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Introduction

The introduction

0.1 Notation

N a; b; c; d; e; i; j; k; l;m; n; r; s; t; u; v; w; x; y; z
N! N f; g; h
N!2 sets A;B;C; U; V;W;X; Y; Z
partial functions �; ';  :::
Functionals �;	; ::: (continuous)
strings �; �; 
; �; �; �; �
String notation functional form if � = hx1; : : : xni then �(i) = xi+1 (perhaps prefer

hx0; : : : xn�1i); dom(�) = n = j�j length of �; order by initial segments � � � ; restriction
for m � j�j, � � m � � and j� � mj = m. Apply to functions on all of N as well: � � f ;
f � m.

vii
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Chapter 1

Beginnings

1.1 History, intuition, undecidability, formalization,
...

1.2 Formal de�nition, model of computation:

Turing machines (multitape with input, output and others)
Other notions: prim recursive + � (search); register machines; equation calcu-

lus?..

1.3 Relative computability: Turing machines with
oracles (on tape)

Recursive. (continuous) Functionals; oracles as inputs

1.4 Degrees, types of questions

algebraic, local...
second order, global: de�nability, automorphisms, theory
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Chapter 2

Basics

2.1 Turing machines and relative computability

Consider Turing machines with oracles. There is master (universal) primitive recursive
function,

'(�; e; x; s) = y

where the variables are � a string (initial segment), e a number (index), x a number
(input), s a number (steps, use); and the expression means that the Turing machine with
index e and oracle restricted to � given input x and run for s many steps converges and
outputs y.
Conventions, Actions if ask question outside domain or no convergence in s steps:

output �. Variables e; x; y range over natural numbers, N.
Properties:

(i) Use: If � � � and '(�; e; x; s) #= y then '(� ; e; x; s) = y

(ii) Permanence: If s < t and '(�; e; x; s) #= y then '(�; e; x; t) #= y

(iv) Domain of ' is computable, in other words there is a procedure to decide whether
' converges on any given tuple (�; e; x; s). This procedure simply runs the machine
with index e on input x and oracle �. If the machine arrives at an output by step
s, then answer yes (and otherwise, answer no).

De�nition 2.1.1 �fe (x) = y means that 9� � f9s
�
'(�; e; x; s) #= y

�
. So �fe (x) is a

partial function (recursive in f). ??We de�ne the use of a computation �fe (x) = y as
the least n such that '(f � n + 1; e; x; s) = y. We also say that � = f � n is the axiom
(about the oracle f) that gives this computation. Note that if f is changed at or below the
use then this axiom no longer applies and no longer have the same computation giving
the output y.

Note that this de�nition can be recast in terms of sets, �Ae (x) = y

3



4 CHAPTER 2. BASICS

De�nition 2.1.2 �Xe;s(x) means that we run �
X
e on x for s steps and report the output.

So, '(�; e; x; s) � ��e;s(x).

useconv De�nition 2.1.3 We adopt two conventions when the oracle is a �nite string �. First,
we run the Turing machine for only j�j many steps so we write ��e (x) for ��e;j�j(x).
Second, we require that for ��e (x) to converge we must have x < j�j.(Roughly speaking
we must read the input before giving an output.)

De�nition 2.1.4 f �T g means 9e(�ge = f).

Intuitive de�nition that there is a Turing machine with oracle g that compute f . Argue
that same. We use �e to denote �;e the eth Turning machine with oracle the empty set
(constant function 0). This is equivalent (explain) to the list of Turing machines without
oracles and we will often simply identify these two versions.

Theorem 2.1.5 (s-m-n Theorem) There is a one-one recursive function smn such that

8�y
�
�fe (x1; : : : ; xm; y1; : : : ; yn) = �

f
smn (e;�x)

(�y)
�
:

In fact, can view m and n as variables as well.

Notion of uniformity?

Theorem 2.1.6 Padding Lemma: 8e91i8f(�fe = �
f
i

Proof. Exercise: Informal argument and formal one using s-m-n Theorem.
Idea that s-m-n gives more: uniformity.

Theorem 2.1.7 Enumeration Theorem: List of partial recursive (in f) functions: �fe .

Theorem 2.1.8 (Recursion Theorem aka Fixed Point Theorem) If f is a recur-
sive function then there is an e such that for all g, �ge = �

g
f(e).

Kleene gave a one-line proof of the Recursion Theorem. But, it seems pretty magical.
We will soon see a di¤erent proof..
Intuitively the recursion theorem implies that we can call a function h within the

de�nition of f itself. This may seem counterintuitive or simply false. But think of the
procedure that we envision de�ning h except that it has calls to h. Replace the calls to f
by calls to �e. this gives us a computation procedure whose index (as a Turing machine)
is clearly recursive in e. Let f be the function computing the index of this procedure. By
the recursion theorem f has a �xed point e. Now argue that �e is a function (at least a
partial function) as desired for h.
The Recursion theorem will also be used when we talk about approximation proce-

dures.



2.2. TREES, CANTOR AND BAIRE SPACE; TOPOLOGY; PERFECT SETS 5

Pairing functions: desiderata for hx; yi.
2x3y; 1

2
(x2 + 2xy + y2 + 3x+ y)

hx; y; zi = hx; hy; zii etc.
hx1; : : : xni = hn; hx1; hx2 : : :iii
Uniformity over length n.Q
pxi+1i � 1 for hx1; : : : xni

�De�ne�uniformity by example.

