgl) = [Cpi(x) = q(e, ) or In < e (P} (n) T & ¥i(n) |)]

we say that ¢ <; p. Now this relation is clearly recurs'a{cer aiLn A since A computes Cly,
for each p. However, it need not be transitive (Exercise [77. ;%e let <p be its transitive
closure. As, given any r O p, there are only finitely many ¢’s with » O ¢ O p we can
check all possible routes via <; from p to r recursively in A and so <p is also recursive in
A. The plan for coding C' into G’ uses the Shoenfield limit lemma and partially explains
the notion of extension. It guarantees that e € C' = Gl =* w while e ¢ C = Gl = ().
Thus e € C < lim;G({e,s) = 1 and so C' <p G’. Suppose we have a generic sequence
(ps) <r A for some collection of dense sets as in Theorem %35 The definition of
extension guarantees that coding mistakes can happen in column e only when ®?s(n)
first converges for some n < e. Thus we will have C' < G.

Our first class of dense sets include the trivial requirements and in addition force the
jump of G in the hope of making G’ < C"

Dy = {p:lpl = j & [®),(m) | or (Vg 2 p)(®f,(m) T

or [(Fe < m)Fe,z) € [lpl, [a))(Cpp(e) # q({e, z)) but =(Fn < e) (P (n) T & @7(n) L))}
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Note that after we use A to compute Cj,|, membership in D, ; is a 119 property and so
recursive in 0’. Thus, the D,,; are uniformly recursive in A vV 0’. We must argue that
they are dense. Consider any p. We can clearly extend it to a ¢ with |¢| > j by making
q({e,x)) = Cp(e) for (e,x) € [|p|,j). So we may as well assume that |p| > j. If ¥ (m) |
then p € D,, ; and we are done. So suppose ®2 (m) T. If there is ¢ O p such that ®¢ (m) |
and (Ve < m)(¥ (e,z) € [Ipl,q)[Cip(x) = ql{e,)) or In < e(@L(n) T & B4(n) 1)),
q <p p by definition. (because ®? (m) T while ®¢ (m) | so any violation of coding is
allowed for e > m) and is in D,, ;. If there is no such ¢ then p € D,, ; by definition.

Now we verify that G = Up, has the desired properties. By Theorem %.“SWST A
To see that C' <p G’ consider any e. Let s be such that (Vi < e)(® (i) |= ®(i) |
&i e C = i€ Cp,). Itis clear from the definition of <p that for any ¢ > s and
(i,2) € [|psl, |pe|]) with @ < e, (i,z) € pp & i € C. Thus C(e) = lim; G((e,t) and so
C <7 G by the Shoenfield limit lemma. For the other direction we want to compute
G'(e) recursively in C. (Of course, A <r C and so then is (ps).) Suppose we have, by
induction, computed an s as above for e — 1. We can now ask if e € C. If so. we find
au >t > ssuch that e € Cy,| and p, € D, . If ®P(e) |, then, of course, e € G'.
If P=(e) T but e € G’, then there would be a v > u such that ®2(e) | and, of course,
Pv <p pu. This would contradict the fact that p, € D, |, by our choice of s and ¢ and
the definitions of D, |, and <p. m

Corollary 8.3.11 (Shoenfield Jump Inversion Theorem) For all C > 0 there is
B < 0 such that B' =1 C if and only if C is r.e. in 0.

Proof. The “only if” direction is immediate. The “if” direction follows directly from the
Theorem by taking A =0". =

For later applications we now strengthen the above jump inversion theorem to make
B <y A.

ompleteness| Theorem 8.3.12 If A € GLy, C >1r AV, and C is r.e. in A, then there is B <p A
such that B' =1 C.
. . 12completeness
Proof. In addition to the requirements of Theorem E.é.lu, we need to make sure that
®E #£ A for each i. To do this we modify the definition of extension to also allow viola-
tions of the coding requirements for e when we newly satisfy one of these diagonalization
requirements for i < e. (As we did above for making ®¢ (i) |.) We say ¢ <, p if {e,z) €
Ipl: lal) = [Cly(@) = a((e,a)) or 3n < e ([B2(n) T & B4(n) 1] or [By®i(y) 1# A(y) & ~Fydiy) £ Aly)]
Again <p is defined as the transitive closure of this relation and it is recursive in A Vv (/
as before. We then adjust the D,, ; accordingly

Dyj = Ap:lp| >j & [®),(m) | or (Vg 2 p)(®F,(m) T
or [(3e < m)(3e,z) € [|p|, la])(Cpp(e) # q({e, z)) but
—(3n < e)([Ph(n) T & @L(n) |] & ~(3y)[PL(y) |# Aly) & =FyPh(y) 1# A(y)])]}-
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We also need dense sets that guarantee that ®¢ # A:

D; = {p|(Fz)(®}(z) |# A(z) or
Voo, 1 2 p)(Vo <|qol, | )[~(®{ () |# @ (x) |) or
((Fe < )(3e, ) €[lpl, g)) (37 € {0, 1})[(Clpi(e) # qi({e, z)) but
—(3n < )([@h(n) 1T & Ph(n) 1] & ~(3y)[PL(y) |# Aly) & ~FyPL(y) 1# Ay)])]}-

The proof now proceeds as in the previous Theorem. The arguments for all the verifica-
tions are now essentially the same as there and are left as an exercise.?? m

Exercise 8.3.13 ‘slggggog@%ﬁ ttefﬁee notion of forcing and classes of dense sets specified in
proof of Theorem I8.3.12 suffice to actually prove it.

Exercise 8.3.14 Prove that if A is r.e. and C >7 0" is r.e. in A then thereisa B <r A
such that B' =1 C. Indeed we may also make B <p A. Hint:

The next result says that every a € GL; is RRE (relatively recursively enumerable),
i.e. there is a b < a such that a is r.e. in b and a bit more.

Theorem 8.3.15 Ifa € GL; then there is b < a such that a is r.e. in' b and a is in
GL2(b), i.e. (aVD') <a”.

Proof. Let a € GL,. We'll use a notion of forcing P with conditions p = {(pg, p1, p2),
p; € 2<% such that

L |po| = |p1l, po(dn) = A(n), p1(d,) = 1 — A(n) where d, is nth place where pg, p1
differ and

2. (Ve < |po+pi])(e € po ® p1 < Fx({e,z) € p2))

As expected, our generic set Gy @ G1 @ G is given by V(p) = po & p1 @ pa. The idea
here is that if we can force py, p; to differ at infinitely many places while still making our
generic sequence recursive in A, the first clause in the definition of <p guarantees that
Go @ G1 =r A. The second clause works towards making Gy & G r.e. in G5 with the
intention being that deg(Gs) = g is to be the b required by the theorem. Extension in
the notion of forcing is defined in the simplest way as ¢ <p p < ¢; 2 p; but note that
this only applies to p and ¢ in P and not all ¢ with ¢; 2 p; are in P even if p € P. The
notion of forcing is clearly recursive in A.

We now define the dense sets needed to satisfy the requirements of the Theorem. We
begin with Dy, = {p : po, p1 differ at at least n points}. These sets are clearly recursive
in A. We argue that these are dense by induction on n. Suppose D,, is dense. To
show that Ds, . is dense, it suffices, for any given p € Dy, — Ds,.5 to find a ¢ <p p in
Doyia. Let go = po"A(n), g1 = p1°(1 — A(n)). Choose i € {0,1} such that ¢;(|po|]) = 1.
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Define g, O py by choosing z large and setting ¢2((2|po| + i, 2)) = 1 and ¢2(2) = 0 for all
z ¢ dom(ps) and less than (2|pg| + 4, z). Now ¢ = (qo, ¢1, ¢2) satisfies the requirements to
be a condition in P. It obviously extends p and is in Dy, 5.

For any generic recursive in A which meets all the D,,,, Go @& G1 =7 A and Gy ® G,
is r.e. in Gs.

We also want dense sets similar in flavor to those of the previous theorems to force
the jump of G5 to make (aV g))’ < a”. Let

Dopir = {p:®P*(n) | or (Vo 2 p2)
(@7(n) T or (He,z) € 0)((po ® p1)(e) = 0).

For p € P, membership in D, is a 0’ question and so these sets are recursive in AV ('.
We want to prove that they are dense. Suppose have a p € P so we want a ¢ <p p
with ¢ € Dy,1. We may suppose that ®22(n) T and that the second clause fails for p
as otherwise we would already be done. Thus we have a ¢ O py such that ®7(n) | but
—(Ie,x) € 0)((po®p1)(e) = 0). We claim that there is a ¢ <p p such that ¢go O ¢ and so
®%(n) | and g € Do, y1 as required. The only issue is that there may be some (j,y) € o
with j > |po @ p1]. If so we must define ¢y and ¢; accordingly, i.e. j € qo ® ¢1. So if j
is even, we want % € qo; if it is odd, J%l € ¢1. We now define qp, ¢; at the appropriate
element (% or J%l) to both be 1. Elsewhere we let both ¢y and ¢; be 0. Thus we have
not added any points at which ¢y and ¢; differ beyond those in pg, p;). Now we extend o
to g2 by adding (e, y) for some large y if (qo ® ¢1)(e) =1 and e > |py & p1| and wherever
not yet defined we let ¢2(2) = 0. Thus ¢ € P and is the desired extension of p in Ds, 11
as O (n) = 7 (n) |.

1oVe now let (ps) <7 A be a generic sequence meeting every D,, as given by Theorem
EB%fW% already have seen that Go @ G1 =7 A and is r.e. in Gy <7 A. If we can show
that (A ® GY) <r A” then we will be done as this clearly implies that Go < A. We
first claim that G, <p AV (0. To see if n € G, recursively in AV 0’ find an s such that
ps € Do,yq. Then we claim that n € Gy < ®,7%(n) |. If ®2(n) |, then we are done.
If not, then (Vo D ps2) (P%(n) 1 or (Ie,z) € 0)((po ® p1)(e) = 0)) and by definition of
membership and extension in P, ®,°*(n) T for every p;5 for t > s. Thus ®%2(n) 1 as
desired. As G}, <p AV0', (A®G),) = AV0 andsoas A ¢ GLs, (ABGY,) = (AVD) <p A”
as required. m

Exercise 8.3.16 If A >7 0 is r.e. and C >7 0 is r.e. in A then there is a B <p A
such that B' =¢ C. Indeed we may also make B <r A. Hint: ....build 5, finite extension
obey coding rule for columns for e < c¢(s) < s (enumerates C' recursively in A) except
that can violate to force jump as above; search below ma(s + 1) for extensions forcing
jump for e < s that obey rule. Also search for extensions so ®. giving different answers
and allow violations in columns > e when satisfy this requirement by choosing one that
gives answer other than A 27

We can now deduce a result that will play a major role in our definition of the Turing
jump in D and many related results.
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Theorem 8.3.17 If A € GLy and S € X4 then there is an embedding of an effective
successor model (with the appropriate partial lattice structure) in the degrees below deg(A)
and an eract pair X,y for the ideal generated by the d,, with n € S. (Remember that the
d,, are the degrees representing n € N in the effective successor model.

Proof. Given A € GL, and S € ¥4 Theorem §_3T5g1ves usa B < gcompiih%gnélsiss r.e.
in B and A is GLQ( ). Since A’ > AV (' and is r.e. in it, Theorem R.3.10 relativized to
B gives us a B < A (with B <7 B) such that B’ = A’ and so £8 = £4, Moreover, A
is r.e. in B because it was r.e. in B <7 B. The result now follows from The%redm i’ ? to
embed an effective successor model between B and A and Theorems %‘Tﬁn_to—plck out
the ideal generated by the associated d,, for n € S as the set {e|In(®5 € d,)} is itself
%8 = v4 as is then {e|(In € $)(®2 € d,)}. =

Below a H; or GH; degree?? Minimal degree in 7?7 others here??complementation??

Exercise 8.3.18 Prove that every degree has a GLs degree below 1t.
Exercise 8.3.19 Prove that every degree has a GL; degree above it.

Exercise 8.3.20 Prove that every recursive lattice L with 0 and 1 can be embedded in
D(<a) preserving 0 and 1 for any a € GL,.

Other results of this type? Lerman, Antonio?
History: most in Jockusch Posner 1978 at least for Cohen forcing.

8.4 Array Nonrecursive Degrees

The notion of array nonrecursiveness was originally introduced in the context of r.e.
degrees to capture certain types of arguments in which one needed multiple permissions
from (changes in) a given r.e. set to construct a desired set. (DJS I) It was phrased
in terms of the r.e. set meeting (intersecting) the elements of certain types of arrays
of uniformly given finite sets. It was later (DJS II) generalized to all degrees with a
definition based on a domination property involving functions weak truth-table reducible
to 0 and shown to have many of the properties of GLy degrees.

Definition 8.4.1 A degree a is ANR if for every function g <, 0 there is an f <r a
such that f is not dominated by g.

Exercise 8.4.2 Ifa € GL; then a € ANR.

This notion is actually equivalent to two related ones, one seemingly weaker and the
other seemingly stronger. (DJS and CSh)
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Proposition 8.4.3 The following are equivalent for a degree a:
1. ais ANR.

2. There is a function f <7 a which is not dominated by the least modulus function
my for 0.

3. For any A € a and g = ®.(A @ 0') such that there is a function r <r A bounding
the use from 0’ in the computation of ¢ at each z, there is a k <7 A which is not
dominated by g.

Proof. That (1) implies (2) and (3) implies (1) are immediate from the definitions. We
prove that (2) implies (3).

Without loss of generality we may assume that f, g and r are increasing. We define
the required k& <r A as follows: To calculate k(n) compute, for each s > n in turn,
Do pr(s) (ABO0Y, ;) (i.e. compute fr(s) many steps in the standard enumeration of 0" and
then, using this set as the second component of the oracle (and A for the first), compute
. at n for fr(s) many steps) until the computation converges and then add 1 to get the
value of k(n). This procedure must converge as ®.(A @ 0’;n) converges. Now, as my
does not dominate f, there are infinitely many n such that there is a j € [r(n),r(n+1))
with f(j) > mg(j). For such n we have fr(n+1) > f(j) > mg(j) > mgr(n). Thus
0%, I T(n) = 0" [ r(n) for every s > n. So the computation of ®.(A @ 0';n) is,
step by step, the same as that of ®.(A & 0 T(S);n) for each s > n as all the oracles
agree on the actual use of the true computation. So eventually we get an s > n such
that Qe fr(s)(f @® 0%,,;n) | and the output must be ®.(A @ 0';n). Thus, for these n,
k(n) = g(n) +1 > g(n) as required. m

Exercise 8.4.4 There is an a € ANR with a € Llénllpe act, there is a Cohen 1-generic

A whose degree is ANR. Hint: use Proposition 18.4.3(2) and the principal function
?2definition?? of A.

Exercises on f is AN R, relativizations and uniformity

That there are COE%?EI 1e—§enerics bel W Syery a € ANR fouows immediately from
the proof of Theorem 8:3.3 and Remark %.3.4. ['his, as usual, gives one whole array of

corollaries. We now Love Stehe analog for ANR. of the stronger version given for GLs
degrees in Theorem & %Brg Phis allows us to carry out almost all of the known forcing
constructions for GLy degrees for ANR ones.

Theorem 8.4.5 If A is of ANR degree, P is an A-recursive notion of forcing, C = (D,,)
a sequence of sets dense in P (including the ones {p| |V(p)| > I} for each 1) with a
density function d(z,y) = V(A 0;x,y) such that the use from 0 in the computation of
V(A ®0;z,y) is bounded by a function 7 <r A, then there is a C-generic sequence (ps)
recursive in A. Indeed, Vn3s(psy1 = d(ps,n)).
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Proof. Without loss of generality we may assume that 7(z,y) is increasing in both x
and y. Next note that the nondecreasing function mg7(s, s) satisfies the hypotheses of
Proposition WS), i.e. it is computable from A @ 0" and its 0’ use is bounded by a
function (7(s, s)) recursive in A. Finally note that the maximum of the running times
of W(A® 0;z,y) for z,y < s is also is such a function. (We run ¥ on each input and
then output the sum of the number of steps needed to converge.) Finally, we let r bagn ‘%lele
maximum of these three functions so it too is of the desired form. By Proposition 8.4.3;
we now have an increasing function g < A not dominated by r. We use g to construct
the desired generic sequence p, by recursion.

We begin with p; = 1. At step s + 1 we have (by induction) a nested sequence
(pili < s) with p; < s. We calculate O;(s 41y and see if there are any changes on the use
from 0’ in a computation based on which some D,, was previous declared satisfied. If so,
we now declare it unsatisfied. Suppose n is the least m < s+ 1 such that D,, is not now
declared satisfied. (There must be one as we declare at most one m to be satisfied at every
stage and none at stage 1.) We compute W, 1)(A @ O'g(SH);ps,n). If the computation
does not converge or gives an output ¢ such that ¢ > s+ 1 or ¢ £p ps we end the stage
and set psy1 = ps. Otherwise, we end the stage, declare D,, to be satisfied on the basis
of this computation of the output ¢ and set ps1 = q. Of course, (ps) <7 A.

We now verify that(ps) is C-generic and indeed Vn3s(ps;1 = d(ps,n)). Clearly if
we ever declare D,, to be satisfied (and define p,,; accordingly) and it never becomes
unsatisfied again then p,.1; = d(ps,n). Moreover, if we ever declare D,, to be satisfied
(and define pg,1 accordingly) and it remains satisfied at a point of the construction at
which we have enumerated 0’ correctly up to 7(ps,n), then by definition ps1 = d(ps, n)
and D,, is never declared unsatisfied again. We now show that this happens.

Suppose all D,, for m < n have been declared satisfied by sy and are never declared
unsatisfied again. Let s+1 > sq be least such that g(s+1) > r(s+1). If D,, was declared
satisfied at some ¢ + 1 < s on the basis of some computation of Wy;41)(A ® 0;(t+1);pt7 n)
and there is no change in 0’ on the use of this computation by stage g(s + 1) then the
computation is correct, p; 11 = V(A®0;p,n) € D, and D,, is never declared unsatisfied
again. (The point here is that by our choice of s, g(s+1) > mgr(s+1,s+1) > mgr(p:, n)
and so 0} [ r(p;,n) = 0" | r(p,n).) Otherwise, D, is unsatisfied at s and the least
such. By construction we compute Wy, 1)(A ® 0;(5 +1)i Ps: n). The definition of r along
with our choice of g and s guarantee that this computation converges and is correct and
so unless d(ps,n) > s + 1 we declare D,, satisfied, set ps.1 = d(ps,n) and D,, is never
declared unsatisfied again. If d(ps,n) > s + 1, we set ps41 = ps and, as D,, remains
unsatisfied and the computations already found do not change, we continue to do this
until we reach a stage v + 1 > d(ps,n) at which point p, = ps and we set p,.1 = d(p,,n)
declare D, satisfied and it is never unsatisfied again. =

Exercise 8.4.6 Prove that every recursive lattice L with 0 and 1 can be embedded in
D(<a) preserving 0 and 1 for any a € ANR. (DJS)

Exercise 8.4.7 Prove that every a € ANR has the cupping property.
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jump inversion others Exercises??

Our goal now is to characterize the ANR degrees a lt%lrorsee degrees a such that every
b > a is RRE. We begin with the analog of Theorem 8.3.15 which provides one half of
the equivalence.

Theorem 8.4.8 Ifa € ANR then a is RRE.

Proof. We use an A-recursive notion of forcing P with conditions p = (pg, p1,p2),
p; € 2<% such that

1. |po| = |p1|, po(dn) = A(n — 1), p1(d,) = 1 — A(n — 1) where d,, is n'* place where
Po, p1 differ and

2. (Ve < |po @ p1|)(e € po ® p1 < Jx({e,z) € pa)).

Extension in this notion of forcing is defined simply by ¢ <p p < ¢; 2 p; but note that
this applies only to p and ¢ in P. Membership in P and <p are clearly recursive in A.
Our plan is to define a class C of dense sets D, with a density function d(p,n)
recursive in A @ 0’ with 0’ use recursively bounded. Theorem &.4. en supplies a C-
generic sequence (ps) <r A from which we can define the required G <7 A in which a is
re. If ps = (D50, D51, Ps2) We let G = U{ps|s € N} for i =0,1,2 so G; <p A. Then, if
we can force Gy and G to differ at infinitely many places, Go & G1 =1 A. On the other
hand, the definition of the notion of forcing obviously makes Gy ® G r.e. in G5. Thus a
will be r.e. in g =deg(Gy). We will have other requirements that make g < a as well.
We begin with the dense sets that provide the differences we need:

Dy, = {p € P : po, p1 differ at at least n points}.

We define the required function d(r, 2n) by recursion on n. Given r and n+ 1, we suppose
we have calculated d(r,2n) = p = (po, p1,p2) € Do, with p <p r. If p ¢ Ds,, 1o, we need
to compute a ¢ = (qo, q1, ¢2) € Dant2 With ¢ <p p. Let qo = po"A(n), ¢1 = p1” (1 — A(n)).
Choose i € {0,1} such that ¢;(|po|) = 1. Define g2 D py by choosing x large and setting
02((2|po| + 7, 2)) = 1 and ¢2(z) = 0 for all z ¢ dom(ps) and less than (2|pg| + i, x). Now
q = (qo, q1, q2) satisfies the requirements to be a condition in P. It obviously extends p
and is in Ds,,o. This computation is clearly recursive in A.

We must now add dense sets to guarantee that A ﬁT Ga:

Dans1 = {peP: F(@2(x) £ A) or ¥(o,01 2 po)[Fo(@20(x) 1 85 (2)) 1=
G € {0.1)E e n)e < lpo©mil & oillea) =1 (m @ p)(E]}
Of course, the first alternative guarantees that ®%2 # A while the second that ®¢2, if
total, is recursive. The point here is that if some p, in our generic sequence satisfies the
second clause then, we can, for any z, calculate ®¢2(z) by finding any o 2O p; 5 such that
9(z) | and taking its value as ®¢2(2). There is such a 0 C G5 as ®C2 is assumed to
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be total and Gy D pso. If there were some other 7 D p, o with ®7(z) |# ®7(z) | then,
by our choice of s and the definition of Ds, 1, there is no (e, z) with e < |pg @ p;| such
that 7({e,z)) = 1 # (po ® p1)(e). Thus we could form a condition g <p p, with ¢go = 7
by extending py and p; by setting ¢;(w) = ¢(w) = 1 (for w > |pol|) if either (2w,v)
or (2w + 1,v) is in 7 for any v. In this way no new differences between ¢y and ¢; (not
already in pg and p;) occur and the definition of being a condition is satisfied. Thus ¢ is
a condition extending ps o with ®%(z) |# A(z) contradicting our choice of s.

We compute the required density function d(g,2n+ 1) as follows. Given g we ask one
question of 0" determined recursively in ¢: Are there extensions g, 07 of ¢ that would
show that ¢ does not satisfy the second disjunct in the definition of Dy, ;. If not, let
d(q,2n+ 1) = q which is already in Ds, 1. If so, we find the first such pair (appearing in
a recursive search) and ask A which o; gives an answer different from A(x). We now need
a condition r = d(q,2n + 1) extending ¢ with third coordinate ry extending o;. For each
(e, x) with e > |q1 ® ¢a|) and o;({e, z)) = 1 we define 7;(z) = 1 for both j € {0,1} for the
z that makes (1o @ r;1)(e) = 1 and otherwise we let 7;(u) = 0 for all other u less than the
largest element put into either rg or r; by the previous procedure. We now extend o; to
the desired 7o by putting in (k,y) for a large y for all those k > |¢1| put into 79 & r; for
which there is no (k,w) in ¢;. Otherwise we extend o; by 0 up to the largest element put
in by this procedure. It is clear that this produces a condition r as required. (No points
of difference between ry and gﬁraggstéreated that were not already present in q.)

We now apply Theorem 8.4.5 to get a C-generic sequence (ps) <r A. As promised,
we let G = U{p,,|s € N} for i = 0,1,2 and, as described above, A =1 Gy & G which
is r.e. in Gy. In addition, the conditions in Ds,; guarantee (as above) that ®%2 # A as
well. m

Exercise 8.4.9 Prove that everya € ANR has the cupping property. Hint? Indifference
set, i.e. f: N —{0,1,2} approach??

chigag;cggir%n%gon as all above are RRE reference notions and terminology about trees
from §9.2 o i el
77Exercises on Relativization via Proposition [77:

Definition 8.4.10 A function f is AN R if it is not dominated by m. It is AN R relative
tohif h <7 f and f is not dominated by my,. A degree a is ANR relative to b, ANR(b),
if there are f € a and h € b such that f is ANR relative to h, ANR(h).



Chapter 9

Minimal Degrees and Their Jumps

9.1 Introduction

We now return to extension of embeddings problem. We saw that as long as we do

not attempt to put a new degree 61}1{]t gnl%e extension below a given degree, then anything
consistent is possible (77Exercise m We now turn toward the issue of whether one

can put new degrees below given ones. The answer is strongly negative. In fact, strone
enough so that we can rule out all the extensions not constructed by 77Exercise )52 [0

for finite lattices P. Clearly embedding every finite lattice P as an initial segment of D
suffices as then if Q adds elements below any of P then there can be no extension t ir%tialse
of the embedding of P as an initial segment. We prove this and more in Chapt ﬂl’g—g
This will suffice to decide the truth of all two quantifier sentences in D (Cha,ptereh%?r‘f
%1%@130 to show that the set of true three quantifier sentences is not decidable (Chapter

We begin with the simplest case.

Definition 9.1.1 A degree a > 0 is minimal if, for anyb < a, b =0 orb = a. A degree
s a s a minimal cover of ¢ > a if for any b withc <b <a,b=c orb=a.

We cannot hope to construct a set of minimal degree by forcing with finite conditions
like Cohen forcing as we have seen that generics for such forcings have every countable
partial order embedded below them. We move then from approximations (conditions)
that are clopen sets in Cantor space (all extensions of a ¢ € 2¥) to ones that are prefect
subsets instead.

9.2 Perfect forcing and Spector minimal degrees

We represent perfect subsets of Cantor space, 2% (i.e. nonempty sets with every point a
limit point) by binary perfect (i.e. always branching) trees 7' (with no dead ends). The

81
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perfect subsets of Cantor space are then the paths [T'] through these trees. We present
such trees as functions 7' : 2<% — 2<% with certain properties. 7?7 define Cantor space
and relevant topology perfect trees etc. early on??

Definition 9.2.1 A binary function tree is a (possibly partial) function T : 2<% — 2<%
such that

1.c C7=T(o) CT(r) (for 7 € dom(T), so, in particular, if T(t) | and o C 7
then T'(0) |) and

2. o|ltr = T(0)|T(7) (for o,7 € dom(T)).

Definition 9.2.2 We say that a binary string 7 is onT if there is a o such that T'(o) = T.
We say that T is on T above p if there is a 0 O p with T'(o) = 7.

Exercise 9.2.3 If T is a binary function tree then (for o € domT), |T(o)| > |o|.

t
Exercise 9.2.4 If T is a binary tree in the sense of Definition b??e?l then [T'] is perfect
if and only if there is a binary function tree S such that [S] = [T]. If T is recursive (as
a subset of 2<% ) then we may take S to be so as well.

Definition 9.2.5 We define an order <s on the binary function trees by S <s T <
Vo(S(o) |= IT(S(0) = T(1)), in which case we say that S is a subtree of T'. In this
chapter all trees will be partial recursive binary function trees (unless otherwise specified)
and we will just call them trees. In this section they will also be total unless otherwise
specified.

Exercise 9.2.6 If S and T are trees then [S] C [T] if and only if Yo3r(S(0) C T(7).

Our forcing conditions, in this section, will be these trees. The order relation S <s T
is then equivalent to Yo3r(S(o) = T'(7).

The function V required in the definition of a notion of forcing is given by V(T') = T'(0)
but the notion of extension makes it clear that the only possible generic sets G' extending
the condition T" are the G' € [T]. This notion S of forcing with perfect recursive binary
function trees is often called Spector forcing. Its analog in set theory is often called Sacks
forcing or perfect forcing. Note that this notion of forcing is only recursive in 0”. The
crucial point here is that it takes 0” to determine if ®, is total. Once we know it is total,
0’ suffices to determine if it is a binary function tree as this is then a IT? property. If S, T
are conditions in S then 0 can also determine if S <g T as this too is a IT1? property.
The point here is that if there is any 7 such that T'(7) = S(o) then it must be of length
at most |S(o)| by Exercise 9.2.3

The requirements for a set G to be of minimal degree are as follows:

e N.: G# ®, and
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e M.: If ¢ is total then either ®¢ is recursive or G < ®F.
The N, requirements are very easy to meet.

Lemma 9.2.7 For each e the set of conditions {T|T Ik =(®. = G)} is dense in S. In
fact the smaller set D, = {T|—=(®. = T(0)(x))} is already dense in S.

Proof. Given any tree 7' and ®., note that —(7'(i) = ®.) for ¢ at least one of 0 or 1
as T'(0)|7°(1). Thus we may take as the desired extension S of T" the subtree such that
S(o) = T(i"0), i.e. it starts with T'(i) for the appropriate ¢ and then continues on as
doesT. m

i\é/e formalize the operation that provides a witness to the density required in Lemma

Definition 9.2.8 For any partial tree T and o € 2<%, the full subtree of T above o,
Fu(T, o) or sometimes simply T,, is the tree S defined by S(1) =T (c"T).

Proposition 9.2.9 If T' is (partial) recursive then so is T, and an index for it can be
found uniformly recursively in one for T.

Proof. Immediate. =

. . . Fga%i%g .
Proposition 9.2.10 There are density functions for the D. of Lemma 19.2.7 which are
uniformly recursive in 0' on the set of (recursive binary function) trees.

Proof. Given any 7, find an x such that 7'(¢"0)(z) # T(0"1)(x). Then ask 0" if ®.(x) |.
If so compute its value. In any case take i € {0,1} such that =(7(0"i)(x) = ®.(z)) and
take Fu(T,0"i) as the desired extension. m

We must now see how to satisfy the minimality requirements M,. We have seen
several times how to make sure that ®¢ is recursive. To do this we want a be in a
situation in which there are no extensions of the current approximation that e-split.

Lemma 9.2.11 IfT is a partial tree such that there are no o and T such that T'(c)|.T(7),
G € [T] and ®Y is total then ®F is recursive.

Proof. As usual, to compute ®%(x) we search for any o such that oL (x) |. Since
®%(z) | there is an initial segment ~ of G such that ®)(z) |= ®%(x). As G € [T] there
is a 7 such that v C T'(7) C G and so 7 is a string as desired. We then note that, for
any such o, ®. 7 (z) = &L (2) = ®%(z) as otherwise T(c)[,T(r). m

We must now argue that if we cannot extend a given T" to one with no e-splits on it
as above, then we can guarantee that, if total, ®¢ > G. To this end, we define another
operation on trees that proceeds by searching for e-splits.



esplittree

complemma

itsoresplit

84 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

Definition 9.2.12 The e-splitting subtree, Sp(T,e) = S, of a partial recursive tree T
is defined by recursion. S(0) = T(0). If S(o) = T(7) then we search for To,71 2 T such
that the T'(t;) e-split. We let 7o and 71 be the first such pair found in a standard search
and set S(o"i) = T(7;). A partial recursive tree S is an e-splitting tree if, for every o,
if one of S(0°0), S(c"1) is convergent then both are and they form an e-split.

Proposition 9.2.13 Sp(T,e) is a partial recursive subtree of T with an index given
uniformly recursively in one for T. If Sp(T,e) is not total then there is a T such that
there are no e-splits on T above T for some 7. Indeed, if Sp(T, e)(7) | but Sp(T,e)(7°0) 1
and T(1) = Sp(T,e)(7), then there are no e-splits on T above T. Moreover, for any o,
Sp(T,e)(c"0) |< Sp(T,e)(c"1) | and so Sp(T,e) is an e-splitting tree.

Proof. The assertions about the uniformity of the procedure of forming the e-splitting
subtree and the equiconvergence of Sp(T, E')(¢"i) for i € {0,1} are immediate from the
definition. As for the rest, if S(0) 7 then T'(()) T and we are done trivially. Otherwise, let
7 be such that Sp(T, e)(7) |= T(p) for some p but Sp(T,e)(r"i) T for some (equivalently
both) i € {0,1}. If there were an e-splititng on 7" above p then we would have S(777) |
for both ¢ € {0,1} by definition. =

T.hus to satisfy the minimality requirement M, 2ol ﬂltfgices to prove that if TJ. ha.s
e-splits for every o (and so we cannot use Lemma 9.2.11 to force ®¢ to be recursive if
total) then Sp(T', e) forces G <p ®¢ if the latter is total.

Lemma 9.2.14 (Computation Lemma) If S is a partial recursive e-splitting tree,
G € [S] and ®F is total then G <p ®Y.

Proof. We compute an ascending sequence ,, of initial segments of G (and so G itself)
from ®¢ by recursion. We begin with v, = S(()) which is an initial segment of G' since
G € [S]. Suppose we have v,, = S(0,) C G. As G € [5], one of S(0,70) and S(o,"1) is
also an initial segment of G. Thus S(o,,"0) and S(o,,"1) are both convergent and e-split.
We may then recursively find an 2 on which ®2" % (z) |# " V(z) |. Exactly one
of these two agrees with ®%(z). We choose that i € {0,1} and set 0,1 = S(0,,"i). =

We have thus proven the density of conditions needed to satisfy the minimality re-
quirements.

Lemma 9.2.15 The sets C. = {T| either there are no e-splits on T or T is an e-
splititng tree} are dense in S. Moreover, there are density functions for these sets which
are uniformly recursive in 0" on the set of (recursive binary function) trees.

Proof. By the above Lemmas, either there is a ¢ such that Fu(T, o) has no e-splits
or SP(T,e) is a total tree and so the C, are dense. As the two options are X9 and II9
properties, respectively, 0” can decide which option to take and, if the first is chosen then
even (' can find a suitable o as there being no e-splits on T, is a II{ property. If the
second is chosen then the index is given recursively. m
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Theorem 9.2.16 There is a minimal degree g < 0”.

Proof. Take any generic sequence (T,) meeting all the D, and C.. The associated
generic set G = UT,,(()) is of minimal degree. By the above results on the complexity of
the density functions we may take the sequence and so GG to be recursive in 0”. =

One naturally asks at this point if we can do better in terms of the complexity of
the minimal degree we construct. The most obvious question is whether we can produce
one below 0’. It seems clear that we cannot use Spector forcing for this as the notion of
forcing (indeed even the set of conditions) is of degree 0”. Given the work that we have
already done, however, one would trymtoosp%ﬁ% S{)aﬂ‘g%@lllpfg%gsive trees instead. The basic
lemmas that we have already proven (9.2.11 and 9.2.14) still work. The problem is that
once we hit a partial tree, there may be no further extensions. We construct a sequence
of trees that satisfy all the requirements and construct a minimal degree below 0’ in the
next section. The crucial new facet of the construction is that we use partial trees but
when we discover we have reached a terminal point we backtrack and revise the previous
trees in our sequence. A priority argument is then needed to show that the sequence
stabilizes and so we satisfy each requirement.

Another improvement that we can deal with in the setting of Spector forcing is saying
something about the double jump of G. In particular, we can show that G” =1 0”. As
we have often seen, we can either introduce new dense sets (requirements) that directly
control the double jump or cleverly argue that we have already done so. We present a
direct proof an leave the indirect one as an exercise. The idea here is that G” = Tot% =
{e]®¢ is total} and so we want conditions that decide if e € T'ot“. The route is similar
to that taken to splitting trees. The first alternative is that we have a tree T" and an x
such that ®; (z) 1 for every o. Obviously in this situation we have forced that ®(z) 1
and so it is not total. The second alternative is to produce a tree T such that ®%(z) |
for every x and every G € [T]. The analog of the Sp(T, e) is Tot(T, e):

Definition 9.2.17 If T is a (partial) tree then S = Tot(T,e) is defined by recursion
beginning with S(0) = T(0). If we have S(c) = T(r) then search for a p O T such
that q)eT(p)(|a|) L. If there is one we let p be the first found in a standard search and set
S(e"i) =T(p"i) forie {0,1}.

Proposition 9.2.18 An index for Tot(T,e) can be found uniformly recursively in one

forT. If Tot(T,e) is not total then there is a o and an x such that @Z(p)(x) T for every
p2o.