2.2 Trees, Cantor and Baire space; topology; perfect
setstopology

trees of sequences from alphabet (formally identify with subset of N)
binary trees, n-ary trees, �nitely branching, f -branching
paths
Cantor space, Baire space
topology, open, closed, perfect sets
perfect trees
function trees

2.3 Partial orders and lattices

distributive
Boolean algebras
usl, lsl, susl, sls
universality issues

locally �nite?
partial lattices??

2.4 Interpreting theories and structures

�rst and second order logic
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Chapter 3

The Turing Degrees

Since f �T g is a transitive relation, we can de�ne the equivalence classes. These are the
Turing degrees, f = fgjf �T g & g �T fg. We then have the partial order � on D, the
set of Turing degrees, induced by �T .
Facts about the degrees:

� Has least element, 0, which is the degree containing all computable sets.

� There are elements of D other than 0. Two types of arguments. Counting and
construction/de�nition.

� There are 2@0 sets (subsets of N). By Cantor�s theorem 2@0 > @0. Moreover,
since there are countably many Turing machines, each degree is countable as a set
(f �T f+c any constant function c) and has at most countably many predecessors.
So, not only are there degrees other than 0, there are 2@0 many degrees. Speci�c
ones given later (DNR functions and the Halting Problem to start.)

� There is no largest degree because for each degree x, can �nd a DNR relative to x
and it is not below it. Relativization

� D is an upper semi-lattice. Can de�ne join _ on D: On sets/functions it is de�ned
by

f � g(2n) = f(n) f � g(2n+ 1) = g(n);

this is inherited by the degrees f _ g = degree of(f � g). Note that we can use the
join operator to produce a degree strictly above each degree because can take join
of a member of the degree with some DNR relative to it. Also by counting: take
any g not recursive in f (only countably many) and consider f � g.

Note that we denote degrees in boldface, a or f and sets or functions in lightface, A
or f .
We summarize these facts as follows.

7



8 CHAPTER 3. THE TURING DEGREES

Theorem 3.0.1 D is an uppersemilattice with 0 of size 2@0 with the countable predecessor
property.

We will see later (??) that every countable partial order and even uppersemilattice
can be embedded in D. This also holds for ones of size @1 (??). Indeed each is isomorphic
to an initial segment (downward closed subset) of D. For these results @1 is as far as
we can go. There are models of ZFC in which 2@0 > @1 with uppersemilattices (partial
orders) of size @2 that cannot be embedded in (as initial segments of) D. ??

Exercise 3.0.2 There is a co�nal sequence of degrees if and only if CH (continuum
hypothesis) holds in which case the sequence can be chosen to have order type @1.

graph Exercise 3.0.3 Every degree contains a set (i.e. characteristic function). (Graph(f))

Some more questions about D: how tall is it? how wide is it? is it a lattice? ...
Answers coming up.....
How do we �build� a nonrecursive function. We can �implement� the idea of the

proof of Cantor�s theorem that there are more functions on N than elements of N, i.e.
2@0 > @0. This idea is a really a procedure called a diagonal argue
We extract the crucial property in our setting in the following de�nition.

De�nition 3.0.4 (DNR) A function h is DNR (diagonally non-recursive) if 8n(h(n) 6=
�n(n)).

dnrnotrec Proposition 3.0.5 If h is DNR then h is not recursive.

Proof. By the diagonal argument...
We can now prove the recursion theorem.

Proof of Recursion theorem. Suppose not, i.e. 8e(�e 6= �f(e)). [Such an f is called
�x point free (FPF).] We try to build a recursive DNR h for the desired contradiction.
Since �e(e) 6= �f(e) for every e, we only need to make �h(e) = �f(�e(e)) to get h(e) 6=

�e(e). �Obviously�(by the s�m�n theorem), there is such a recursive h: given e �nd the
index of the machine which �rst computes �e(e) and if it converges then computes f of
the value and begins mimicking the machine with that index. This gives the description
a machine that computes �f(�e(e)) and so an index, h(e) for it. Going from e to h(e) is an
intuitively computable procure. Formally, the s-m-n theorem shows that it is a recursive
function. On the other hand, our assumption (that f is FPF) implies (as above) that h
is DNR for the desired contradiction.
Now to recover the standard constructive version of the theorem that actually com-

putes the �xed point (with the usual uniformity), note that the index k for h can be found
recursively in that of f (again by the s�m�n theorem). Now �h(e) = ��k(e) = �f(�e(e))
and so if we let e = k then h(k) = �k(k) is the desired �xed point: �h(k) = ��k(k) =
�f(�k(k)).



Chapter 4

R.e. sets and the Turing jump

4.1 The Jump Operator

De�nition 4.1.1 On functions, de�ne the jump as f 0 = fe : �fe (e) #g.

Proposition 4.1.2 f �T g implies that f 0 �T g0 and so the jump operator is well-
de�ned on the degrees.

Proof. Since f �T g, there is i such that f = �gi . So

e 2 f 0 , �fe (e) #, �
�gi
e (e) #

The s-m-n theorem gives a recursive one-one function k such that �gk(e;i) = �
�gi
e . In

particular,
e 2 f 0 , �gk(e;i) #, k(e; i) 2 g0

and so f 0 �T g0. Thus if f �T g then f 0 �T g0 and the jump operator is well de�ned
on D.

Proposition 4.1.3 f �T f 0

Proof. We need to compute f(n) using f 0?
If f is a characteristic function A (i.e. a set)then we can decide whether n 2 A

using A0 by recursively �nding an e such that �Ae (e) #, n 2 A. Formally, we can
appeal to the s-m-n theorem to get a recursive one-one function k such that for each n,
�Ak(n)(k(n)) #, n 2 A. This gives the desired reduction.
We can now appeal to Exercise

graph
3.0.3 for the theorem for all functions f: Or we can

prove it directly.