Proof. This is immediate from the definition of Tot(7,e). m

Proposition 9.2.19 The sets B, = {T|3¥o(®. 7 (z) 1) or (Vo)(Vz < |o])(®L 7 (z) |
)} are dense in S and uniformly recursive in 0" and so have density functions uniformly
recursive in 0".
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Proof. To see that the B, are dense consider any T'. If T'ot(T e) is a total function we
have the desired extension. If not, then there is a o and an x such that ®; % (x) 1 for
every p D 0. So T, is then the desired extension. That the B, are uniformly recursive in
0” is immediate from their definition. =

Proposition 9.2.20 If G is a generic defined from a sequence (T,,) <r 0" meeting all
the B, then G" =1 0".

Proof. To decide if e € Tot® = G”, find an s such that 7, € B, and see which clause
of the definition of B, is satisfied by 7. m

Theorem 9.2.21 There is a minimal degree g with g’ = 0".

Proof. Add the dense sets B, to those C. and D, considered before. There is a generic
sequence recursive in 0” meeting all these sets and the generic G associated with it has
all the desried properties. m

Of course, as might be naively expected, functions of minimal degree ca not, he%\é%
any strong domination properties. For example, none can be GLy by Theorem 7 (g %Jven
more striking is the fact that there is a single function of degree 0’ that qgmmates every
function of minimal degree. This follows from the proof of Theorem (Som e particular,
by Proposition §4.3 and Theorem W%W;?, the least modulus function for 0’ is such a

function. For the minimal degrees we have constructed so far, we can say even more.

) . . migtt
Exercise 9.2.22 Show that the minimal degree constructed in Theorem [9.2.21 is
dominated, i.e. every function recursive in G is dominated by a recursive function.

intot

Exercise 9.2.23 Show that the G of nﬁstructed i Theorem has minimal tt and
wtt degree. (Hint: Recall Ezercise 8.1.2. )

Exercise 9.2.24 Show that the minimal degree constructed in Theorem19.2. as double
gump 0". Hint: show that meeting the dense sets C. guarantees that the sequence meets
the B. as well.

Exercise 9.2.25 (Posner’s Lemma) Show that meeting the dense sets C. also guar-
antees that a generic sequence meets the D, as well. Hint: Consider an n such that, for

every o and z, ®7(z) = 0 if ~(Iz < |o])(0(x) # Pejo(x) |) and ®7(2) = o(2) otherwise.

Exercise 9.2.26 Show that for every d > 0 there is a minimal degree g < d’V0" such
that g < d. ??Improvement in Exercise 77

Exercise 9.2.27 There are continuum many minimal degrees. Indeed, there is a binary
function tree T <7 0" such that every G € [T is of minimal degree. Hint: Use conditions

(T,n) where T is a (recursive binary function) tree, n € N and extension is defined by
(S,m) <(T,n)if S<sT,m>n and S(c) =T(c) for every o of length < n.
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Exercise 9.2.28 Show that in the previous exercise we may also guarantee that G" =
GV 0" for every G € [T].

Exercise 9.2.29 Show that for every ¢ > 0" there is a minimal degree g with g’ =
c=gVvO0"

Definition 9.2.30 A binary tree T is pointed if every A € [T| computes T. It is uni-
formly pointed if there is an e such that ®2 =T for every A € [T).

spminde
Exercise 9.2.31 Relativize Theorem [9.2. 0 an arbitrary degree c to prove that every

degree ¢ has a minimal cover, i.e. a g > ¢ such that the open interval (c,g) is empty.
Hint: One can proceed as usual by adding a C' € ¢ into all oracle computations or one
can use uniformly pointed trees recursive in C. In this case, just use binary function
trees recursive in C' which are subtrees of the tree T' defined by T'(o)(2n) = C(n) and
T(o)2n+1) =o(n).

Exercise 9.2.32 All of the other results of this section now relativize.

Exercise 9.2.33 Prove that every strictly ascending sequence of degrees has a minimal
upper bound g. Hint: If the given sequence is c,, use uniformly pointed trees of degree
c, for some n.

Exercise 9.2.34 Show that the g of the previous exercise can be constructed so that
g// < @cx'

Exercise 9.2.35 Show that one can also get two least upper bounds gy and g; for the
¢, of the previous exercise with (g V g1)" < @c!!. Note that these g; form an exact pair
for the ideal generated by the c,.

Exercise 9.2.36 Thus if in the previous two exercises ¢, = 0 then one gets a minimal
upper bound g for the 0 such that g" = 0% and indeed two such (which then form an
exact pair for the arithmetic degrees) with (go @ g1)" = 0.

Exercise 9.2.37 Prove that there is a tree T such that each path on T s a minimal
upper bound for the ascending sequence c,.

Definition 9.2.38 A tree T' is a delayed e-splitting tree if for every n there is an m > n
such that the strings T'(o) for |o| = m are pairwise e-splititng.

Exercise 9.2.39 Prove the computation lemma for delayed e-splitting trees.

Exercise 9.2.40 Uniform trees; strongly uniform = 1-trees. one every path of minimal
degree, F' : N — {0,1,2}. minimal degrees generate D minimal m-degree Perhaps write
out??

Exercise 9.2.41 other applications??
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9.3 Partial trees and Sacks minimal degrees
Theorem 9.3.1 (Sacks) There is a minimal degree below (.

Our plan is to use partial tggggﬁiﬁxgceog%?gwsrgﬁstg% AL 1§Ct1ru.ci.:ion erse(‘ﬂrtssive in 0'. We
have already seen (Lemmas 9.2.1T, 9.2.14, 9.2.15 and Proposition bfﬁ)._B_that we can
handle both the diagonalization and minimality requirements by using subtrees of the
form Fu(T,o) and Sp(T,e) even if they are partial as long as we do not run into a
node with no convergent extensions on the trees we are using. Now 0’ can recognize this
situation when it occurs. Thus the problem is what to do when we arrive at a node with
no extensions on a tree. Of course, we must change the tree we intend our set to be on
but we must do so in a way that eventually stabilizes so that, for each requirement, we
remain, from some point onward, on some partial tree that satisfies the requirement.
Proof. At stage s, we will have already specified an initial segment «, of the set A
of minimal degree that we are building and a sequence (of indices for) nested partial
recursive trees Ty, >s T1 s >s -+ >s Tk, s With a, on each of them (i.e. there are o
such that T; s(0;5) = o). In fact, we will have a; = Ty 5(0). Top is the identity function
on binary strings. (Indeed, as will become clear, T ; is the identity function for every s.)
Each T}, will be either Sp(Fu(T;s,7j),7) for some j € {0,1}or Fu(T;, o) for some o
and will be devoted to satisfying the minimality requirement for ®; with the choice of j
devoted to satisfying the diagonalization requirements.

We now find the least i < k; such that T} ;(0;"0) T. Let ks41 = i if one such exists,
and let k,. 1 = ks + 1 otherwise. Note that this can be done recursively in 0’ as we have
indices for each T ; as a partial recursive function.

e In the first case, we know that 7} ¢(0;s°0) T while T;_1 s(0,-15°0) |. Note that
in this case T; obviously cannot be of the form Fu(T;_;,0) and so (by the rules
of the construction which we are maintaining by induction) must be of the form
Sp(Fu(T;s,7),1). Thus by Proposition b§ [3 there are no extensions of «, on Tj_;
which é-split. We now let Ty, 11 = Fu(T;_15,0;-15 0) (with the intention that we
will satisfy the minimality requirement for ®; by being on a tree with no i-splits).

e In the second case, we let Ty, 11511 = Sp(Fu(Ty, s, 7), ks) where we choose j so that
.. # Tr.+1.5+1(0) ( to be specific, say we choose j = 1 if Jx (T}, (1) # Pr,(z) |)
and j = 0 otherwise) and with the hope that we will remain on this tree and so
satisfy the minimality requirement for ®;_ by being on a k,-splitting tree.

o In either case, we let T} 11 = T} 5 for i < ksy1 and a1 = Tk5+1,s+1(®). The trees
T; are, of course, not defined at s + 1 for i > k,, 1.

We now claim that the 7; ; stabilize, i.e. there is a tree T; = lim,_, T; s and all the
requirements are satisfied. Note that if 7} ; reaches its limit by stage ¢ then ks > 7 for
s > t. Suppose, by induction, that T; , first reaches its limit 7; at stage s. At s+1 we set
Tiv1.541 = Sp(Fu(T; s, 7),4) (for some j) and we satisfy the diagonalization requirement
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for ®;. If we never change 7,11, at at > s ﬂForxln Lish = Sp(Fu(T;s,7),1)) and we satisfy
the minimality requirement for ®; by Lemma 9.2.14. If there is a stage after s at which we

first change 1.1, i.e. Ti114 # Tit1441 it must be because we are in the first case at stage
t and we set kyy1 = i+ 1 and Tjyq 441 = Fu(T;, 0;:°0) because Sp(Fu(T; 4, 7),1)) (041, 0)
is divergent. In this case, we can never change T;,; again. (No smaller one ever changes
by our choice of s and it can never be chosen as the least point of divergence as long as
it is a full subtree of the previoue Strfg.)s Moreover, «, remains on 7; on which there are
no i-splits abov% QG g,lc:’sroposition .2.13). Thus we satisfy the minimality requirement for
®; by Lemma B‘Z’Eﬂ_l

Note that, in contrast to the Spector minimal degrees, elsgcﬁ%%ursive in 0’ (and so
even those of minimal degree) is 0-dominated by Theorem §.2.3. [n 77 we will actually
need to know a bit more about the set A of minimal degree that we have just constructed.

Corollary 9.3.2 The set A of minimal degree constructed above is actually <, 0.

Proof. To see that A <,;; 0/ we need a recursive function f such that f(n) bounds use
from 0’ needed to compute A(n). An abstract view of the above construction is that at
each stage s we have a number k; < s+ 1 and a sequence of indices for partial trees T; g
for i < ks. (Note that as = Ty, s(0).) We then ask for each i < k, if T; 4(0;:°0) | where
this question is equivalent to the one that asks if 37(7; (1) = Tk, s(0) & T;5(770) ).
Each possible set of answers to these questions determines 0 < kg1 < ks+1 < s+ 1 and
the indices for the T 541 for ¢ < kyyq except when they say that ks, = ks + 1. In this
case, we need to ask one more question of 0: is there an x such that T}, (1) # Py, (x) |7
Thus we can recursively lay out all possible routes of the construction as a tree which at
level s is (at most) s 4+ 1 branching along with the (at most s + 1 many) questions of 0/
needed to determine at each node of the tree at level s what stage s+1 of the construction
would be if the given node corresponds to the actual stage s of the construction. Now to
compute A(n) note that we extend «a; at every stage of the construction so we only need
a recursive bound on the questions asked in any possible run of the construction for n
many stages. As the indices for all the possible 7} ; are uniformly computable from the
various assumed answers at the previous stages, it is clear that there is a recursive bound
on the questions that are needed in all possible runs of the construction for n many steps.
]

. Sacksmin L .
Exercise 9.3.3 Theorem 19.3.T and the Corollary above relativize to arbitrary degrees c
to give a minimal cover g of ¢ with g <,,c’.

Exercise 9.3.4 ?2Show that for every d > 0 there is a minimal degree g <r d VvV 0’ such
that g ¢ d. Hint my construction in L p. 19297 only for d < 0'?%otherwise below d' 77

0’ treeofmin| Exercise 9.3.5 Construct a tree T <r 0" such that every path on T is of minimal degree.

Cone avoiding?? join ?? Complementation??



90 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

9.4 Minimal degrees below degrees in H; and GH;

We want to prove that if h € GH; then there is a minimal degree a < h. The proof builds
on the construction of a Sacks minimal degree with highness giving us an approximation
to but is unusual in that it relies on the recursion theorem to make the approximations
work.

Remark: Not below every Hy Lerman [?7]).

Question 9.4.1 If A > 0 is r.e. then there is a minimal degree below A [??]. Can one
construct such a degree with the techniques presented in this chapter and the previous one
or some variation of them?

cone avoiding, join, complementation results?

9.5 Jumps of minimal degrees

At the end of §E‘?2e%1yzed the possible double jumps of Spector minimal degrees. In
this section we want to investigate the possible single jumps of arbitrary minimal degrees.
Note first that every minima’ f]f%reeg is GL; because every GL; degree has a 1-generic
degree below it by Theorem 8:3.3." We will see that there are minimal degrees in both
GL; and GL, — GL;. Finally, we will completely characterize the jumps of minimal
degrees by giving a new proof due to Lempp, J. Miller S. Ng and L. Yu of Cooper’s jump
inversion theorem that every ¢ > 0’ is the jump of a minimal degree. The situation below
0’ is more complicated. While there are both L; and Ly — L; minimal degrees, not every
degree ¢ which is r.e. in and low over (' is the jump of a minimal degree below 0 (refs??
Shore noninversion theorem, Cooper).

9.5.1 Narrow trees and GL; minimal degrees

To produce a minimal degree not in GL; we must combine a diagonalization of A’ against
®.(A@0). The key idea here are the narrow subtrees N (7).

Definition 9.5.1 The narrow subtree N(T') of a total tree T is defined by recursion.
N(T)Y(@)=T®). If N(T)(o) =T(7) then N(T)(c"i) =T(7°0"1).

Proposition 9.5.2 If T' is recursive so is N(T') and an index for it can be found uni-
formly recursively in one for T'. Of course, as with any recursive tree the question of
whether A € [N(T)] is II{ in A and the index for N(T) and so uniformly recursive in
A’ i.e. there is a recursive f such that (VA)(A € [N(T)] < f(n) € A") where n is any
index for N(T).
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Our plan is to use narrow subtrees to diagonalize. Intuitively we stay on some N(7T)
with index ¢ until we see that ®®®%(f(i)) |= 1. At that point we will make A go off
N(T) and so guarantee that A’ # ®49%", Formally we prove that diagonalization is dense.

Lemma 9.5.3 The sets F, = {T|(VG € [T])~(®29" = A"} are dense in the Spector
notion of forcing and there is a density function which is uniformly recursive in 0’ on
(the indices for) recursive trees..

Proof. Let n be an index for 7" and consider N(7') = S. If there is a ¢ such that
q)es(g)@ol(f(n)) =1 then the desired extension 7" of T is Fu(T, 7 1) where T(7) = S(0).
The point here is that no A € [T] is on S = N(T) while 2V (f(n)) |= 1 for every
A e T and so ®49% £ A’. On the other hand, if there is no such ¢ then N(T) is the
desired extension of T as f(n) € A’ for every A € [N(T)] while ~(®2®Y(f(n)) = 1) for
every A € [N(T)] by our case assumption. It is clear that finding the desired extension
of T' is recursive in 0. =

Theorem 9.5.4 There is a minimal degree g < 0" with g ¢ GL,. We may also guar-
antee that g”" = 0".

]s?Ir;l%?cfé Simply add the dense sets F. to the ones D, and C, in the proof of Theorem
}‘9)2 16 1o be I.n'et i ott}gi%ncs%nstruction of G. To guarantee that g” = 0” add in the dense
B, of Proposition %.Z.Ig. [

. . sacksmin o
Exercise 9.5.5 Modify the proof of Theorem 19.3 to construct an A <p 0’ of minimal
degree with degr.ee nqt wn L. Hmt intersperse stages at which one put; Tit1,541 = 5]¥ ,‘Z;f Sge)
and then stays in this tree until ®%+(f(n) |= 1 where e and n are as in Lemma 059 for
15

9.5.2 Cooper’s jump inversion theorem

We want to prove that every degree ¢ > 0" is the jump of a minimal degree. To do this
we modify the definition of the e-splitting subtree in an attempt to force the jump when
we can.

Definition 9.5.6 The e-jump splitting subtree of T, JSp(T,e) = S is defined by
recursion. S(0) = T(0) which is labeled w. Suppose S (o) = T(7) is defined and is labeled
some m < w. We search simultaneously for 79,71 2 7 such that T(1o)|.T(71) and for a
p 27 and an n < m such that @Z(p)(n) | but X (n) 1. If we first (in some canonical
search order) find an e-split then we let S(o"i) = T(1;) and label them both w. If we first
find a p and n as described we let S(c"0) = T(p) and label it n. S(c"1) is undefined in
this case. (Of course, if neither search terminates, S(o"i) 1 for both i =0,1.)

Proposition 9.5.7 If T is (partial) recursive then so is JSp(T,e) and an index for it
can be found uniformly recursively in one for T.
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Lemma 9.5.8 If JSp(T,e) = S, then there are no isolated paths on S, i.e. if A € [5]
then there are infinitely many o such that S(o) C A and S(0"i) | fori=0,1.

Proof. This is immediate from the fact that whenever S(o) | but not both of S(o"i) are
defined then only S(070) is defined and its label is in N and remains strictly decreasing
until we reach a ¢"0" such that both S(¢"0"0) and S(c"0'"1) are defined and their labels
are w. Thus we can continue to extend only one side (necessarily the 0 one) as we follow
A on S only finitely often. m

Lemma 9.5.9 If S = JSp(T,e), G € [S] and ®F is total then G < ®F.

complemma

Proof. As for the basic Computation Lemma bfm compute an ascending sequence
7,, of initial segments of G' (and so G itself) from ®¢ by recursion. We also compute
o, and 7, such that T(7,) = S(o,) = 7, and its label m, on S. We begin with
Y = T(0) = S(0) which is an initial segment of G since G € [S]. Suppose we have
Vo = S(0,) =T(1,) C G and m,. As G € [S], one of S(¢,,"0) and S(o,"1) is also an
initial segment of G. We follow the procedure given in the definition of JSp(T), e)(o,, ).
If we first find an e-split then both S(o, i) are convergent. As they e-split we can decide
which one is an initial segment of G' using ®¢ as in the basic Computation Lemma and
continue our recursion. If instead, we first find a new convergence for @g(p )(ﬁ) for n < n,
only S(0,"0) is defined and it is then the next initial segment v, ., of G as required. Of
course, 0,11 = 0, 0. This also supplies us with the next 7,,,; and m,.; =n.m

Theorem 9.5.10 There is an A of minimal degree with A" = 0.

Sacksmin
Proof. The construction is similar to that for Theorem bTBTexcept that we use e-jump
splitting subtrees instead of e-splitting subtrees and we have to be a bit more careful
about how we go off the partial trees.

At stage s, we will have an already specified initial segment «a, of A and a sequence
(of indices for) nested partial recursive trees To, >s 11 >s -+ - >s T, s with o on each
of them, indeed with a; = T} (D). Tos is the identity function for every s. Each T;;q
will be either JSp(Fu(T;s,0),1) for some o or Fu(T;s,0) for some o.

We begin our search for kg1 with Ty, 5. We ask if T, (1) |. If it is, so is Tk, (0).
We then set Ty, ., = JSP(Fu(Ty,,j), ks) where we choose j so that @, (z) # Ty, +(j)(2)
for some x and set ko1 = ks + 1. If Ty, (1) T we ask if %ﬂﬁé@) 1. If so we repeat
our procedure with Ty, replaced by Fu(Ty, 0). By Lemma 9.5.8 this process eventually
terminates either with an m such that T, (0™"1) |= Fu(Ty,,0™)(1) | and so a definition
of key1 = ks + 1 and Ty, = JSP(Fu(Ty,,0m"j), ks) or an m such that T (0™) |
but Ty (0™!) 1 (m could be 0 and we take 0° = (). In the later case, we move to
T).—1 beginning with the oy such that Ty, _1(01) = T}, (0™) and asking if T}, _1(01"1) |.
Continuing in this way we eventually reach | and m such that 7 ,(¢"0™"j) | for some
o and each j € {0,1} as Tp is always the identity function and so defined at ¢"1 for
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every 0. We now let ko =1+ 1 and Ty, = Fu(T},,0°0™"!). We conclude the stage
by setting as11 = Tj,,, (). Note that we extend a; at every stage and A = Uay <7 0.

It is clear that the construction and so A is recursive in (/. We must now verify that
the T; ¢ stabilize to trees T;, all the requirements to gg&én ionf minimal degree and that
A’ <7 0. We argue much as in the proof of Theorem b.S.l for the first two claims:

Note again that if 7} ; reaches its limit by stage ¢ then k; > ¢ for s > ¢t. Suppose,
by induction, that 7}, first reaches its limit 7; at stage s. At s + 1 we set 111 541 =
JSP(Fu(T;,,0m"j),4) for some m and j as the only other possibilities change 7;. This
action satisfies the diagonalization requirement for ®;. If we never change Ty at a
t > s then T;; = ngﬂ%g(ﬂ,OmA j),i)) and we satisfy the minimality requirement
for ®; by Lemma BTEQD._I'f_fhere is a first stage after s at which we change 7}, i.e.
Tiv1t # Tiv1441, then it must be that we reached a situation with T;,(c"0™"7) | for
some ¢ and both j € {0,1} with [ the first such we find in our search starting with &; and
moving downward and m the least such for [. As we now redefine 7, it must be that
[ =i by our induction hypothesis. As t is the first stage after s at which we change T;,1,
Tiv1e = JSP(Fu(T;s,0™j),4). As we did not end our search for this / with [4+1 = i+1, if
T14(0) = Tip1,4(7) then T;1 1 ,(770) T. By the definition of T}, = JSP(Fu(T;s,0m"j),1)
this means t.ha,t thel."e are no ¢-splits on T s = T; ahove 0. As A. € [Fu(T;,0)] we satisfy
the minimality requirement for ®; by Lemma BTZ'.EH._Once T;11 is a full subtree of T; (as
it is at ¢ + 1), it can never be changed again as that would change some T} for k < i
contrary to our choice of s < ¢.

To compute A’ from 0" find a stage of the construction s at which we end the con-
struction with | < ks and 7;4(c"0™"j) | for j € {0,1} and we let k41 = [+ 1 and
Tii1.501 = Fu(Ty5,070™ ). In this case we have T 4(770) T where Tj 11 4(7) = T.4(0).
If n is the label of Tj414(7), this means that there is no extension p of Tj.; 4(7) on
T, such that ®(7) | but &7 (A) 1 for 7 < n. We now claim that, for 7 < n,
neAs CIDﬁT’“’S(T)(ﬁ) l. As long as a; stays on T, for ¢t > s (as it is now) the claim
is obvious. The only way «; can leave T; ; for the first time after s at ¢ is for the same
situation to occur with /; < [. In this case, the associated label must be n; > n (as no
new convergences below n can occur as long as we remain on 7; ). In this case, no new
convergences below n; can occur as long as we remain on 7;, ;. This process must halt
and so we eventually stay on some tree 7;; on which there are no new convergences below
some 1 > n. To see that our original search in this procedure must find such stages s with
arbitrarily large n, fix an r and start with a stage u by which Ve < r(®“(e) | < ®2(e) |).
Now consider a v > u for which ®, is the empty function. When we reach the first stage
w at which k, = v + 1 for the first time after 7T; has reached its limit for i < v we set
Toi1w11 = JSP(Fu(T,,,,0™"j),v)) for some m and j. This tree has Ty 4,41(7"1) T for
every 7 and so we would act as described above and for ann > r. =

Theorem 9.5.11 There is a binary function tree T <r 0 such that every A € [T is of
minimal degree and, moreover, A’ =r AV (0.
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Proof. We define T' by recursion eginning with T'(0) = (). Along each path in T" we are
using the construction of Theorem 9.5.10 with the change that when we would have chosen
one j € {0,1} and set Ty, 11 = Fu(S, j) for some S we follow both possibilities and define
the next branching in 7" as the result of the two choices of j in the original construction.
Thus at any node p when we have T'(p) defined we have an associated run of the above
construction during which we have chosen j = p(m) at the mth instance where we had
to choose a j in the construction. To define T'(p"i) we now continue the construction
as in the previous theorem until we reach the next stage s at which we must choose a j
and set Ty, 11 = JSp(Fu(Tk, s,7), ks). We now let T(p"j) = JSp(Fu(Ty, s, 7), ks) () for

j € {0, 1} and associate the version of the above construction in which we choose j with
T(p"j). w

Corollary 9.5.12 (Cooper’s Jump Inversion Theorem) For every ¢ > 0" there is
a minimal degree a such thata’ =c=aVv 0.

Proof. Take C' € cand let A=UT(C [ n). =

remark not all degrees REA in 0’ and low over it are jumps of minimal degrees below
/
0’ references. lowmin . .
Theorem b.S. [0 originally by Yates showed minimal below every nonrecursive r.e.
degree and was already known (Theorem ?7) that there are low nonrecursive r.e. degrees.
Then ...

9.6 The minimal degrees generate D

Our goal in this section is to prove that the minimal degrees generate D under join and
meet. More specifically we will prove that for every a there are minimal degrees mg, my,
m, and mjy such that a = ( mgVm;) A (mzV mg). Our forcing conditions in this section
will all be recursive binary trees but we need a yet more restricted notion of tree. We
begin with uniform trees (which will play a crucial role in the next chapter) and strongly
uniform trees or 1-trees.

Definition 9.6.1 A binary tree T is uniform if for every n there are p,, o, p,1 € 25 such
that T'(0"i) = T(0)" p,,; for every o of length n. T is strongly uniform if, in addition, for
every n, p, o and p, ; are adjacent, i.e. there is evactly one j such that p, (j) # p,1(J)-
Strongly uniform trees are also called 1-trees.

In this section all trees will be recursive 1-trees and they will be the conditions in
our basic notion of forcing P with the usual notion of subtree as the extension relation.
As Fu( 183 g;ais clearly a 1-tree for any 1-tree T', the diagonalization requirements IZJ?'ESOf
Lemma 19.2.7 are still dense so we can meet those conditions as usual. Lemma 7 7 applies
to any binary tree and so if our generic filter includes a tree mvlggth no e-splits then again,
if ®¢ is total it is recursive. The computation lemma (9.2.14) also applies quite generally
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. mosplitsoresplit . . .
and so if the sets C, of Lemma 9.2.1T5 are dense then any generic for forcing with 1-trees

will also be of minimal degree. Thus we must show that if the 1-tree T has no extensions
without e-splits then it has an extension which is e-splitting. It is actually helpful in this
setting to first provic%eogggnesxgalog of Tot(T,e) that forces totality and proves the density
of the B, of Lemma 9.2.19.

Lemma 9.6.2 The sets B, = {T|32¥a (L7 (z) 1) or (Vo)(Vz < |o|)(®L7(z) |)} are
dense in P.

Proof. Given a 1-tree T' we define a partial recursive function S = T'ot1(T, e) by recursion
beginning as usual with S(0) = T'()). Let {o;]i < 2"} list all the strings of length n and
assume that S(o;) = T'(7;) has been defined for all i < 2". To define S for all p of
length n+ 1, we search first for a 1, such that Pr (0w 0)(n) |. Then we recursively search
for 1; such that ® 7" #)(n) | If we eventually find s, for all i < 2", then we let
=y ... pon_q and set S(o;"j) =T (1;"p"j) for j € {0,1}. As T is a 1-tree it is easy
to see that, if total, so is Tot1(T,e) and it satisfies the second clause of B,.. If it is not
total then there is some n, 7; and v such that T'(7;"u) T for every u O v. In this case,
Fu(T, ;"v) satisfies the first clause of B, with z =n. =

We can now prove the remaining lemma that shows that all (sufficiently) generic G
for P are of minimal degree.

Lemma 9.6.3 The sets C, = {T| EIxVo(q)eT(U)(:c) 1) or there are no e-splits on T or T
is an e-splititng 1-tree} are dense in P.

ltotdense
Proof. By Lemma bTGTZ,Temay assume that the second clause of B, is satisfied by T,
ie. (Vo)(Vx < |o])(®L)(x) |. We may also assume that there is no extension of T that
satisfies the second clause of C,. so we can find e-splits on any R C T. We now wish
to define an e-splitting 1-tree Sp;(T,e) = S C T. We begin with converting arbitrary
e-splits into ones that are adjacent and then defining two new operations on 1-trees.

Claim 9.6.4 For any R C T there are adjacent o and T such that R(o)|.R(T) and so,
in particular, for any p there are o, 7 2 p which are adjacent such that R(o)|.R(T).

Proof. By our second assumption on 7 there are p and v such that R(u)|.R(v). Without
loss of generality we may take |u| = |v| > n where R(u) and R(v) e-split at n. Consider
then the sequence (0;|i < k) of adjacent binary strings of length n such that oy = p and
o = v. By our first assumption on 7' D R, CIDE(Ui)(n) | for every i < k. As the first and
last of these have different values there must be an i such that &5 (n) | # poi1) (n) |.
Our desired adjacent e-split is then given by 0 = 0; and 7 =0,,1. =

Definition 9.6.5 For any tree R and p € 2<% we define R* (the transfer tree of R over
w) for |v] < |R(D)| as the tree such that, for every o € 2, R*(0) is the string gotten from
R(0o) by replacing its initial segment of length || by p. For R C T we define a new type of
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subtree S = Spo(R,e). We begin by using the above Claim to construct sequences o9 and

o} fori € N with 0¥ and o} adjacent such that first, R(c))|.R(c) and then, in general,
R(og" "0y i )|eR(og "+ 07 07y,). We now define S by recursion with S(0) =
R(0) and S(p) = R(Zaip(z)) (where we use summation notation ¥ for concatenation and
the number of terms concatenated is |p|).

Remark 9.6.6 Note that as R is a 1-tree and the o9 and o} are adjacent, S is also a
1-tree and, of course, S C R. Moreover, S(0)|.S(T) for any o # 7 as the strings extend
some e-split R(cf))|cR(ag) or R(o)" -+ "0 0% ))|eR(c)" -+ "0) 0pyy) fori > 0.

u

Proof continued. We now define our e-splitting 1-tree Sp; (7T, e) = S C T by recursion
beginning with S(0) = T((). Let {o;]i < 2"} list all the strings of length n and assume
that S(o;) = T'(7;) has been defined for all i < 2". We let Ry = Spo(T+,,e) and for
0<i<?2"welet R, = SpO(R;TC(?),e) and R = Ryn_1. We now let S(o;"j) = RTTI(5).
The verifications that this defines the next level of an e-splitting 1-tree contained in 7°
are straightforward. By the definition of Spg, |R(0)| = |R;(0)| = |T'(7;)| for every i < 2"
and R(0) and R(1) are adjacent. By the definition of the transfer trees, RT(")(0) and
RT(T)(1) are adjacent extensions of T(7;) = S(c;) and the extensions are given by the
same pair of strings for each ¢ as R is a 1-tree. Moreover, since R C R; for every i < 2",
each RT(")(j) is a node on R; = Spo(R]*,,e) (where R_; = T') and so by the Remark
above, they form an e-splitting.

This completes the definition of level n+ 1 of S and so, by recursion of S = Sp; (T, e)
which is an e-splitting 1-tree extending 7" as required to establish the density of the C..
[

We have now shown the forcing with 1-trees produces a minimal degree.

Proposition 9.6.7 Any generic meeting the dense sets B,, C. and D, for forcing with
1-trees is of minimal degree.

. ) ) o ltreemin
Exercise 9.6.8 Show that there are generics G as in Proposition 19.6.7 with G <p 0"
and indeed with G" =1 0".

Exercise 9.6.9 Show that the genric sets of Proposition [9.0.7 are of minimal m-degree.

We next want a tree of such minimal degrees, i.e. a 1-tree T SudEt gle%tf every path is
of minimal degree. We move to a tree of trees as we did in Exercise 9.2.

Theorem 9.6.10 If we force with the notion of forcing Py, with conditions (T, n) where
T is a 1-tree, n € N and extension is defined by (S,m) <p, (T,n) if S <s T, m >n and
S(o) =T(o) for every o of length < n and V((T,n)) is the finite binary 1-tree given by
restricting T to strings of length n, then any sufficiently generic G is a 1-tree such that
every path on G is of minimal degree.
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Proof. It is clear that G is a 1-tree from the fact that V' (P) is a 1-tree for every condition
P and that if Q <p, P then V(Q) 2 V(P) as 1-trees. To prove the theorem it suffices, by
the last Proposition, to show that for each of the dense sets B., C, and D, any condition
(T',n) there is a condition (R,n) <p, (T, n) such that for each o of length n, Rg( is in
the desired dense set. List the %tgcl)]%gg mgg elggﬁg&ﬁa%si Fis 1 < 2". Begin with Sy =T T(o0)-
By the relevant Lemma above (9.6.2, 77 and 9.2.7) we can refine Sy to a 1-tree S; which

is in the dense set. We can then consider Sip(al) and refine it to Se which is also in the
dense set. We continue in this way to define S; for ¢« < 2" by refining SZ.T @) to get an S;1

in the dense set. At the end we have S = Sy such that ST(%) is in the dense set for each

i < 2". We now define R by R(p) = T(p) for |p| < n and for p D o; R(p) = ST (p). It

is clear that (R, n) <p, (T, n) and for each o of length n, Rg(,) is in the desired dense set.
Let G be a generic 1-tree meeting all these dense sets. Now any M € [G] is P-ge eric .
for the previous notion of forcing with 1-trees to the extent required by Proposition 3.6.7
and so is of minimal degree by that Proposition. m

. ) ) ltreeofmin
Exercise 9.6.11 Show that there are generics G as in Theorem [9.6.10 with G <p 0”

and indeed with G" =1 0".

Exercise 9.6.12 For each n > 3, Show that there are sets gtgéegyﬁzgnal degrees which
are 3% but not A°. Hint: take a path in the G of Theorem 9.6.10 which follows a path

Cex?—AY je A= U{G(g,irk:e&k%mely} (For n = 2, the result can be proven using,

among other things, Fxercise[9.3.
Finally, we use P; to prove our main theorem for this section.

Theorem 9.6.13 For every degree a there are minimal degrees my, m;, ms and mg
such that a = ( mg V m;) A (mzV mj).

Proof. For any 1-tree G and set C, we let d,, be the unique x such that G(c"0)(z) #
G(0"1)(z) for any o of length n and G¢ be the path through G such that G(d,,) = C(n).
(As G is a 1-tree the x as required to define d,, is unique for each o and the same for all of
them.) These notions apply to finite 1-trees as G and finite binary strings as C' with the
obvious comment that there may only be 1fci£16i}te%l%{nlrgany d, involved. If G is sufficiently
generic for Py, as required for Theorem 9.6.10, and A is any set then it is clear that
A<y GAVG* asn € Aif and only if G4(z) = 1 where z is the nth place at which G#
and G differ (it is actually d,,). Thus we have two minimal degrees which join above a.
Our plan now is to take Gy and G two mutually sufficiently generic 1-trees for Py, where
the notion sufficiently generic now depends on A and assures that (G§'VG§) A (G vV GYY).

Formally we consider the notion of forcing Ps; whose conditions consist of pairs (P.Q)
with each of P and Q a condition in Pj,. The ordering is given by (P.Q) <p,, (P.Q)
if P <p,, P and Q <p,, Q. In addition to the dens ) tslgggogln%f%ned by requiring that
each coordinate get into the dense sets from Theorem bG [0 we have one more family
of dense sets for the new meet requirement. For (T,n) = P € Py, we let P, be the
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finite 1-tree given by restricting 7" to strings of length at most n. The argument is by
now familiar. We let A, = {(P.Q)|E|EE(<I>£PT?VPT?)($) 1# @éQﬁVQf)(a:) 1) or (V(P.Q) <p,,
(P.Q))(—EI:n(@éP’?vp’?)(:U) 1# q)éQﬁva(x) 1))}. Now if our generic meets A, in condition
((P,n),(Q,m)) and the first clause holds then clearly CIDE{GSWGS‘)(x) 1# @ngVGf)(x) | as,
by the definition of extension in Py, P,f‘\/P,f‘ and Qg‘\/Qﬁ are initial segments of G[‘)4 \/Gg‘
and G4 v G‘l‘i, respectively. On the other hand, if the second clause holds and (I)écg‘vcg‘)

AyaA
and <I>£Gl VET) are total and equal, then we claim they are recursive in A. To compute

A A
S )(x) find any finite extension R,, of P, to a 1-tree of height m that is a subtree

of P and such that @éR’?VRf)(g:) |. This R,, then extends to a full 1-tree R such that

(R,n) <p,, (P,n). There must be one as P, C G, and the computation of QDEGS‘VG‘?)(:U)

only requires finitely many levels of Gy C P. If this were not the correct answer then,

as for P and Gy, there would be a finite extension S} of (), contained in () which gives
A A

the same answer as .1 <1 )(x) |. Again this S; can be extended to an S such that

(S,n) <p,, (Q,n). Then ((R,n), (S,n)) <p,, (P,Q) but satisfies the first clause of A, for

the desired contradiction. m

Exercise 9.6.14 Show that the minimal degrees in GL; generate D.