Exercise 4.1.4 Give a direct proof that f �T f 0 for all functions. Solution: Instead of
�nding index of machine which asks whether n 2 A, �nd a machine such that

�fk(n;m)(z) #, f(n) = m:

9



10 CHAPTER 4. R.E. SETS AND THE TURING JUMP

Then successively ask k(n; 0) 2 f 0?, k(n; 1) 2 f 0?, etc. until �nd k(n;m) 2 f 0 in which
case output f(n) = m. This procedure halts because of the assumption that f is a function,
hence total.

Proposition 4.1.5 f <T f
0

Proof. It clearly su¢ ces to �nd an h �T f 0 which is DNRf , i.e.

8n
�
h(n) 6= �fn(n)

�
We compute h from f 0 as follows: Given n, ask if �fn(n) # (in other words, if n 2 f 0). If
so, let y = �fn(n) and put h(n) = y + 1. If not, set h(n) = 0.
Conclusion: The jump is a strictly increasing, order preserving operator on the de-

grees.
The jump of the empty set is, of course, ;0. By our identi�cation of the Turing

machines without oracles with those with oracle ;, it is identi�ed with the usual halting
problem K = fej�e(e) #g, the set of indices e of Turing machines which halt on input
e. One often wants to consider alternate versions such as K0 = fhx; yi j�x(y) #g. We
can consider this as an alternative version of K or of the jump in general because the
produce sets of the same degree.

Exercise 4.1.6 For every f , f 0 �T fhx; yi j�fx(y) #g.

In fact, more is true as we shall see in ?? (1-1 equivalence) and ?? (recursive isomor-
phism).

4.2 Trees and König�s Lemma

So we have two ways of �getting� nonrecursive sets - diagonalization and the halting
problem. Have seen that the second computes an example of the �rst. What about
the other way? Does every DNR function compute K? If not, what can we say about
the needed complexity (if there is any)? We take a side trip to an example of reverse
mathematics and a comparison of the �strength�of versions of a well known combinatorial
principle: König�s Lemma.
While there are many mathematical de�nitions of a tree (and we will see others later),

for now we take a simple representation. Remembering that we are in the world of the
natural numbers, it makes sense to sue (for now at least) the following de�nitions.

tree De�nition 4.2.1 A tree T is a subset of N<N, the set of �nite strings of natural numbers,
that is closed downward under the natural partial order � � � : � is an initial segment of
� . (Or in the functional notation �(n) = �(n) for every n < j�j. (We use j�j to denote
the length of the sequence � or in the functional notation its domain with the ordering on
N given by 2 on the usual set theoretic representations of the natural numbers.) The root
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of any of our trees is then the empty string (or set) ;. A binary tree is a tree of binary
sequences, i.e. a downward closed subset of 2<N. A �nitely branching tree is a tree T
such that for every � 2 T there are only �nitely many � 2 T with � � � and j� j = j�j+1.
If T is a tree we say that a subset P of T is a path on T if P is in�nite, linearly ordered
and downward closed (with respect to �). The set of paths on T is denoted by [T ]. The
elements of a tree are often called nodes and ones with no successors in the tree, leaves

Exercise 4.2.2 If you know some general abstract de�nition of a (binary, �nitely branch-
ing) tree, do all of ours satisfy the de�nition you know?

Exercise 4.2.3 (Thought Problem) Think about what a �converse�might mean. We
are restricted to countable sets (trees) but can we think of any countable tree as (�iso-
morphic to�) one of ours? In general, what does it mean to code mathematical structures
in N?

KL Lemma 4.2.4 (König�s Lemma) If T is an in�nite, �nitely branching tree then T has
an in�nite path.

Proof. We �construct�a path P in T by recursion. At each step t we have a node �t
in T of length t with in�nitely many successors on T . We begin, of course, with the root
; = �0 relying on the fact that T is in�nite to satisfy our condition. If we have �t we
consider its immediate successors in T . By assumption there are only �nitely many and
so one of them say �t^x has itself in�nitely many successors on T . We let z be the least
such x and let �t+1 = �t^z. It is clear that P = f�tjt 2 Ng is a path in T .

WKL Lemma 4.2.5 (Weak König�s Lemma) If T is an in�nite binary tree then T has an
in�nite path.

Is this proof (of König�s Lemma) constructive or e¤ective? If not could there be one
that is? Is it �easier� to prove Weak König�s Lemma than the full one? Is it easier
to construct a path in an in�nite, binary tree than an arbitrary �nitely branching one?
What might these questions mean? Not every in�nite tree has a path at all but what
about arbitrary trees with paths? How hard is to construct one?
We begin with the �rst question. One way of making the question precise is to ask

if every in�nite �nitely branching (or binary) recursive tree T has an in�nite recursive
path. Or more generally if every in�nite �nitely branching (or binary tree) T has an
in�nite path recursive in T . If so, we might also want there to be a uniformly e¤ective
procedure that produces such a path, i.e. an e such that �e(T ) is an in�nite path in T
for every �nitely branching or perhaps every binary tree. The answer is no for all the
versions and the proof is intimately connected to the notion of DNR functions. On the
other hand, we claim that König�s Lemma is more complicated than the weak version,
i.e. it really is weaker. The analysis here is intimately connected to the jump operator.

Theorem 4.2.6 There is an in�nite recursive binary tree with no in�nite recursive path.
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Proof. We want an in�nite binary tree T such that for every f 2 [T ], f 2 DNR. If we
did not have to make T recursive, we could simply take all the binary strings � that satisfy
the de�nition of a DNR function on their domains: f� 2 2<Nj(8n < j�j)(�(n) 6= �n(n))g.
However, this set is not recursive (Exercise

norectree
??). We can however, eventually recognize

when a binary string � fails to be in this set by seeing at some stage s that �n;s(n) #= �(n)
for some n < j�j. The picture for building the desired (or any) recursive tree is that we
are e¤ectively going along deciding which strings are in T . Say at stage s of our recursive
construction we must decide for every binary string of length s if it is in T or not. (This
makes T recursive.) We eliminate unwanted paths when we recognize that some � has
failed our test for being DNR. More precisely if at stage s we see that �n;s(n) #= �(n)
for some n < j�j then no strings � � � are ever put into T at any stage t � s. Formally,
T = f� 2 2<Nj(8n < j�j)[:(�n;j�j(n) #= �(n)]g. By our basic facts about our master
function ', T is clearly recursive. Consider now any f 2 [T ]. If f =2 DNR then there is
some n and s such that �n;s(n) #= f(n). By de�nition no � � f with j�j � n; s can be
on T and so,of course, f =2 [T ] for the desired contradiction.

nonrectree Exercise 4.2.7 The tree S = f� 2 2<Nj(8n < j�j)(�(n) 6= �n(n))g is not recursive.

Theorem 4.2.8 There is an in�nite recursive �nitely branching tree T such that every
path in T computes 00.

Proof. We want to code 00 into every in�nite path f on a recursive tree T . Now T is
a subset of N<N the set of all �nite strings. In analogy with the previous construction,
we might think of ourselves as beginning with the nonrecursive tree consisting of the
single path f such that f(n) = 0 if �n(n) " and f(n) = s if s is the �rst stage t such
that �n;t(n) #. We now want to turn this into a recursive, �nitely branching tree T such
that f is its only path. We follow the plan of keeping �bad�strings from extending to
paths of the last construction and set T = f� 2 N<Nj(8n < j�j)(�n;j�j(n) " ) �(n) =
0 & �n;j�j(n) # ) �(n) = s where �n;s(n) # but �n;s�1(n) ")g. Now T is easily seen to
be recursive from our basic facts about '. Moreover by de�nition for each n there are at
most two numbers r such that �(n) = r for any � 2 T (0 and the �rst stage t such that
�n;t(n) #). Thus T is �nitely branching.

T is also in�nite as, by induction, for every � 2 T either �^0 2 T or �^s 2 T for s the
�rst stage t such that �n;t(n) # (and perhaps both). We now claim that the f de�ned
above is the only path on T . Suppose g 2 [T ] and consider g(n) for any n. If �n(n) "
then for every � 2 T with j� j > n, we must have �(n) = 0 by the de�nition of T . On the
other hand, if �n(n) # then let s be the �rst stage t such that �n;t(n) #. Again by the
de�nition of T , if � 2 T and j� j > n; s then �(n) = s. As g � n + s 2 T , we must have
g(n) = s as required.
So solving the problem of �nding a path in any in�nite recursive �nitely branching

tree provides a calculation of 00. Note that one might say that T is 2-branching but it is
not a binary tree under our current de�nitions. This is perhaps somewhat mysterious but



4.2. TREES AND KÖNIG�S LEMMA 13

an important distinction as well shall see. There are at most two immediate successors
of each � but we cannot recursively bound what they might be.
By relativization if we can �nd a path in every �nitely branching tree, we can compute

the jump operator. What about binary trees? It is by no means obvious, and indeed
requires several ideas, to provide a proof but this is not the case for �nding paths in in�nite
binary trees. How can we make this precise. We can capture the idea that it is �possible�
to always be able to solve one problem (such as �nding paths in in�nite binary trees)
without being able to solve another (�nding paths in in�nite �nitely branching trees) by
using the notion of a model. We understand �being able�to include the idea that if we
have some f then we have any g �T f and similarly if we have both f and g then we have
f � g. We make this precise by saying that there is a class C of functions closed under
�T (and �) such that such that for every T 2 C that is (the characteristic function of)
an in�nite binary tree then there is an h 2 C which is a path in T . So in C we can solve
the �rst problem. On the other hand, there is an in�nite �nitely branching tree T 2 C
for which there is no path in C. Thus we have a �model�in which every in�nite binary
tree has a path but not every in�nite �nitely branching tree has one. The proof of these
assertions will come in ??.
In the other direction, as every binary tree is �nitely branching, it is immediate that

if every in�nite �nitely branching tree in C has a path then so does every in�nite binary
tree. Thus we will be able to conclude that solving the problem of �nding paths for
in�nite �nitely branching trees is strictly harder than the analogous problem for binary
trees. This result is intimately related to a similar claim about how hard it is to prove
Lemmas

KL
4.2.4 and

WKL
4.2.5 in the sense of what axioms are needed for the proof. This is

the subject of reverse mathematics. We will return to such issues at a few points in this
book. Survey or introductory articles include...????. The basic text is Simpson ??
Relations with �nding a DNR function: DNR2 � FPF, DNRk but DNR weaker? An

example of reverse mathematics. Arbitrary trees much harder.
some exercises
Finding solutions for König�s Lemma, even for recursive trees, requires more than 00.

This is an example where closure under solving two problems is equivalent but one can�t
get by with a reduction that (e¤ectively) transforms a problem of one type into one of
the so that any solution of the second computes one of the �rst.
Medvedev and Muchnik degrees. ...For later after do INF� 000"

Exercise 4.2.9 Show that every in�nite, �nitely branching tree T has a path recursive
in T 00. Build a recursive tree such that any path computes 000.

Exercise 4.2.10 Show that not every in�nite tree has a path.