Chapter 10

Lattice Initial Segments of D

Known results, history. Plan and goals here. Include all finite lattices and all countable
distributive ones two of the major steps in previous process. new proof based on ...
sufficient for all Applications. do two quantifier theory decidable and three undecidable.

First present the proof for recursive lattices which suffices for all our applications.
Then indicate how to extend argument to cover all sublattices of any recursive lattice
and so, for example, all distributive lattices.

10.1 Lattice Tables, trees and the notion of forcing

latre
Our plan is to use lattice tables like those of k)“.S?F%o provide the ba; g% é)éb%lelg embeddings
of lattices as initial segments of D. For simple embeddings in §6.3 we used a Cohen
like forcing with conditions that w geef:i{lci)%% Sequences of elements of our representation.
In light of our move to trees in §9.2 o construct minimal degrees, it should not be
surprising that we now move to conditions that are trees built on lattice tables O, i.e.
maps T : O<Y — O<¥ to pro iacL]tee mtb}é% Cappropriate notions of forcing. The generic G
that is built will then, as in §6.3, be an infinite sequence of elements from ©. As a
first approximation, the embedding will be given as before. For x € L, x —— G, where
Gy(n) = G(n)(z). (Recall that the elements of © are maps from £ to N.) Order, nonorder,
join and meet are handled much as in §6.3. The key idea for making the embedding onto
an initial segment will again be a type of e-splitting tree. While we want to deal with
infinite lattices, a crucial component of the computation lemma for e-splitting trees (even
in the minimal degree case) is that the trees are finitely branching. As long as they are
finitely branching, one has a hope of determining the path taken by using ®¢ to choose
among the e-splits. Thus we approximate our table by finite subsets ©; and consider trees
T that at level ¢ branch according to the elements of ©;. We will also have an associated
decomposition of our given lattice £L = UL;. Now if one ignores the meet operation and
the required interpolants it is easy to get a finite lattice table for a finite lattice. We call
these upper semilattice (usl) tables. We postpone the meet interpolants for £; to ©;,;.
While this is not strictly necessary, it makes the construction of the tables much easier.

99
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Moreover, we need a new type of interpolant to make the embeddings constructed be
onto initial segments of D and we do not know if these could be incorporated as well into
a finite lattice table for £;.

These new interpolants are called homogeneity interpolants. The idea here is that if
we intend to force ®¢ =7 G, for some € L then using G, we cannot distinguish among
all the nodes ¢ in the tree at a given level n as many will have the same o, (be congruent
modulo x). This suggests that we will want our trees to have some kind of homogeneity
guaranteeing that what happens above one such ¢ is congruent to what happens above
any other 7 =, 0. Of course, we need this property for every x € L.

With the above as a brief motivation, we now formally define the lattice tables that
we use and the associated trees.

Definition 10.1.1 Let © be a set of maps from an usl L with least element 0 and greatest
element 1 into N. For o, B € © and x € L, we write a =, 8 (« is congruent to S modulo
z) if a(x) = [(x). We write o =,  to indicate that a is congruent to f modulo both x
and y. Such a © is an usl table for L if it contains the function that is 0 on every input
(which we, by an abuse of notation, denote by 0) and for every a,f € © and x,y,z € L
the following properties hold:

1. a(0) = 0.

2. (Differentiation) If x £ y then there are 7,0 € © such that v =, 0 but v #, ¢
3. (Order) If v <y and a =,  then a =, [5.

4. (Join) If tVy =z and o =, ,, f then a =, S.

Notation 10.1.2 If © is an_ usl representation for L and L C L then we denote the
restriction of © to £ by © | £ = ={a| ﬁ|a € ©}. We also say that © is an extension of
CH L. Note that as all our (upper or lower semi)lattices contain 1, the order property
guarantees that if a L =07 L then o = 5. Thus when we exten o, dsl representation
O for L to one © for L (as in the constructions for Proposition 0. 3.4 we can use the
same o € O to denote its unique extension in ©.

Definition 10.1.3 If ©' and © are usl representations for L' and L, respectively, LC
E’ C L and f:© — O, then f is an L£-homomorphism if, for all a, 8 € ©' and z € L,

= 0= fla) = f(ﬁ)-

repthm
Theorem 10.1.4 (see Theorem }E%l) If L is a countable lattice, then there is an
usl table © for L along with a nested sequence of finite sublower semilattices, slsls, L;
starting with Lo = {0,1} with union L and a nested sequence of finite subsets ©; with
union © with both sequences recursive in L with the following properties:

1. For each 7, ©; | L£; is an usl table for L;.
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2. There are meet interpolants for ©; in 0,1, i.e.if a =, 5, x Ay = z (with o, § € O
and z,y, z € L;) then there are v,,7,7, € ©;41 such that a =, vy =, 71 =z 72 =y
B.

3. For every sublowersemilattice L of L;, LC Cia L;, there are homogeneity interpolants
for ©; with respect to L in Oi1, Le. for every ag, a1, Sy, 81 € ©; such that Vw €
E(ao =, a1 — B¢ = [1), there are v,,7v; € 0,41 and L-homomorphisms f, g, h
©; — ©;41 such that f : ag, a1 — By, 71, 9 : @, 1 — Yy, 7, and b : ag, g — 70,51,

ie. f(ao) = By, flan) =, ete.

lattablesec
We prove this theorem in §10.3."Our goal in this and the next section is to prove that
we have initial segment embeddings for all recursive lattices.

Theorem 10.1.5 Every recursive lattice L is isomorphic to an initial segment of D.

For the rest of this section and all of the next we fix a recursive lattice £ and a
sequence (L;, ©;) for it as specified in Theorem T0.3.T. We now move on to the definition
of the trees that will be the conditions in our forcing relation.

Definition 10.1.6 A tree T (for the sequence (L;, ©;)), which we call simply a tree in

this chapter ,is a recursive function such that for some k € w its domain is the empty

string () and all strings in the Cartesian product []| Opyn for each m € w. We denote
n=0

this number k by k(T). For each 0 € domT, T(o) € H ©,, for some q¢ > |o| — 1.
Moreover, T" has the following properties for all o, 7 € domT

1. (Order) o C7=T(c) CT(7).

2. (Nonorder) olt = T(o)|T(1). In fact, we specifically require that, for every o €
H Okin and @ € Opipy1, T(o ) D T(0)

n=0
3. (Uniformity) For every fixed length | there is, for each a € Oy, a string p;, S0
that, for a given I, all the p,, are of the same length independently of o and if

lo| =1 then T(c ) = T(c)"p,,,. Note that by the nonorder property (2), for fived
I and o # 3, p, ., # prg, in fact, by our specific requirement, p, ,(0) = a.

Thus our trees T" have branchings of width |Or)4,| at level n and satisfy order and
nonorder properties as for Spector forcing. In addition, they enjoy a strong uniformity
property that will play a crucial role in our verifications.

Definition 10.1.7 We say that a tree S is a subtree of a tree T, S C T, if k(S) > k(T
and (Vo € dom S)(37 € domT)[S(o) = T(7)].
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We note three useful facts that illuminate the structure of subtrees. The first says
that the branchings on S follow those on T'.

Lemma 10.1.8 If S is a subtree of T then

1. S(0) =T(1) — (VYo € Ok(s)1f0)(S(0" ) D T (1)

2. V3p, No,7(lo| =1& S(o) =T(r) — S(0"a)=T(7"p,) for a € Oy and
3. [S] C[T].

Proof. The first fact follows immedi Eglcycifcromeeour specific implementation of the
nonorder property for trees (Definiti %h@ The second follows from the uni-
formity requirements (3) of Definition ;(l. [.6 for S and 7" as well as property (2). the last
is immediate from the definition. m

Transitivity of the §51111:>Stree relation should be clear but an even stronger claim is

t
proven in Proposition h’UTll We mention some specific operations on trees that we will
need later.

Definition 10.1.9 If T is a tree and o € domT then Fu(T,o0) or T, is defined by
T,(t) =T(c"7). Clearly, k(T,) = k(T) + |o| and T, C T. Note that for o € domT

=q
and 7 € dom7T,, (T,); = T,~. For a string p € [] ©, with ¢ < |T(0)] — 1, we let
n=0

TH (the transfer tree of T' over u) be the tree such that, for every o € domT, T"(o)
is the string gotten from T(o) by replacing its initial segment of length ¢ + 1 (which is
contained in T'(D)) by p. We write T# for (T,)*. Finally, if T is a tree with k(T) = k
and o € domT then we let T} =T, [ domT. Clearly, k(T}) = k(T) and T C T. Note
that for c € domT and 7 € dom T}, (T}): =Tk .

A crucial notion for our constructions is that of preserving the congruences of specified
slsls of our given lattice L.

Definition 10.1.10 Ifﬁ 1s a finite slsl of L we say that a subtree S of T preserves the
congruences of £, S C, T, if £ C Ly and, whenever x € L, S(o) =T(1), a =, B,
S(c"a) =T(rt"pn) and S(c"p) =T (7"v), then u =, v. Here a and 5 are members of the
appropriate ©; and p and v are sequences (necessarily of the same length m) of elements
from the appropriate ©;’s. We say that such sequences |1 and v are congruent modulo x,

w =y v, if p(j) =2 v(j) for each j < m.
Proposition 10.1.11 If R Cp, S Cp, T and then R Crinp, T

Proof. To see that R C T note first that k&(R) > k(S) > k(T'). Next suppose that
p € domR and a € Op)4)p- As R C S we have a o such that R(p) = S(o) and
R(p"a) 2 S(c"a). As S C T we have a 7 such that S(o) = T'(7) and S(o"a) D T(7" ).
Thus R(p) =T(7) and R(p"a) 2 T(7"«) as required. As for the preservation of £ N Ly
congruences, suppose R(p) = S(0) =T(7), x € L1 N Ly, g, 01 € Op(py1|p| and g =, 1.
Let R(p ) = S(o" ;) =T(77v;). Asx € Ly and R Cp, S, pg =2 4y As x € Lo and
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S Cp, T it then follows by induction on the (by uniformity, necessarily common) length
of u; that vg =, v1 as required.

The details of this induction follow. Write v; = 19" - - "vf where S(o " 11;(0) - - - “p;(t)) =
T.(TAV?A“‘AV';). Th(?n' inductively 110(j) = 11,(5) gives v} =, v]. For j = 0 this follows
directly from Definition [0-T.10- For the inductive step, consider, without loss of gener-
ality, the case j = 1. We have S(c " 1y(0) " 110(1)) = T(TAI/8AV(1)) and S(o";(0) " py(1)) =
T(r 2 17). Cons.id.er ﬁ (@ 10(0). éul.(1) = T(r"v3"v) for some v. By the umformlAty
clause (3) of Definition T0. ere is a ¢ such that S(o"py(0)"11(1)) = S(o"pe(0))"C
and S(0"p11(0)"p1(1)) = S(0"p1(0))"¢. Thus T(r 13 v) = T(r"vg) "¢ and T(7 1] vy) =
T(r"19)°¢C. Agaln by the uniformity clause and the uniqueness of the p; , there (iterated
4 tlmes) v = vi. Finally, by Definition again, v =, v} as ,ul(l) =, (1) and
so v] =, v} as required. m

We now present the notion of forcing for constructing our embedding of £ as an initial
segment of D.

Definition 10.1.12 The forcing conditions P our notion of forcing P are trees T (for
(L£i,0;)). We say Ty <p To,if Ty Ckry) To where, as often, we denote Lyry by K(T).
We let V(T) = T(0). The top element of P consists of the identity tree Id (which has
k(Id) =0).

Lemma 10.1.13 If T is a tree, c € domT and L C Ly, then T, Cp T. If 0,7 €
dor(n)T are of the same length and S <p T, then ST() <p T.. We also have that
TF =T,

Proof. The first assertions follow directly from the definitions. The last two follow from
the uniformity assumption on our trees. m

It is easy to see that sets C,, = {P| |V(P)| > n & k(P) > n} are dense. Just extend
to some P,. We assume that any generic filter G we consider meets these sets. It then

determines a generic function G € [[ ©,, , i.e. a function on w with G(n) € ©,. On

. . . n=0 . . ... _[latembsec
this basis we could naively try to define our embedding of K into D as we did in §%‘37
For x € K C L we let G, : w — w be defined by G,(n) = G(n)(x). The desired image
of x would then be deg(G,). Now the order and join properties of usl representations
guarantee that this embedding preserves order and join (on all of £ even). If x < y then
by the order property we can (recursively in the table (0;)) calculate G,(m) from G, (m)
by finding any a € ©,, with a(y) = Gy(m) and declaring that G,(m) = a(z). (Such an
a exists since G(m) is one.) Similarly if z V y = z then, by the join property, we can
calculate G,(m) from G,(m) and G,(m) by finding any o € ©,, such that a(z) = G,(m)
and a(y) = Gy(m) and declaring that G,(m) = a(z). (Again G(m) is such an o.)

Were congruences modulo x always preserved for every x, we could directly carry
out the diagonalization and other requirements as well for this definition of G,. In
actuality, however, not all congruences are preserved as we refine to various subtrees in
our construction. Thus we must modify the definition of the images in D and provide
nice representations of the degree corresponding to .
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Definition 10.1.14 If G is a generic filter meeting the dense sets C,,, G the correspond-
ing generic element of [[ ©,, P € G and x € K(P) then G is the sequence (o, |n € w)

n=0
where P({ay|n < m)) C G for every m. (Thus («,) is the path that G follows in the
domain of P. In particular, G = G'. It is obvious from the definitions that G is a path
on (i.e. in the range of ) Q for every Q € G.) We define GL'(n) as a,(z).

The crucial point is that the degree of G does not depend on P once x € K(P).
Lemma 10.1.15 Ifz € K(P), K(Q) for P,Q in a generic G, then GE=7G9.

Proof. As there is an R <p P, in G by the compatibility of all conditions in a generic
filter, it suffices to consider the case that Q@ <p P. Let G¥ = (a,) and G° = (3,).
By the definition of subtree there is for each n an m(n) such that Q((5,|s <n)) =
P({as]s < m(n))) and we can compute the function m recursively in the trees. (By the
uniformity of the trees, there is, for each n, a unique m(n) such that |Q(o)| = |P(7)| for
every o of length n and every 7 of length m(n).) Moreover, by our definition of subtree,
B, = @@y Thus G¥(n) = B,(z) = amm)(x) = GE(m(n)) and so GY <;, G. The other
direction depends on the congruence preservations for x implied by @ Cgp) P.

Suppose that we have, by recursion, determined GZ(i) = «;(z) for i < m(n).
The next step followed by G in @ is 3,,1 = qmm)+1. It corresponds to the sequence
(a;lm(n) +1 <i <m(n+ 1)). The definition of C x(py implies that (o;(z)|m(n) +1 < i < m(n+ 1))
is uniquely determined by /3, ,,(x) to continue the recursion. m

Thus given a generic G we can define a map from £ into D by segdin &z e%bsﬁe Lo
deg(GT) for any P € G with x € K(P). Our proof plans above as in §%.3 for the
preservation of order and join now work here as well simply by applying them to G¥ on
P (in place of G on Id) for any P € G with z,y,z € K(P). Thus we only need to verify
the preservation of nonorder and that our map is onto an initial segment of D. (Note
that meet is preserved once we know that the mapping is an order isomorphism of the
lattice £ onto an initial segment of D as meet is definable from order. Of course, this
argument would apply to join as well but no new work is needed to note that join is
preserved. It is also worth commenting that we use the join structure in the usl tables as
well as the meet interpolants in the proof that the embedding is onto an initial segment

of D.)

10.2 Initial segment conditions

To assure that our embedding preserves nonorder we want to show, for any z £ y in K,
condition P with z,y € K(P) and ®,, that there is a Q <p P such that for any G € [Q)]
(I)erj # GP and a Q <p P and x € K(Q) such that for any G € [Q] for which ®¢ is
total, ¢ = GY¥. These two results would then fi ish . the proof of our theorem. We
begin with the analog of total subtrees of Deﬁnitionr%TZ.TT and the corresponding dense
sets that make our task simpler.
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Definition 10.2.1 Let T be a condition in P. If for every o € domT and every x there
is a2 o such that &I () | then we define a subtree S = Totl(T,e) with the same
domain by recursion on the length of o € domT. We begin with S(0) = T'(0). Suppose
for every o; € domT of length n there is a T; such that we have defined S(o;) = T(7;)
for i < m. We now list the a such that we must define S(p;"«) to get the next level of
S as (a;|j < s). We proceed to define p, for each | = (i,j) withi < m and j < s. (For
convenience we assume these are the | <r =m-s.) Forl =0 = (0,0) we search for the
first p 2 such that ® 7 ?)(|o|) |. One exists by our assumption. We then set p = p,.
If we have defined p; for | < q and p, = p,” ... p, then we let p,,, where ¢+ 1 = (i,])

be the first p such that QJGT(”A%A“‘IAP)(\UD L. We now let p be the concatenation of the p,
forl <r and set S(o; ;) = T(1;" ;" ).

Definition 10.2.2 If T is a tree and (Vo)(Vx < |0|)(<I>6T(0) (x) |, we say that T is e-total

and we denote L) (n) for n < |o| by qr(n,o).

Lemma 10.2.3 If T and Totl(T) = S is defined then S <p T and S is e-total.

Proof. The second claim is immediate from the definition of Totl(T). As for the first,
it is immediate that dom S = dom 7" and that, since T is a tree, that S is a subtree of T'.
As the definition of S has S(o; a;) = T(7;"a; ") for a single p over all the nodes o, a;
of level n + 1, it is also clear that S preserves all the congruences of K(7'). m

Lemma 10.2.4 The sets B, = {P|E|J}VO'<(I)5(U) (x) 1) or P is e-total} are dense in P.
Proof. Suppose we are given P and e. If there is an  and a o such that o™ () 1
for every 7 O o, then clearly P, (or P¥) satisfies the first clause in the definition of B..
Otherwise, T'otl( P, e) satisfies the second clause by the last Lemma. m

Proposition 10.2.5 (Diagonalization) For any x £ y in £, e € N and condition P
P
with x,y € K(P), there is an Q < P such that VG € [Q], if ®¢ is total then o # GYL.