Exercise 4.2.11 Relation to compactness, topological and logical.
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4.3 Recursively enumerable sets

We began with the notion of what it means for a set or function to be computable
(recursive). We now want to consider a weaker notion. The idea is that, for a set A,
while we might not be able to decide if n 2 A, we might nonetheless be able to list its
elements. That is we might have a recursive function whose values are the elements of
A (assuming A 6= ;). For such sets we have a recursive way of enumerating its elements:
f(0); f(1); : : : ; f(n); : : :. So if x 2 A we eventually �nd out by enumerating that fact
when we get to f(n) = x for some n. If x =2 A we may never discover that fact. (If we
could, A would be recursive by @1

De�nition 4.3.1 The following equivalent conditions de�ne the statement �A � N is
recursively enumerable (r.e.) in B�:

� A is the domain of a partial recursive in B function. Notation: WB
e = dom�

B
e .

� A is the range of a partial recursive function.

� A is either the range of a total recursive in B function or is empty.

� A is either the range of a 1-1 recursive in B function or is �nite.

Theorem 4.3.2 A is recursive if and only if both A and �A = N� A are r.e.

Recall that A0 = fe : �Ae (e) #g. So, A0 is r.e. in A because it is the domain of the
function that on input e runs the eth machine with oracle A with input e. We want to
show that A0 is the most complicated set r.e. in A in various precise ways.
We say that a set A is reducible to one B if there is some procedure that allows us to

decide membership in A using membership in B: We have already met the most impor-
tant and fundamental such reducibility that of Turing: A �T B. We can compute the
membership of A by asking questions about the membership of elements in B during the
computation. It may adaptively determine which questions it asks based upon answers
to previous questions. We now de�ne some other notions of reduction which are stronger
than that of Turing in the sense that they imply but are not, in general, implied by
Turing reducibility.
De�nition.

1. 1-1 reducibility(�1): A �1 B if there exists a one-one recursive function f such
that 8x x 2 A if and only if f(x) 2 B.

2. m or many-one reducibility (�m): Same as one-one reducibility except f is an
arbitrary (so possibly man-one) recursive function.

3. truth-table reducibility (�tt): A �tt B if there exists a recursive function f such
that f(x) is a propositional formula � in variables p1; :::; pk such that for all x x 2 A
if and only if B satis�es �. EXPLAIN
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4. weak truth-table reducibility (�wtt): A �wtt B if there exists a recursive function
f and a Turing machine �e such that �Be = A and the use of computation in �Be (x)
is at most f(x) for all x. This is sometimes called bounded Turing reducibility
(�bT ). EXPLAIN

Note that we have the following:

A �1 B ! A �m B ! A �TT B ! A �wtt B ! A �tt B ! A �T B:
Intuitively, we can think of the truth table reduction as giving a Boolean function which
when given the answer to the oracle queries, will produce the �nal answer of the reduction.
Note that all time bounded complexity classes are tt reductions
The �rst three reducibilities are total procedures in the sense that applied to any set

they always produce a set as output. The �nal one is not. It is like a tt reduction but
may be partial on some sets. In fact tt reducibility is characterized by its being total on
all set inputs.

Theorem 4.3.3 (Nerode�s Theorem) A �tt B if and only if there is e such that
A = �Be and �

X
e is a total (characteristic) function for every X.

Proof. Since tt is total by de�nition, one direction is immediate. For the other direction,
say �Xe is total for all X and �Be = A. What happens when we run �Xe (n) for some
unknown X? We can build a computation tree which branches (in two) whenever the
program asks a question m 2 X with the branches corresponding to the possible answers
0 or 1 to this question. We terminate the tree when the Turing machine halts (when it
gets the answers supplied along the route followed so far). Since the computation halts
for every oracle X, all possible paths are are terminated so (using even Weak König�s
Lemma) the tree is �nite. We can build a truth table that corresponds to this reduction
(propositional variables encode branch points and return outputs at end of every path).
This is e¤ective and gives a truth table reduction from A to B.

Diagram

This theorem depends essentially on the fact that we restricted our attention to sets
rather than all functions. One way of looking at this is that 2N is a compact space (Cantor
space) but NN (Baire space) is not. (The paths through a binary tree form a closed (and
so compact) set in Cantor space. Each node at which we terminate the tree determine
an open set (all paths extending it). If they cover the space (no paths in the tree) then
by compactness some �nite subset of these open sets cover the space and so the tree is
�nite (all nodes are initial segments of one of the �nitely many nodes determining the
open sets that form the cover of the whole space. Another (equivalent) one related to our
discussion in the last ?? section is that if we are dealing with binary trees (we branched
to 0 or 1 depending on whether some number is in our set) then if every path terminates,
the whole tree is �nite. (The compactness of 2N is equivalent to WKL. (EXPLAIN). The
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theorem is not true?? for arbitrary functions in the oracle. They would allow for in�nite
branching in our computation tree and König�s Lemma fails for arbitrary trees (NN is
not compact).
We now want to show that ;0 is the most complicated r.e. set. We could show that

A �T ;0 for every r.e. set A but in view of these new reducibilities we have just de�ned
we can hope for more.

De�nition 4.3.4 A set A is called an r-complete set for class C if A is in C and for
every B 2 C, B �r A.

Proposition 4.3.5 A0 is 1-complete for the class of sets r.e. in A.

Proof. We already know that A0 is R.E. in A. So we only need to prove for all e,
WA
e �1 A0. By de�nition, x 2 WA

e i¤ �
A
e (x) #. So, the s-m-n theorem gives a recursive

one-one k such that �Ae (x) = �
A
k(e;x)(k(e; x)). Hence, we have x 2 WA

e i¤ k(e; x) 2 A0.

Proposition 4.3.6 If B �m A0 then B is r.e. in A so for all A;B, B �m(1) A0 if and
only if B is r.e. in A.

Proof. By de�nition of �m, there is recursive f such that x 2 B implies f(x) 2 A0

implies �Af(x)(f(x)) #. So, we can use the s-m-n theorem to get that x 2 B i¤ �Ai (x) #
for some i, hence B = WA

i . The rest of the assertion then follows from the previous
Proposition.
We have seen that A �T B implies A0 �T B0. Now we present a similar result that

links Turing-reduction with m(1)-reduction.

Proposition 4.3.7 Proposition 4.3.8 A �T B , A0 �m B0 and A �T B , A0 �1
B0.

Proof. We �rst prove that A �T B ) A0 �1 B0. So, we want to determine whether
�Ax (x) # by asking a membership question in B0. We claim that �Ax (x) # i¤�Bf(x)(f(x)) #
for some recursive 1-1 function f . Why? because for each x, we can produce a machine
with oracle B which ignores its input and computes �Ax (x) by simulating the machine �

A
x

and whenever it asks a question about A, compute A from B as given by assumption.
This gives a recursive method for producing index f(x), which can be made 1-1 by the
Padding Lemma. (or use s-m-n)
Now we prove A0 �m B0 ) A �T B. In contrast, it is not the case that A0 �T B0 )

A �T B. (see ??)
Recall that A �1 A0 (hence A �m A0) because A is r.e. in A (it is the domain

of procedure with oracle A which returns yes if x 2 A and loops forever otherwise).
Likewise, �A �1 A0, hence �A �m A0, because �A is r.e. in A.
By earlier converse, A �m A0 �m B0 implies A is r.e. in B and �A �m A0 �m B0

implies �A is r.e. in B. Since A is recursive in B i¤ A; �A are both r.e. in B (??), A is
recursive in B.
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limitlemma Theorem 4.3.9 (Shoen�eld Limit Lemma) A �T B0 , 9f �T B such that 8x
�
A(x) =

lims!1 f(x; s)
�
. Note that asserting that lims!1 f(x; s) exists means that f(x; s) is even-

tually constant for �xed x.

??Slogan: E¤ective in the jump just in case have eventually correct recursive approx-
imation.
Proof. Say A �T B0, in other words A = �B

0
e equating the set with the function means

that the characteristic function of A is �B
0

e . We want f �T B such that lims!1 f(x; s) =
A(x). Certainly, A(x) = lims!1�

B0
e;s(x). This is recursive in B

0, but not in B. In order
to make it recursive in B, we want to approximate the oracle B�recursively in B. Since
B0 = fe : �Be (e) #g, B0

s = fe : �Be;s(e) #g is an approximation for B0 recursive in B. In
fact, B0 = lims!1B

0
s because approximation changes at most once for each e.

We can approximate any WB
e similarly by WB

e;s = fn : �Be;s(n) #g and lims!1W
B
e;s =

WB
e . ??Extract notation??
So, de�ne f by As(x) = �

B0s
e;s(x) = f(x; s) (with the convention that if � hasn�t

answered by time s, return � no�). Then f �T B. It remains to verify that A(x) =
lims!1 f(x; s). Since A = �B

0
e (x), there is s such that A(x) = �

B0
e;s(x) = �

B0
e;t(x) for all

t � s. The computation of A only uses �nite information about B, say � � B. Moreover
there is s1 such that B0

t(n) = B0(n) for all n < j�j (aka B0
t � j�j = B0 � j�j) for all t � s1,

because of permanence and the properties of limits.
Conversely, suppose there is f �T B and A = lims!1 f(x; s). We want to show

that A �T B0. To �nd A(x), we could start computing f(x; 0); f(x; 1); f(x; 2) : : : and we
know that eventually we get the right answer. But how do we know when to stop? By
de�nition

9s8t > s
�
f(x; t) = f(x; s)

�
and for this s, A(x) = f(x; s). De�ne the following program recursive in B: �Bk(s)(s) # i¤
(9t > s)

�
f(x; s) 6= f(x; t)

�
. Note that fs : �Bk(s)(s) #g �T B0. We can apply the program

iteratively: does f change after stage 0? If so, can �nd s0 where it changes. Does it
change after s0? etc. This procedure halts because f is eventually constant (since it is a
limit).
In applications of the Limit Lemma, without loss of generality we adopt the convention

that we consider only functions f for which 8x(f(x; 0) = 0).

Theorem 4.3.10 A is r.e. in B i¤ there is f �T B such that for all x, A(x) =
lims!1 f(x; s) and f(x; s) changes at most once (jfs : f(x; s) 6= f(x; s+ 1)gj � 1).

Proof. If there is such an f , let �Be (x) be the program which searches for an s such that
f(x; s) = 1, and halts if it �nds one. Then A = dom�Be so A is r.e. in B. Conversely, if
A is r.e. in B, then A = dom�Be for some e. Let f be the function

f(x; s) =

(
1 if �Be;s(x) #
0 otherwise:
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Then f �T B, lims!1 f(x; s) = A(x) and jfs : f(x; s) 6= f(x; s+ 1)gj � 1.
A is di¤erence of sets r.e. inB if 9f8xf(x; s) changes at most twice. ThenA = C0�C1

both r.e. in B.
Continuing in this fashion, get the di¤erence hierarchy (Putnam-Gold hierarchy).

De�nition 4.3.11 A is an n-r.e. set if there is a recursive function f such that for all
x, A(x) = lims!1 f(x; s) = A(x) and jfs : f(x; s) 6= f(x; s+ 1)gj � n.