. , GF totl
Proof. There is clearly an j such that ®.¥ = QDJG. By Lemma m.4 we may assume
that P is j-total. We then choose any g, a; € Oy p) such that ag =, ag but ay %, .
Such ag and «; exist by the differentiation property of usl tables. Let 3; = (a;)!, i.e.
the concatenation of |o| many copies of a; for i € {0,1}. Consider then the conditions
Ps, and pny G; € [Ps). Of course, (Gi)7(|o]) = ay(x) while & (|o]) | for i = 0,1 by
Lemma M10.2.4. As the j3,, for i = 0, 1, are congruent modulo y and y € K (P), the initial

P
segments of G that Pz, (()) determine are equal. Thus the @fﬂi(w)(\a]) = P (lo|) are
’ o a;(x). For that 7, Pjs. 1s the

Ps. (0) For that i, Py is the Q

i

convergent and equal. So for one i € {0,1}, ®
required in the Lemma. m
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We turn now to the requirement that the image of K under our embedding form an
initial segment of D. This argument is somewhat more complicated than those above
and uses both the meet and homogeneity interpolants.

We begin with the notion of an e-splitting appropriate to our trees and a lemma about
such splittings.

Definition 10.2.6 Given a ®. and an e-total tree Q. we say that o and T with |o| = |7|
are an e-splitting or e-split on ) (modulo w) if (0 =, T and) there is ann < |o| such that
qr(n,o) # qr(n, 7). If R < Q,R(u) = Q(0), R(v) = Q(7) and o and T e-split (modulo
w) on @ then we also say that 1 and v e-split on R (modulo w ).

Lemma 10.2.7 Given an e-total condition @), there is a p € dom Q) such that the set
Sp(p) = {w € K(Q)| there are no o, 7 that e-split on Q} modulo w} is maximal. More-
over, this maximal set is closed under meet and so has a least element z.

Proof. Let k = k(Q) and K = K(Q). As K is finite there is clearly a p such that Sp(p) is
maximal. Note that then Sp(u) = Sp(p) for any p 2 p with p\p € dom Q7 as Q7, Cx Q7.
Consider any z,y € Sp(p) with 2z Ay = w. As K Ciy £, w € K. To show that Sp(p)
is closed under meet it suffices (by the maximality of Sp(p)) to show that there is no e-
splitting on @7-; modulo w. Remember that, by definition, k = k(Q5-,) = k(Q}) = k(Q).
Suppose there were such a split 1 and v, each of length m. By our definition of @7-,

TS ]:[ Oktn - In ()} at the corresponding levels, however, there are branchings for
n=0
all elements of Oy ,.1. (That is there are, for example, successors of Q5(0"p [ n + 1)

for every element of Oy, 1 while in Q7(x [ n + 1) there are ones only for the elements
of Oyy.) Thus, by the existence of meet interpolants for Oy, in Oy,.1, there are

n=m

Yo, V1> 72 € [] Oksna1 such that for each j < m, the 7,(j) for i € {0,1,2} are meet
=0

interpolants for (j) and v(j), ie. i = Y9 =y V1 =z Vo =y V. As i and v form a
e-splitting on (7., so do one of the successive pairs such as 0°7,, 07y, on 7. But then
0"%, and 0°%; would be an e-split on @} congruent modulo y for a contradiction. (The
situations for t.he other pairs are the same ]out perhaps with x 1.n.pla%% qfl gﬁle L

We now build the analog of the e-splitting subtrees of Definition bﬁ 2.

Proposition 10.2.8 .Given an e-total Q with k(Q) = k and K(Q) = K with p and z
as in Lemma HU._Z._}%,There is a condition S < Q7 with k(S) = k such that any 0,7 €
dom S(= dom Q) with o #, 7 e-split on S. (Of course, by the choice of p and z there are
no e-splits on Q7 which are congruent modulo z.) Such a tree S is called a z — e-splitting
tree.

Proof. We define S(o) (with k£(S) = k) by induction on |o| beginning, of course, with
S(@) = Q;(0). Suppose we have defined S(o) = Q%(7,) for all ¢ of length n. We
must define S(o"«) for all such o and appropriate o as extensions Q(7,-a) of @5(7, )
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obeying all the congruences in I@ ie. ifz € K and a =, [ then 7, =, To5. We

list the o of length n + 1 as 0, «; for i < m = | H O] and define by induction on
‘]7

r <l =m(m+1)/2 (the number of pairs {, j} with ¢, j < m) strings p; . simultaneously

for all i < m. At the end of our induction we will set 75,0, = 7o, @i pio" - "piy_1-

For this to succeed it suffices to maintain uniformity and guarantee, for every i,j7 < m

and w € IC that a; =, oz] = Pir =w pjr for every » < [ and that if a; #, «; then

To O Pig - iy and 7o " pio" . T py . e-split on Q) where 7 < [ is (the code for)
{67}

By induction on 7 < [ we suppose we have 7,,"p; " ... " p; ,_; = v; for all i < m and
that {p, ¢} is pair number r. If oy, =, o, there is no requirement to satisfy and we let
pir = 0 for every i. Otherwise, let w be the largest y € Ly, such that a;, =, a. (To
see that there is a largest such y, first note that £, is a lattice as it is a finite Isl. As
Op4n is an usl table for Ly, if o, =, o, for v,v € Ly, then o, =, o, where t is
the least element of L, above both u and v (their join from the viewpoint of L;,).

Thus, there is a largest y as desired.) Of course, z £ w. By our choice of z there are
t=c
o,T € H Op4+ such that v, extended by o and 7 form an e-splitting congruent modulo w

on Q. (We can find such a split on @y, by the definition of p and z and our assumption
on w. It translates into such o and 7.) ‘Consider vy 7. It must form an e-splitting on Q7
with one of v,"0 and v,"7 by the basic properties of (). If it splits with the latter String
then we can set p, .., = 7 and clearly fulfill the requirements for this pair {p, ¢} both
for congruence modulo w (as all new extensions are identical) and e-splitting. Of course,
uniformity is maintained as the p;, ., are the same for all 7. Thus we assume that v," o
and v, 7 e-split on ();. We now use our homogeneity interpolants.

We know that w is the largest y € L,y such that a, =, o, and that 0 =, 7.
;[;h%}smfor any r € K C Lign if o =, oy then x < w and so 0 =, 7. By Theorem
3) we can now find homogeneity interpolants 7v,(s), v,(s) in O4s41 and associated
K-homomorphisms f5, gs, hs : Ok+s — Okist1 such that f : ap,ap — 0(s),7,(s), gs :
Qp, g — Yo(8),71(s) and hy 1 ap, ap — Y(s),7(s) for each s < |o| = |7]. (We let
ap = Qp, a1 = ay, By = 0(s), B = 7(s), £L=Kandi=k+s in the Theorem.) Note
that the branchings in ()} are at some levels up from the corresponding ones in ij
or @} on which we chose o and 7. Thus these homogeneity interpolants are available
within the branchings in Q0}. As v,,"0 and v, 7 e-split on (), one of the pairs v, o, v, ¥;;
Vp Yo, Vg Y1 and v, g, v, T must also e-split on Q5. Suppose, for the sake of definiteness,
it is the second pair v, %,,v, ;. In this case, we let p;,,,(s) = gs(a;) for every i
and s. Note that uniformity is maintained as p,,,(s) depends only on ;. We use f;
or h, in place of g, if the e-splitting pairs are v, o,v, ¥, or v, 7,,v, T, respectively.
By the homomorphism properties of the interpolants these extensions preserve all the
congruences in K between any «; and «; as required to complete the induction and our
construction of an e-splitting tree . m
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We now conclude the proof that our embedding maps onto an initial segment of D.
by showing that for G € [S] with S a z — e-splittine tree, ®Y =5 G%. The proof is
analogous to that of the Computation Lemma (g 7 14).

Lemma 10.2.9 If S is a z — e-splitting tree and G € [S] then ¢ =7 G7.

Proof. We first show that ®¢ <; . Consider any n. Using G2 we can find all the
o € dom S of length n such that o(I) = G%(1) for every I < n. All of these o are congruent
modulo z and so all S, force the same value for ®¢ at n. As S(o) is an initial segment of
G for one of these o, this value must be ®%(n). We next argue that G5 < ®¢. Consider
all 0,7 € dom S of length n. If ¢ £, 7 then S, and S, force different values for @f
at some [ < n. Thus using ®¢ | n we can find the unique congruence class modulo z
consisting of those ¢ such that S(o) is not ruled out as a possible initial segment of G.
For one o in this class, S(o) is an initial segment of G’ and as all the ¢ in this class are
congruent modulo z, they all determine the same values of G¥ | n which must then be
the correct value. m

We have now completed t.he proof that an)é_gc_e;eric filter G (d'e(':idinfr 1‘1}1 senten Seslalmgéir ce
meeting the dense sets provided by Lemma 4 and Propositions 1095 and I“.Z.Si
provides an embedding of £ onto an initial segment of D that sends, = to deg(GE) (for
any P € G with z € K(P)). This gstablishes Theorem Wour lattice taﬁle latiso
theorem whose proof we provide in §10.3. We now indicate how to modify Theore
so as to apply to any sublattice IC of a recursive lattice.

aJ

clatticeiso| Theorem 10.2.10 If K is a sublattice of a recursive lattice L then K is isomorphic to
an initial segment of D.

reclatticeiso

Proof. The changes needed to the proof of Theorem ms‘cly notational. The
forcing conditions are now pairs (T, K) where T is a tree (for (£;,0;)) and K is a finite
slsl of IC N Liry. We say that (11, K1) <p (To,Ko) if Ty Cx, Top and Ky D Ky. We
let V((T,K)) = T(0). If P = (T,K) is a condition we let K(P) = K, Tr(P) = T and
k(P) = k(T). In following much of the original proof, one should often simply replace
a condition P by Tr(P) when K(P) is fixed. Along these lines, for example, we use
P,, P, P™ and P to stand for (Tr(P),, K(P)), (I'r(P):, K(P)), (I'r(P)", K(P)) and
(T'r(P)r, K(P)), respectively. The top element of P consists of the identity tree Id
(which has k(Id) = 0) and the slsl £, = {0, 1}.

The basic dense sets (), that we assume are met by any generic are now extended to
include, for each = € K the sets { P|x € K(P)}. to see that these are dense, consider any
Q € P and z € K. Let K’ be the slsl of K generated by K(Q) and = and let i > k(Q)
be such that X' C £;. Define S with k(S) =i by S(o) = Tr(Q)(0" @ ¢). Clearly,
(S, K'Y <p @ and is in the required set.

The definition of the embedding, now from K, into D is the same as before noting
that K(P) is now the second coordinate of P rather than simply Lypy. The operations
on trees and proofs used to verify the diagonalization (for z,y € K) and initial segment
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properties (with ®¢ = G for 2 € K(Q) C K) are now essentially the same. Just keep in
mind that they are applied to Tr(P) and K (P) does not change. =

This version of the theorem provides initial segment embeddings for many nonrecur-
sive lattices. As an example we have the following corollary.

Corollary 10.2.11 Fvery countable distributive lattice is isomorphic to an initial seg-
ment of D.

Proof. There is a recursive universal countable distributive lattice. In fact, every count-
able distributive lattice can be embedded into the atomless Boolean algebra.?? m

Exercise 10.2.12 Prove that the embedding of our recursive lattice L can be taken to
be into D(<0") and, indeed that the generic G constructed has double jump 0". For
embeddings of a sublattice KC of L determine where the embedding lies and what can be
said about G".

Exercise 10.2.13 Prove that the embedding of our recursive 6%@%%% L 1is onto an initial
segment of both the tt and wtt degrees. (Hint: recall Exercise 8.1.2.)

. reclatticeiso .
Exercise 10.2.14 Theorem [T0.1.5 relativizes to any degree a and so every countable
lattice L (with 0 and 1) is isomorphic to a segment of D, i.e. to [a,b] = {x|]a < x < b}
for some b where a is the degree of L. Indeed, we may take b” = a”.

Lattabiesec] 10-3  Constructing lattice tables

Theorem 10.3.1 If L is a countable lattice then there is an usl table © of L along with
a nested sequence of finite slsls L; starting with Lo = {0,1} with union L and a nested
sequence of finite subsets ©; with union © with both sequences recursive in L with the
following properties:

1. For each i, ©; | L; is an usl table of L;.

2. There are meet interpolants for ©; in ©;,1, i.e. ifa =, 5, x Ay = z (in ©; and L;,
respectively) then there are vy, V1,V € ©ip1 such that o =, vy =, 71 =4 V2 =y B

3. For every L Ciy L; there are homogeneity interpolants for ©; with respect to L in
Oit1, i.e. for every agp, o, By, 51 € O; such that Yw € ﬁ(ao =u 01 — By =w B1)s
there are vy,v, € ©i41 and L-homomorphisms f,g,h : ©; — ©;y1 such that f :
ag, a1 — By, V1, 9 o, a1 = Yo,71 and h g, aq — g, By

Proof. We first define the sequence L; of slsls of £ beginning with £y which consists
of the 0 and 1 of £L. We let the other elements of £ be z, for n > 1 and £, be
the (necessarily finite) slsl of £ generated by {0,1,zy,...,2,}. As for ©, we choose a
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countable set «; and stipulate that © = {«a;|i € w}. We begin defining the (values of)
the a; by setting ap(z) = 0 for all x € £ and «(0) = 0 for all @ € ©. We will now
define ©,, and the values of a € ©,, (other than «ap) on the elements of £, (other than
0) by recursion. For Oy we choose a new element 5 of © and let Oy = {«ap, 5} and set
B(1) = 1. Given O,, and the values for its elements on £,, we wish to enlarge O,, to 0,11
and define the values of a(z) for o € ©,,47 and x € L, so that the requirements of
the Theorem are satisfied. To do this we prove a number of general extension theorems
for usl representations in the Propositions below that show that we can make simple
extensions to satisfy any particular meet or homogeneity requirement and also extend
usl represenﬁagé%lgtgrlpm smaller to larger slsls of £. To be more specific, we first apply
Proposition [10.3.5 successively for each choice of z Ay = 2z in £, and o, € O,, with
a =, [ choosing new elements of © to form ©/, extending ©,, and defining them on £,
so that ©/, | £,, is an usl table for £,, containing ©,, and the %%(i%jlc%erd meet interpolants
for every such z,y, z,a and 5. We then apply Proposition FfDTBTGﬁlEccessively for each
L Ciq L, and each g, a1, By, 81 € ©,, such that Yw € ﬁ(ao =u a1 — By = [) to get
larger subset ©7 of © which we also define on £,, so as to have an usl table ©” | £,
for £, that has the required homogeneity interpolants and L-homomor glx@re%% from O,
into ©” for every such ay, ay, By, 1 € O,. Finally, we apply Proposition [10.3.4 to define
the elements of ©” on L,,; and further enlarge it to our desired finite ©,1; C © with
all its new elements also defined on £, ;1 so as to have an usl table of £,,;; with all the
properties required by the Theorem. It is now immediate from the definitions that the
union © of the ©,, is an usl table of £. =

Notation 10.3.2 If a finite L is a slsl of L, L Ciy L, and z € L then we let & denote
the least element of L above x. The desired element of L eaists because L is a slsl of L
and so the infimum (in L or, equivalently, in L) of {u € Llz < u} is in L and is the
desired &. As L is finite it is also a lattice but join in L may not agree with that in L.
We denote them by V; and V. respectively when it is necessary to make this distinction.

Lemma 10.3.3 With the notation as above, T = x for x € L and so it is an idempotent
operation. If x <y are in L then & <. If xVpy =z arein L then 2 =2 V; 7.

Proof. The first two assertions follow immediately from the definition of Z. The third is
only slightly less immediate: z,y < x V. y = 2z and so by the second assertion, z,y < 2
and so & V; ¢ < 2. For the other direction, note that as x < %, y < ¢, we have that
z:x\/gygi\/gg)Saﬁ“\/ﬁyféﬁandsoiﬁﬁs\/ﬁy. ]

Proposition 10.3.4 If © is a finite usl table for £ Ciy L (finite) then there are exten-
sions for each o € © to maps with domain L and finitely many further functions B with
domain L such that adding them on to our extensions of the a € © provides an usl table

O of L with® C O | AEA Moreover, these extensions can be found uniformly recursively
in the given data (©, L and L).
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Proof. For o« € © and x € L set a(x) = a(z). We first check that we have maintained
the order and join properties required of an usl representation. If v < y are Jn Eehoztﬁ € @
and o =, [ then by definition o =; 3 and so o =; 8 as £ < § by Lemma h’U‘TZ{_
being an usl table of L. Thus, by definition, a =, 3 as required.

Next, if z Vo y = z are in £ and o =, , 8 we wish to show that o =, 3. Again by

basichat
definition o =; ;3 8. By Lemma Ecrm V9 = %, so by © being an usl table for L,
a =; [ and so by definition, a =, .

All that remains is to show that we can add on new maps with domain £ that provide
witnesses for the differentiation property for elements of £ — £ while preserving the order
and join properties. This is a standard construction. For each pair £ y (in £ but
not both in £) in turn we add on new elements gy and 5, with all new and distinct
values at each z € L except that they agree on all z < z (and at 0, of course, have value
0). These new elements obviously provide the witnesses required for the differentiation
property for an usl representation. It is easy to see that they also cause no damage to the
order or join properties. There are no new nontrivial instances of congruences between
them and the old ones in © (extended to £). Among the new elements the only instances
to consider are ones between o, and 3, , for the same pair z, y and for lattice elements
z less than or equal to z. As o, =, 3, for all z < x, the order and join properties are
immediate. m

Proposition 10.3.5 If o, 3 € ©, an usl table for a finite lattice L, a« =, f and x Ny = 2
in L then there are vq, Y1, 7 such that o =, vy =y V1 =2 Vo =y B and O U {~y, 71,75} is

still an usl table for L. Moreover, these extensions can be found uniformly recursively in
the given data.

Proof. If x < y, there is nothing to be proved. Otherwise, the interpolants can be
defined by letting v,(w) be a(w) for w < z and new values for w £ x; v, (w) = 7v4(w) for
w < y and new values otherwise; and v,(w) = S(w) for w <y, y5(w) = v (w) if w <z
but w £ y and new otherwise. m

Proposition 10.3.6 If L Cu L, a_finite lattice, and © 1is an wusl table for L with
o, a1, B, 31 € © such that Yw € L(ag =w o — By = B1), then there is an wusl

table © O O for L with vy,v, € © and L homomorphisms f,g,h : © — O such that
f @ ag,a1 — By,v1, 9 0 o, 1 — Y,y and hooag, a1 — g, B, Moreover, these
extensions can be found uniformly recursively in the given data.