We can connect this de�nition with di¤erence of r.e. sets: A is n-r.e. i¤

A =

(
(((We1 �We2) [We3) � � � )�Wen if n is even

(((We1 �We2) [We3) � � � ) [Wen if n is odd;

where We1 ; : : : ;Wen are r.e. sets.

De�nition 4.3.12 A is !-r.e. if there are recursive functions f; g such that A(x) =
lims!1 f(x; s) and f(x; s) changes at most g(x) many times.

Exercise 4.3.13 Show that, for each � � !, there are �-r.e. sets which are not �-r.e.
for any � < �. Hint: list all n-r.e.(for �xed n or the for all n uniformly) sets and
diagonalize making only n+ 1 (�nitely) many changes .

Exercise 4.3.14 Show X is !-r.e. i¤ X �tt 00 i¤ X �wtt 00

Note that in general, tt reducibility doesn�t coincide with wtt reducibility. What do
we know so far about the reducibilities?

Proposition 4.3.15 �T 6=�m, �T 6=�1
Proof. If X �m A and X �m �A and A is r.e. then X is recursive. Why? X �m A and
A r.e. implies that X is re; X �m �A, �X �m A so �X r.e. as well. However, 00; 00 �T 00,
and 00 r.e. but not recursive. So �T 6=�m and �T 6=�1.

Exercise 4.3.16 Show that 1 � 1;m; tt; wtt; T are all distinct reducibilities. Hint: for
wtt and T make list of the reductions (applied to some �nite oracle). How hard is it to
do this? Try for something recursive in 00 and then diagonalize. wtt but not tt is too
hard. again list total tt-functions but now build both A and B in stages. In A put in
only 0 except when might diagonalize. In B put in sequence of 1�s of length the next e
to diagonalize ending at a place where we will diagonalize in A and then at least one 0.
(Fill in A with 0�s until this point.) Then �ll in B with 0�s until force convergence so
decide what to put into A. So for x to be in A must have x 2 B and x + 1 =2 B then
check B � x to see how many 1�s in the list ending at x, say it is e, then compute how
many 0�s need to put into B to make �e(x) # and �nd answer. A(x) is the opposite.

The Ershov hierarchy extends the di¤erence hierarchy into the trans�nite. If we
exhaust the recursive ordinals produce precisely all the sets recursive in 00.
Recursively inseparable sets. Gödel�s incompleteness theorem.
One-one equivalence same as recursive isomorphism. Explain, prove.
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4.4 Arithmetic Hierarchy

Notion of language for �rst order arithmetic. Then for arithmetic. Tension between
expressiveness and simplicity. For our purposes want language to be recursive (and so all
typical syntactic properties are recursive) and each function and relation to be (uniformly)
recursive (and so all quanti�er free relations are recursive). On the other hand want to
as much as possible to be expressible as �simply�as possible.
What at a minimum. Want say 0 then perhaps successor s(x) and/or addition x+ y.

In what sense is addition de�nable from successor (by recursion; implicitly; second order)?
We want to restrict de�nability to �rst order formulas. Note that multiplication, x � y, is
not de�nable from addition.
Presburger addition is decidable.
Peano arithmetic or even Robinson arithmetic is not. Gödel�s incompleteness theorem.

(forward reference to proof). Idea of representation of recursive functions so decidability
would solve the Halting problem. So we need at least multiplication. Typically put in <
and 1 as well although they are de�nable from addition.

Exercise 4.4.1 De�ne < and 1 from +; 0 in arithmetic.

May want to put in more to make all recursive functions easily de�nable.

Exercise 4.4.2 With a recursive language (and interpretation as uniformly recursive
functions and predicates) it is not possible to de�ne all recursive functions by quanti�er
free formulas.

So we need to go to formulas with at least one quanti�er. We can make life simple
by adding in one master recursive predicate for '(�; e; x; s) = y (so capturing the partial
function). It is then immediate that every recursive predicate and function is de�nable
by an existential formula, i.e. one of the form 9x19x2 : : : 9xn� where � is quanti�er
free. Or we can cite the theorem of Matijasevich (Davis, Putnam and Robinson) solving
Hilbert�s 10th problem negatively by showing that every r.e. set W is the solution set
for a polynomial (with many variables), i.e. there is a polynomial p(x; �y) such that
W = fxj9�y(p(x; �y) = 0g.
The language of arithmetic has symbols +;�; <; 0; 1; '(�; e; x; s). The �n;�n formu-

las of arithmetic are de�ned as follows:

� �0 = �0 are quanti�er free formulas

� �n+1: 9�x(F (�x)) for F 2 �n

� �n+1: 8�x(F (�x)) for F 2 �n
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An intermediate route puts bounded quanti�ers into the language (9x < s, 8x < s) as
well as a few select predicates or functions � for coding �nite sequences (of variable length)
and the corresponding projection functions. (Explanation and/or thought exercise.) If
we do so, �0 = �0 have only bounded quanti�ers. Note that the predicates de�ned by
such formulas remain recursive.
Prenex normal form. Collapse like quanti�ers. Move bounded quanti�ers past un-

bounded ones.
A relation is �n or �n if it is de�ned by a �n or �n formula. A relation is in �n if it

is de�ned by both a �n and a �n formula. Note that the notion of �n is semantic rather
than syntactic.
Properties of �n;�n;�n Relations:

� If A;B 2 �n then A [B 2 �n, A \B 2 �n, �A 2 �n.

� If A 2 �n then �A 2 �n.

� �n is closed under projection. That is, if A(x; y) 2 �n then fy : 9xA(x; y)g 2 �n.