Proof. For each a € © and = € L we set f(a)(x) = fy(z) if @ =; ap and otherwise we
let it be a new number that depends only on a(z), e.g. «(Z)*. Note that which case of
the definition applies for f(«)(z) depends only on (%) and it can be an “old” value (i.e.
one of some € O) only in the first case. Thus, for «, 5 € O,

(a) a=; B& fla)=, f(B) and (b) f(a) =, 8= a=; ap = fla) =, B,- (10.1)
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Let ©; = O U f[O]. We claim that ©; is an usl table for £ and f is an L-homomorphism
f Jom O into ©;. That f is,an. [ —homomorph1sm is immediate from the first clause in
(10.1) and the fact (Lemma [10.3. %) that & = 2 for 2 € £. We next check that ©; satisfies
the properties required of an usl representation. Of course, f(«)(0) = 0 by definition for
every « and differentiation is automatic as it extends ©.

First, to check the order property for ©; we consider any z < y in £. As © is already
an usl table for £, it suffices to consider two cases for the pair of elements of ©; which are
given as congruent modulo y and show that in these two cases they are also congruent
modulo z. The two cases are that (a) both are in f[©] and that (b) one is in f[O] and
the other in ©. Thus it suffices to consider any «, 8 € ©, assume that (a) f(a) =, f(B)
or (b) f(a) =, B and prove that (a) f(a) =, f(8) and (b) f(a) =, B, respectively. For
(a), we have by (10.1) that a =; 5 and so by the order property for ©, o =; . Thus
f(@) =, f(B) by definition as required. As for (b), (10.1) tells.us here that o =5 ap and
B =, fla) =, B, (and therefore 5 =, 3,). Now by Lemma EU 33 a=; apso fla) =, By
and so f(a) =, f as required.

Next we verify the join property for x Vy = z in £ and two elements of ©; (not

both in ©) in the same two cases. For (a) we have that t {1042 =,, f(5) and so as above

=; 4 . Now by the join p{operty in©® and LL nm c:EQm =; fand so f(a) =, f(B)
as requlred For (b) using (I0.1b) and Lemma :;; 3.3 again we have that f(«o) =,, /=
a =55 00 = a =; ap = f(a) =, B, while it also tells us that § =,, f(a) =, B, as
required. Note that clearly f(ag) = 5,. We let v, = f(a1) and so have the first function
and (partial) extension of © required in the Proposition.

We now define h on ©; as we did f on © using «; and (3; in place of oy and S,
respectively: h(a)(xz) = 5,(z) if @ =; a; and otherwise we let it be a new number that
depends only on (%), e.g. a()™. Let Oy = ©; U h[O;]. As above, O, is an usl table
for £ and h is an £- homomorphism from ©; (and so ©) into O, taking a; to ;. We let
Yo = h(ao) and so have the third function and (partial) extension of © required in the
Proposition. As above in (I0.1), we have for any o, 3 € ©; and = € L,

(a) a=; < h(a) =, h(B) and (b) h(a) =, = a=; a1 = h(a) =, ;. (10.2)

Applying the second clause to 7y, = h(ap) and first to any 8 € ©; and then, in particular
to v, we have

(@) Yo =2 B = =3 0 = flay) =7, =2 By and (b) 7y =, 71 © ap =5 a1 (10.3)

To see the right to left direction of the second clause, note that oy =; «; implies that
Yo =« [1 and v, =, B, by the definitions of h and f, respectively, while it also implies
that 8, =; [, by the basic assumption of the Proposition. Thus, as © is an usl table of
Land x < 2, By = B, and vy =, 7.

Finally, we define g on o € O3 by setting g(a)(x) = vo(x) if o =z ap. If a #Z; ap but
a =; a; then g(a)(x) = v,(x). Otherwise, we let g(a)(x) be a new number that depends
only on a(z), e.g. a(z)**. Note that if & =; «; then we always have g(«) =, v, as if
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3
a =z o as well then, by (hO.Bb), Yo =z V1. Thus g(ap) = 7, and g(ay) = 7, as required.
It is also ol.)\fious that g is an L-homomorphism of O, (and so ©) into O3 = O, U g[Os]
as by definition and Lemma 10.3 3, a=; = g(la) =; g(B) for any = € L. Indeed, for
any o, 3 € Oy and x € L

a=; & gla) = g(h). (10.4)

To see the right to left direction here, note that if either of g(a) or g(f) is new for g
at x (i.e. of the form 0(7)**) then clearly both are. In this case, & =; [ by definition.
Otherwise, either they are both congruent to o or both to a; and so congruent to each
other mod z. The point here is that if one is con Luent to ayg and the other to a; but
not ag at & then by definition v, =, -, and so by (II0.3b), ag =; oy for a contradiction.

Thus we only need to verify that O3 is an usl table of £. We consider any «, 5 € O4
and divide the verifications into cases (a) and (b) as before with the former considering
g(a) and g() and the latter g(«) and 3. These cases may then be further subdivided.

We begin with the order property and so z < y in L.

4
(a) If g(a) =, g(B) then, by ( hO 4), and so a=; fas z <y (Lemma 0 IS31C§5*at
and O, is an usl table of £. Thus, agaln by 0 4) g(e) =, g(B) as required.

(b) If g(or) =, [ then by definition they are congruent modulo y to v, (for some
i € {0,1}) and « is congruent to «; at 3. Thus o =; o; as & < § and O is an usl table
so g(a) =, 7, by definition. Similarly, as = <y, f =, 7, as well.

Now for the join property for z Vy = 2z in L.

basich
(a) If g(a) =, g(B) then, as above, a = ﬁ As ZV 1y =% by Lemma la(lsll3c3 3hd O,
is an usl representation, a =;  and so byjIO (o) =, g(B) as required.

(b) If g(a) =,, [ then again @ =; «; and a =; «a; for some i,j € {0,1} and
g(a) =, B =, 7, while g(a) =, 8 =, 7;. If i = j then a =; 5 o; and so @ =; «; and
g(a) =, v, =. B as required.

On the other hand, suppose, without loss of generality, that (x) o =; @y and so
B =4 9(@0) =20 vy = h(ap) while ag #Z; o =5 a3 and so § =, g(a) =5, 71 = flow). If
B € ©; then by ( %O 4a) g =; o and so @ =; ;. As our assumption is that o =5 oy

e have (by the join property in O3) that @ =; a3 and so g(a) =, v,. As ag =z o
hO 3b) tells us that v, =, ;. Our assumptions then say that § =,, v, and so 5 =, 71,
as reqmred. Thus we may assume that 5 = k() for some 6 € ©.

We now have h(0) = 8 =, g(a) =: 7o = h(ag) € ©1 and so by (%O‘Qa) applied to
h(5) =; h(ap) with ¢ for o and ag for 3 we see that § =; . We also have h(5) = 8 =,
g(a) =5y 71 = f(a1). Applying (10.2b) to h(6) =, 7, with 6 for v and 7, £ O for [, we
see that 0 =; ayand h(d) =, ; and so B, =, v; = f(a1). Now applying ( 0 1b) with ay
for « and 3, € © for 3, we have that oy =; ap. As this contradicts (x), we are done. [ |
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10.4 Decidability of two quantifier theory
10.5 Undecidability of three quantifier theory.

Also two quantifier with V and A.?

Other results establishing borderlines in other languages e.g. with jump? If so in
different chapter/section?

comments on what known below 0’



Chapter 11

H(l) Classes

11.1 Binary trees

We now return to the basic our basic notion of a tree as a downward closed subset of w<*.
In this context we use T, to denote the subtree of T" consisting of all strings p compatible
with o: T, = {p|p € 0 or ¢ C p}. Recall that the sets of paths in such trees are the
closed sets in Baire space w®. In this chapter we will be primarily concerned with infinite
binary trees, i.e. the infinite downward closed subsets T" of 2<“. We endow each binary
tree with a left to right partial order as well as the order of extension. It is specified by
the lexicographic order on strings so o is to the left of 7, 0 <, 7 if o(n) < 7(n) for the
least n such that o(n) # 7(n) if there is one. (This order extends in the obvious way to
one of 2 which we also call the left to right or lexicographic order.) The sets of paths
T) ={Ae€2¥:Vn(A | neT)} through these trees are precisely the nonempty closed
subsets of Cantor space, 2“.

Exercise 11.1.1 For any binary tree T, [T] is a closed set in Cantor space.

7?7Prove??

To see that every closed subset of 2¢ is of the form [T for some tree T', consider
the open sets in 2*. They are all unions of basic (cl)open sets of the form [o] = {f €
2%|o C f} for o € 2<¢. So given any closed set C its complement C is a union of such
neighborhoods. Let T' = {o|[o] € C} = {o|[c] N C # 0}. It is clear that T is downward
closed. If f € C and o C f then clearly 0 € T and so f € [T]. On the other hand if
f€[T)and 0 C f then 0 € T and so the closed set [0] N C # (. As Cantor space is
compact N{[o] N Clo C f} is nonempty, and only f can be in it so f € C as required.
Note that, by Konig’s lemma (Lemma 4.2.4), C is nonempty if and only if 7" is infinite.

7?Move this material to Trees section and recall here??
In this chapter we want to investigate the recursive versions of these two notions.

Definition 11.1.2 A class C C 2¢ is effectively closed if it is of the form [T] for a
recursive binary tree T'.

115
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We can also characterize the effectively closed sets in terms of the complexity of their
definition. We use the same notation based on the arithmetic hierarchy for classes of
sets or functions as we did for individual sets and functions.??say more now or before
Go back and check definitions for X2 especially ¥y and how interpret for ¢ in place of A
...bounded quantifiers??

Definition 11.1.3 A class C C 2% of sets is X0 (119 ) if there is a X% (112) formula (X))
with one free set variable X such that C = {A|NEp(A)}. Similarly for classes F C w¥
of functions and formulas with one free function variable.

The primary connection with trees is the following Proposition.

Proposition 11.1.4 The I1Y classes of sets are precisely the sets of paths through recur-
sive binary trees. Again, the nonempty classes correspond to the infinite recursive binary
trees. Moreover, there is a recursive procedure that takes an index for a T1° formula to
one for a recursive tree T such that [T is the corresponding 11§ class.

Proof. If T is a recursive binary tree then [1] = {4 € 2* : Vn(A [ n € T)} is clearly
a I19 class. If T is infinite, [T] is nonempty by Konig’s lemma while if T is finite [T is
clearly empty. For the other direction consider any II{ class P = {A : VzR(A,x)} for
a X relation R. Let T = {0 € 2<¥|~(3x < |o|)=R(c,z)} where we understand that
we are thinking of o as representing an initial segment of A. Formally we replace t € A
by o(t) = 1 and declare the formula R(o,z) false if some term t > |o| occurs in it as
described in 7?7. It is then immediate that P = [T] and that an index for T" as recursive
function is given uniformly in the index for R as a 3§ formula. If P is nonempty, 7" has
an infinite path and so is itself infinite. Otherwise, T is finite. m

Exercise 11.1.5 The 1Y classes of functions are precisely the sets of paths through re-
cursive trees (on w<v).

We can now index the II{ classes (of sets) by either the indi(i%sl torfeg}sle 119 formulas or
of the trees derived from them as in the proof of Proposition TT.1T.4 as partial recursive
functions which are actually total. A natural question then is how hard is to tell if a
recursive tree is infinite or a I1? class is nonempty. It might seem at first that these
properties are II9 and so only recursive in 0”. If we know that the tree is recursive as we
do for the trees derived uniformly from ITY classes, however, then the question is actually
uniformly (on indices) recursive in 0’. This observation depends on the compactness of
Cantor space and plays a crucial role in almost every argument in the rest of this chapter.

Lemma 11.1.6 IfT is a recursive binary tree (say with indexi so'T = ®;) then T' being
finite is a XV property (of i). Thus we can decide if T 1is finite or infinite recursively in
0. Indeed, T is finite if and only if there is an n such that o ¢ T for every o of length n.
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Proof. Clearly, T is finite if and only if there is an n such that o ¢ T for every o of
length n. Clearly this is a 3 property for any recursive binary tree and the associated
¥? formula is given uniformly in a recursive index for 7. =

While deciding if a given recursive binary tree is infinite or a II9 class nonempty
requires (', we can actually make a recursive list of the nonempty II{ classes and so one
of corresponding infinite recursive binary trees (up to the set of paths on 7).

Exercise 11.1.7 There is a uniformly recursive list of the nonempty 119 classes in the
sense that there is a recursive set Q) such that, for each e € Q, ®. is (the characteristic
function of) an infinite binary tree T, and for every nonempty 119 class C there is an e
such that C = [®.] = [T.]. Hint: For each e consider the r.e. set W, viewing its elements
as binary strings o. We now form a recursive tree I, by putting in the empty string at
stage 0 and then at stage s > 0 exactly those strings T of length s with no o C 7 in W,
unless there are none (equivalently U{[c]lc € W, } = 2¥), in which case we declare all
immediate successors of strings in T, of length s — 1 to be in T, as well. Note that T,
is uniformly recursive. For one direction prove that each T, is infinite (and so [T,] is a
nonempty 11V class). For the other direction, if C is a nonempty 119 class then the set
{o|le]NC = 0} is r.e. and so equal to some W,. Now show that [T,] = C.

We now present some important I1{ classes.

Example 11.1.8 DNRy = {f € 2¥ : f is DNR}. Recall that DNR means f(e) #
®.(e). In other words, VeVs—(f(e) = ®.s(€)). Thus, DNRy is a IIY class.

Example 11.1.9 Let H be any recursively azxiomatizable consistent theory. The class
Cu={f €2“: f is a complete extension of H} is a 11{ class. By the assertion that f “is
a complete extension of H” we mean that we have a recursive coding (Gddel numbering)
©,, of the sentences of H such that Ty = {¢,|f(n) = 1} is deductively closed, contains all
the axioms of H and is consistent in the sense that there is no ¢ such that f assigns 1
(true) to both ¢ and —p. The only point to make about this being a 119 class is perhaps the
requirement that Ty be deductively closed. This says that for all finite sets ® of sentences
and each sentence ¢, and proof p, if p is a proof that ® F ¢ and f(n) = 1 for every
0, € ® then f(k)=1.

Example 11.1.10 If A, B are disjoint r.e. sets, then the class S(A,B) = {C : C' D
A & CN B =0} of separating sets C' (for the pair (A, B)) is a II{ class as is obvious
from its definition: S ={C :Vn(n€ A —-neC &neB—n¢C)}. Since A,BeX!
this is a 119 formula.

We can view a IIY class as the solution set to the problem of finding an f that
satisfies the defining condition for the class. Equivalently, the problem is finding a path f
through the corresponding tree 7. For the above examples the problems are to construct
a DN Ry function, a complete consistent extension of H and a separating set for A
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and B, respectively. If we choose our theory H and our disjoint r.e. sets A and B
correctly then the three problems and so the I19 classes (and the [T'] for the corresponding
trees) are equivalent in the sense that a solution to (path through) any one of them
computes a solution for (path in) each of the others. Suitable choices for H and (A, B)
are Peano arithmetic, PA, ?7?define before?? and (Vp, V;) where V5 = {e : ®.(e) = 0} and
Vi ={e: ®.(e) = 1}. For these choices, the problems are also universal in the sense that
a solution to any one of them computes a path through any infinite recursive binary tree
and hence a solution to any problem specified by a nonempty I19 class.

Theorem 11.1.11 If T is an infinite recursive binary tree and f is a member of any of
the three 11y classes DN Ry, Cpa or S(Vy, V1) described above then there is a path g € [T
with g <r f.

Proof. We first prove the theorem for S(Vp,Vi). Suppose T is an infinite recursive
binary tree. We begin by defining disjoint r.e. sets A and B such that any f € S(A, B)
computes a path in 7. We then show how to compute a path in (any) S(A, B) from one
in S(Vp, V7).

We know that {o|T}, is finite} is r.e. sosupposeitis W.. Welet Ay = {o|3s(c"0 € W, ,
& 0°1 € W5} (the o such that we “see” that T, is finite before we “see” that Tj,-; is
finite) and A; = {o|3s(c"1 € W, & 0°0 € W, 5} (the o such that we “see” that T,-; is
finite before we “see” that T, is finite). It is clear that AgN A; = ). Let C' € S(Ap, 4;)
and define D a path in T by recursion. We begin with ) € D. If ¢ € D then we put
0" C(o) into D. We now argue by induction that if o € D then T, is infinite: If T, is
infinite then at least one of T~y and T,-; is infinite. If both are infinite there is nothing
to prove so suppose that T~ is finite but 7,,-; is infinite. In this case, it is clear from the
definition that o € Ay and so C(c) = 1 and we put ¢"1 into D to verify the induction
hypothesis. In the other case, o € Ay, C'(0) = 0 and we put 00 into D with 7, infinite
as required.

Now we see how to compute a C' € S(Ag, A;) from any D € S(Vy, V). By the s—m—n
theorem 77 there is a recursive functions h such that Vn(n € A; < h(n) € V;). We now
let C(n) = D(h(n). It is easy to see that C' € S(Ap, A1) as required. Thus S(Vp, V1) is
universal in the desired sense.

We now only have to prove that we can compute a member of S(V,V;) from any
DN R, function f and from any complete extension P of PA. For the first, simply note
that if f € DNRy then f € S(Vp,Vi): If e € V then ®.(e) = 0 and so f(e) = 1 as
required. On the other hand, e € V; then ®.(¢) =1 and so f(e) = 0 as required.

Finally, suppose P is complete extension of PA. Define C'(n) = 1 if P declares the
sentence ds(n € Vps & VYVt < s(n ¢ Vig)) to be true and 0 otherwise. Note that if
n € Vp then there is a least s € N such that n € V. This fact is then provable in PA
(computation is essentially a proof). Similarly, for each ¢t < s, n ¢ Vi, since n € V;
and so C'(n) = 1 as required. On the other hand, if n € V} then there is a least s € N
such that n € Vi, and for each t < s, n ¢ V; since n € Vi and so PA proves that
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ds(n € Vi & Vt < s(n ¢ Vps)). As P is a consistent extension of PA, it cannot then
prove that 3s(n € Vy 4 & Vit < s(n ¢ V1)) and so C'(n) = 0 as required.

Exercise 11.1.12 Show that the degree classes DNRy, Cpy and S(V, V) consisting
of the degrees in each of the corresponding 119 classes are all the same.

u dnrnotrec

As every DN R function is obviously nonrecursive (Proposition }'IUTBQ)W)ne of these
three classes have recursive members. So in particular there are no recursive complete
extension of PA and there is no recursive separating set for (14, V7).

Thinking of T1? classes as problems that ask for solutions, the natural question is
how complicated must solutions be or how simple can they be. In the (in some sense
uninteresting) case that there is only one path in 7" (or only finitely many) we can say
everything about their degrees.

Proposition 11.1.13 If a recursive binary tree T' has single path that path is recursive.
In fact, any isolated path ?%define?? on a recursive tree is recursive.

In general for arbitrary 7" one easy answer to the question is that there are always
solutions recursive in ('.

Exercise 11.1.14 Show that every nonempty 119 class has a member recursive in (0.
Hint: it is immediate for the separating classes.

It is not hard to say a bit more.

Proposition 11.1.15 FEvery infinite recursive binary tree T has a path of r.e. degree.
In fact, the leftmost path P in T has r.e. degree.

Proof. m
. - . . [recO’ .
We, in fact, can mgmﬁc%l%y improve the result of Exercise h‘l_l_lél The Low Basis
Theorem below (Theorem TTI.1.18) gives the best answer with the notion of simplicity

of the desired solution measured by its jump class. It is called a basis theorem as we
say that a class C is a basis for a collection of problems, S%Ien‘%s) if every problem (set) in
the collection has a solution (member) in C. Theor%qjonl L9 gives another basis result
in terms of domination properties and Theorem E‘Fl_.mle in terms of solutions not
computing given (nonrecursive) sets.

To prove each of these theorems we use the notion of forcing P whose conditions
are basically infinite recursive binary trees 7' with usual notion of subtree as extension
(simply a subset). To make the definition of our required function V' recursive, we
explicitly specify a stem 7 for each tree such that every p € T is compatible with o.
Thus our conditions p are pairs (7', 7) with 7" an infinite recursive binary tree and 7 € T'
such that (Vp € T)(p C 7 or 7 C p). We say that (T,7) <p (S,0) if T C S and 7 D 0.



ubtreepaths

120 CHAPTER 11. TIY CLASSES

Of course, V((T,7)) = 7. If p = (T,7) and ¢ O 7, we use p, to denote the condition
(T,,0).

The complexity of this notion of forcing depends on the representation or indexing
used for the inﬁnit(lgerc%%%rsiigf binary trees. While,at one end we could use the recursive
listing of Exercise h‘lT?fp_lt_would then be more difficult to describe various operations
on trees that determine subtrees in the natural sense but do not obviously produce an
index of the type required. In this case we would also want to define the é%llg‘%l;eeee rg,lc%tsion
T C S in terms of [T] C [S] which would then be a II relation (ExerciseT'I'FFI'EfﬁL_mdr SO
only recursive in 0”.

Exercise 11.1.16 If e and i are indices for infinite binary recursive trees T and S then
the relation [T) C [S] is 113, and, in fact,it is I3 complete.

At the other end, we can simply use indices for recursive functions that define infinite
binary trees. While this set is only recursive in 0” (because it takes 0” to decide if an
index is one for a recursive tree), operations on trees become easy to implement on the
indices. On this set of indices, the standard subtree relation T C S is then IT? and so
recursive in 0'. We adopt this representation of trees for our notion of forcing. In fact,
while the notion of forcing is then only 0”-recursive, some of what we want to do can be
done recursively in 0’ by analyzing the required density functions. As an example, we
have the following Lemma.

Lemma 11.1.17 There is a density function f for the class V,, = {(T,7)| |7| > n} of
dense sets in P which is recursive in 0.

£inQ’
Proof. Given p = (T,7) € P and n € N, Lemma HEFG tells us that we can find a
o €T (o 2 7) of length m > n such that 7, is infinite. Clearly p, = (T,,0) € P and
V(ps) >n. m

Theorem 11.1.18 (Low Basis Theorem, Jockusch and Soare) If T is a recursive
infinite binary tree then it has a low path, i.e. there is a G € [T] with G' = 0.
FEquivalently, if C is a nonempty I\ class, then it has a low member. Moreover, we can
compute such a path uniformly recursively in 0’ and the index for T or the class.

Proof. As usual we want to show that the sets of conditions deciding the jump (D,, =
v % . . .

{p|®n () (n) | or (Vq §7.> p)(Pn @ (n) T).}).are dense and prov1celgt%éi§sr(1§1ty fun(.:tlon f §T o’
that also tells us in which way f(p,n) isin D,,. By Lemma % [.18 starting with condition
po = (T, () we can meet these sets as well as the V}, by a generic sequence recursive in 0/
and so construct a G € [T] with G’ =7 0 as required.

Given an p = (T,7) € P and an n, we cannot use our usual strategy of asking for a
o €T (o 2 7) such that ®7(n) | and then taking say p, as f(p,n) because T, may be
finite. Instead we ask jf T'= {o € T'|®7(n) 1} is infinite. This question can be answered
by 0’ by Lemma h‘lTB If so, we let f(p,n) = (T, 7) and note that we have satisfied
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the second clause of the definition of D, as well as guaranteed that ®%(n) 1 for every
GelT ] including, of course, the generic G we are constructing. If not, then clearly there
is a k > |7| such that ®%(n ) | for every o € 1. of length k. T, must be infinite for one
of these ¢ as T is infinite. Again by Lemma h‘lTﬁ 0’ can find such a ¢ and we then
set f(p,n) = p,. In this case, it is clear that we have satisfied the first clause of D,, and
®%(n) | for every G € [T,].

The assertion about members of the corresponding I1{ classes as well as the uniformity
claim in the theorem are now immediate. m rodesres

Note that we cannot make a similar improvement to Proposition hgl'b_Any element
of DN Ry, Cpy or S(Vp, V1) of r.e. degree has degree 0/.77

We next give a different answer to how simple a path we can construct on an arbi-
trary infinite recursive binary tree. Now the notion of simplicity is specified in terms of
domination properties.

Theorem 11.1.19 (0’-dominated Basis Theorem) If T is an infinite recursive bi-
nary tree, then there is an G € [T] such that every f <r G is dominated by some
recursive function.

Proof. We use the same notion of forcing with new dense sets. In place of the D,
we have E, = {(T,7)|(3z)(Vo € T)(®7(x) T or (Vz)(3k)(Vo € T)o)=1(®(x) |)}. To
see that the F,, are dense consider any condition p = (7, 7). If there is an z such that
S ={o € T|®%(x) 1} is infinite then choose such an x and S. The desired extension of p
in E, is then (5, 7). Note that in this case, ®%(z) 1 for any G € [S]. If there is no such
x, then, by Lemma h‘rr.(a, p = (T, 1) satisfies the second clause in F,, and is itself the
witness to density. Note that in this case ®¢ is total for any generic G. Indeed, we can
now also define a recursive function h which dominates ®¢ for any G' € [T']: To compute
h(zx) find a k such that (Vo € T')5=1(®%(x) |. This is a recursive procedure since by
our case assumption there is always such a k. Now set h(x) = max{®J(z)|c € T" and
lo| = k} + 1. This function clearly dominates ®% for any G € [T]. =

. . 0’ domb .
Exercise 11.1.20 Show that we may find a G as in Theorem [T1.1.19 with G" <7 0.

We next turn to finding paths in trees which are simple in the sense that they do
not compute some given (nonrecursive) set C' or, more generally, any of some countable
collection C; of nonrecursive sets.

Theorem 11.1.21 (Cone Avoidance, Jockusch and Soare) If T' is an infinite re-
cursive binary tree and {C;} is a sequence of nonrecursive sets, there is an A € [T] such
that C; %1 A for all i.

0’ domb
Proof. We modify the proof of density of the £, of Theorem TT.T.19 to get E, ,, that
guarantee that ®¢ £ C,,. Welet E, ,,, = {(T, T)\(EIJ:)(VJ e T)(®9(x) T or (Fz)(PL(x) |#
Cy(z)) or (V:U)(EIk)(VUO,Ul € 1) ioo|=k=|or| (P20 (x) |= P71 (x) |)} . Given any condition
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(T, 1) we first extend it to ¢ = (S,0) € E,. If we satisfy the first clause of E, we
satisfy the same clause in E, ,,. Otherwise, we satisfy the second clause of E,. We
now ask if there are py,p; € S with p; D ¢ and an x such that the S, are infinite and
0 (z) [# @it (z) |. If so, we choose i € {0,1} such that ®7/(z) # Cy,(z) and take g, as
our extension of ¢ (and so of p) which gets into E,, ,,, by satisfying the second clause. If
not, we claim that ¢ itself satisfies the third clause of E,, ,, and that there is a recursive
function h such that ®¢ = h for every G € [S]. As for ¢ satisfying the third clause of
E, ., consider any x and note that it already satisfies the second clause of E,,. If there
were infinitely many & such there are og,01 € T of length k with ®7°(z) |# ®7'(x) |
then we would have been in the previous case as there would then be infinitely many
o € T with ®7(z) |# C,,(z). Thus we may define h(z) by finding a k as in the third
clause of E, ,,, and setting h(z) = ®7(x) for any ¢ in S of length k. We then have that
®Y¢ = h for every G € [S]. As C,, is not recursive,®¢ # C,, for any G € [S] and so we
also satisfy the requirements of the theorem. m

i01
Exercise 11.1.22 Show that we may construct a G as required in Theorem 911.1.020n1esazgch
that G <7 0" & (®,C;) and indeed uniformly.

Exercise 11.1.23 For one nonrecursive C in%tead OJ a countable set of C; show that we
) ) 10lconedv .
may construct a G as required in Theorem %2. .21 such that G <7 0" (but without the

uniformity). Hint: use the following exercise.

Exercise 11.1.24 Prove that for any infinite recursive binary tree T there are Gy, G €
[T such that any C <r Gy, Gy is recursive. Moreover, we may find such G; with G =r
0".

Exercise 11.1.25 Nonempty I1V classes such as DN Ry that have no recursive member
are called special 119 classes. Prove that any such class has 2% many members.

Exercise 11.1.26 Strengthen some of previous theorems producing a path in T with
some property to producing 2% many if T is special.

11.2 Finitely branching trees
Also trees recursive in A (f). Relativizations.

Finitely branching trees, f-bounded, (recursively bounded) essentially the same as
binary (recursive) binary trees relativize results to f.

Given a recursive recursively bounded tree can get recursive binary tree which has
same paths up to degree by padding.

The sets of paths through infinitely branching trees T' C w<“ correspond to closed
sets in Baire space. Even for recursive trees finding paths is much more complicated in
this setting. Whether such trees even have paths is a [T} complete question. As for a

w
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basis theorem, one says that if there is a path then there is one recursive in the complete
I} set O.77

Reference for low basis theorem: Jockusch, Soare “ Degrees of Members of ITY Classes”
Pacific J. Math 40(1972) 605-616
Pseudo jump operators: Jockusch, Shore “ Pseudo jump operators I: the r.e. case”
Trans. Amer. Math. Soc. 275 (1983) 599-609; “ Pseudo-jump operators II: Transfinite
iterations, hierarchies, and minimal covers” JSL 49 (1984) 1205-1236
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Chapter 12

Pseudo-Jump Operators

Definition 12.0.1 Pseudo-jump operators are defined for each index e: J.(A) = A®
WA, Such operators are called (1)-REA because the image is RE in A and above A. A 2-
REA operator iterates this once (given two indices): Je,(Je,(A)). The w-REA operators
are each given by a recursive function f such that Jr(A) = @newdrin(A). Jrn(A) are
n-REA operators. Note that if f | n gives the index of usual jump operator (iterated n
times) then J;(A) =p AW,

Theorem 12.0.2 (Completeness Theorem) If J is an a-REA operator for a < w
and C > 0% then there is A such that J(A) =r C =¢ AV 0,

Proof. Fora =1, J = J.(A) = A®WA. We will build a tree T} < 0/, one of whose paths
will be A. T1 C ID, will be defined by recursion according to the following intuition.

e if 7 is coded on n'" level of tree then 7 IFn € J.(A) or 7 Ik n & J.(A);

e labels on tree also code whether 7 forced membership or non-membership.
Therefore, we define T} : 2<% — (2<% x 2<%), Ty (o) = (0¢, 1) such that
o C1 = Ti(o); C Ti(r); fori =0,1, and o |7 = T(0)o| T(7)o.

Ti(e) = (e,€). If we have T1(0) = (0¢,01), || = n then define T1(c"i) for i = 0,1 by
asking if there is 7 O T'(0)¢ such that 7 IF n € J.(A) a ¥,(A) question. If so, choose
first such 7 and let T1(0"%) = (77i,01"1). If there is no such extension, let 73(c"i) =
<00Ai, 0'1A0>.

Fix any C' > 0'. Let A = U,IIo(71(C [ n)) . By construction, J.(A) = U,IL (T4 (C |
n)). We now verify that A is as required for the theorem. That is, we want to check that
J(A)=p C=p AVDO.

e The definition of 77 is recursive in 0/, hence in C. Therefore, A < C'so AV0' < C.
Likewise, J.(A4) < C.

125
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e We claim that C' <p J.(A). Suppose we want to compute C'(n). Let 0 = C' [ n
(inductively). J.(A) can compute T1(C | n) because J.(A)(m) gives the answer to
whether or not membership was forced at level m. Using these answers, the rest
of the construction is recursive. Given 71(C [ n), the construction asks if there is
7 2 T (C [ n)o such that 7 IF n € J.(A). But, J.(A)(n) can answer this question
and so it knows which case the construction will be in. If the answer is yes, we can
recursively look for an extension 7 and then 7 (C | (n)%) = (771,01") so C(n) = i.
But, A can tell us which way we branched on tree after 7 and hence the value of i.
Since A <7 J.(A), J.(A) can find ¢ (which is C'(n)). Thus, C < J.(A).

e We will be done once we show that J.(A) <7 AV 0. This is very similar to above,
since we notice that 0’ can answer the questions that J.(A) answered: e.g. is there
finite extension which forces a »; question.

For general o, we will build a sequence of trees Tz < 0¥, B < a where Ts(0) =
(00,...05). Along the first coordinate, labels in the tree have to respect extension
and incomparability but along all the other coordinates we only worry about exten-
sion. Moreover, the trees are nested in the sense that if (oy,...,05) € T and v < 3 then
(00,...0,) € T,. We define the length of a sequence as the length of its last element.
Think of n'" coordinate as coding J;j,(A). By induction on 8 < w assume we have Tp.
Define Tj11(e) = Tp(€)"e. Then if we've defined Tp11(0) = Ts(7)"p (|p| = |o| = m), we
want to define Tz;1(0"i). Ask if there is 7 O 7 such that (Ts(7))g IF m € Jy)(A). If so,
let Tsi1(0i) = Tp(779)"(p"1). If not, let Tsi1(0™) = Tp(77i)"(p°0).

Start this procedure at nodes o of length 5 in T3 and before that, copy T3 adding on
€ as last coordinate. Then, can define T, as limit of T for 5 < w and level n is fixed
from 7T}, onwards so limit exists.

Let C' >7 0. Define A = Ul T,(C | n). Claim that J;j,(A) = U,IL,T.(C | n)
for each m < «, and that J;(A) =r C = AV 0. Note that if & < w then f is a finite
function and that we only build trees up to T,.

Proof: Showing that Jyj,,(A) = U,IL,T,(C | n) is straightforward by induction on
m. A® Jro)(A) knows if 0 € Jy)(A) and so can find 77(0%) (by looking for extension
on Ty, the identity tree). Then A can determine which of 0 and 1 the path follows
because it is on the path and so gives us C'(0). Note that C' could also have figure
out how construction went because it knows value of C'(0). Moreover, 0 can also figure
out construction because it knows if there is extension forcing the fact. What about
T5(1%)? Construction asked for extension on 7; which decides whether 0 € Jy1)(A).
Jra)(A) can answer this. Also, 0” can answer this question because 7} < 0’ so this is
a 0'(0') = 0” question. And, C' knows the answer because if there is a second tree then
a > 2 and C' > 0”. If the answer is no then the branching in the second tree is the same
as the branching in the first tree. Since the second coordinate is the value of J.,, J,
can trace along what the path does in 7} and thus figure out which way the branching
goes. Then, it can calculate C'(1). If the answer is yes, then branch is first place along
tree which makes it converge. But J., can do tracing through path by comparing second
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coordinate with true value until find extension which is long enough to converge. To
figure out branching in second tree, J., must trace back branching of first tree. Thus,
C,0* @ A, J;(A) can each simultaneously compute the sequence of trees. m

Corollary 12.0.3 Every C >7 0“) is minimal cover. That is, there is A < C such that
C' is minimal with respect to A.

Proof. Relativizing the minimal degree argument from last time, for every A there is
minimal cover M of A such that M <, A’. The construction is uniform in A and the
bound on the use of A’ does not depend on A. Hence, there is an operator J(A) = &2’
where the use of A’ is bounded by recursive function f. For any such operator J, there
is w-REA operator J such that J(A) =7 J(A) for all A. Why? Because wtt reducibility

is w-r.e., J(A)(x) = lim ®(z,s),®2(x,0) = 0, and the number of changes is bounded

by a recursive function:
[{s: @7 (,5) # (2,5 + 1)} < f(a).
We define the i column of J(A) by
T = {{a,5) : [{t <s: 0 (2,1) # D@ t + D} = fla) — i & D (w,5) # J(A)}

(Note that for i = f(z) the column is empty.) Therefore, J(A) <r (f & J(A)) so

J(A) <r J(A). Also, A
€ J(A) < (f(x),z,0) € J(A),

so J(A) <7 J(A) and J(A) =1 J(A). Moreover, J(A)* is RE in .J(A) so J(A) is an
w-REA operator because can take joins of columns. Hence J(A) is an w-REA operator
Turing equivalent to .J(A).

We apply the completeness theorem to J and C' to get A such that J(A) = C.
Therefore, J(A) =7 C and by assumption .J(A) is a minimal cover of A. m