� Both �n and �n are closed under bounded quanti�cation. For F 2 �n,

9x < sF � 9x
�
F (x) ^ x < s

�
;

and
8x < s9y1F � 9y

�
y is an s-tuple ^ 8x < sF (x; �x(y))

�
:

Note that this is su¢ cient because both checking tuple-hood and the projection
functions are recursive so can use master function ' to represent them in our
language.

� Uniformity.

We can relativize �An ;�
A
n ;�

A
n by adding a syntactic predicate A(x) to the language

and interpreting it in the semantics as the particular oracle set A.

Proposition 4.4.3 When we add in extra unary predicates or function symbols, the
truth of �0 formulas (even with bounded quanti�ers) depends only on the values of the
predicates (functions) below some value which can be computed recursively in the formula.

We now see that we can de�ne the recursive predicates as simply as possible.

Proposition 4.4.4 B 2 �A1 , B is r.e. in A.

Move proof here.
So the recursive predicates (sets) in A are precisely the ones that are �A

1 .
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4.5 The Hierarchy Theorem

Theorem 4.5.1 (Post�s Hierarchy Theorem) 1. B 2 �An+1 , B is RE in some
�An set.

2. A(n) is �An m-complete for n > 0.

3. B 2 �An+1 , B is RE in A(n).

4. B 2 �A
n+1 , B �T A(n).

Proof. We will need to use induction. Let�s start with base case for (3), i.e. B 2 �A1 , B
is RE in A. Suppose x 2 B , 9yF (x; y; A) where F has only bounded quanti�ers.
Note that a formula which only contains bounded quanti�ers is recursive in A. Let
�Ae (x) #, 9yF (x; y; A) be the function which checks each value of y in turn and return
� yes�answer if it �nds one. So, B = WA

e and is RE in A. Conversely, suppose B is RE
in A. Then B = WA

e . This means that x 2 B , 9�9y9s
�
'(�; e; x; s) ^ � � A

�
. Note

that � � A is a bounded quanti�er formula so we have a �A1 de�nition of B.
To prove (1): The base case is B 2 �A1 , B is RE in some �A0 set. Above we showed

that if B 2 �A1 then B is RE in A, which is �A0 . Conversely, if B is RE in some other �A0
set, C, then since C is recursive in A, B is also RE in A so also use (3) to get B 2 �A1 .
For the induction, suppose B 2 �An+1. So x 2 B , 9yF (x; y) where F (x; y) 2 �An .

In particular, B is �F (x;y)1 so is RE in F (x; y) by the base case. Hence, B is RE in the
�An set F (x; y). Conversely, if B is RE in W 2 �An , by the base case, B is �W1 . So,
x 2 B , 9�; y; s

�
'(�; e; x; s) = y ^ � � W

�
which is a �An de�nition.

To prove (2): We�ve previously shown that A0 is them-complete RE set. It remains to
do the induction step. A(n+1) =

�
A(n)

�0
, which by the n = 1 case is the m-complete �A

n

1

set. By induction, An 2 �An so using (1) and that fact that being RE in X is the same
as being RE in �X, we have that A(n+1) 2 �An+1. For completeness, suppose B 2 �An+1.
Then by (1), B is RE in some �An set C. So, B is RE in �C 2 �An . By the induction
hypothesis, A(n) is �An m-complete, so B is also RE in A(n). But X 0 is the 1-complete
RE set, so B �m

�
A(n)

�0
= A(n+1).

To prove the induction step of (3): B 2 �An+1 if and only if B is RE in some �An set,
C (by 1). This happens if and only if B is RE in �C 2 �An , which (by 2) happens if and
only if B is RE in A(n).
For (4): B 2 �A

n+1 , B 2 �An+1 \ �An+1 , B is RE in A(n) and �B is RE in A(n) ,
B �T A(n).
The hierarchy theorem tells us that one quanti�er corresponds to one iteration of jump

operator. For example, we have that if F is a predicate recursive in A, then 9xF �T A0
and 9x8yF �T A00.
Moreover, the hierarchy theorem also shows that the jump hierarchy is real: there are

new sets at each levels. In particular, A <T A
0 implies that we have a strict hierarchy

and An 2 �n n �n. So we have �n 6= �n and
�0 = �0 = �0 ( �1 ( �1 � � �
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Diagram

4.5.1 Index sets

De�ne and samples

Exercise 4.5.2 Prove that fejWA
e = ;g is 1-complete for �A1 .

Exercise 4.5.3 Prove that fejWe is in�niteg is 1-complete for �A2 .

Tot Exercise 4.5.4 Prove that fej�e is totalg is 1-complete for �A2 .

Exercise 4.5.5 Prove that fejWe is co�niteg is 1-complete for �A3 .

Exercise 4.5.6 Prove that fejWe is recursiveg is 1-complete for �A3 . Hint: movable
marker argument to �x location for diagonalization if not co�nite.

4.6 Jump Hierarchiesjumphier

We would like a sense of what it means for a set to be small, or near 0.

De�nition 4.6.1 X is low if and only if X 0 = 00.

This is as close as you can get to measuring smallness using the jump. It says that the
jump of X is as small (low) as possible. In many ways, such low sets look like recursive
sets.
If we consider sets below 00, it is easy to see what it means for its jump to be as big

as possible.

De�nition 4.6.2 For X < 00: X is high if and only if X 0 = 000.

Again, many constructions which can be done below 00 can be done (more carefully)
below any high set. Can we extend these notions of smallness and largeness beyond the
degrees �rst jump?

De�nition 4.6.3 X 2 L2 if and only if X 00 = 000; for X < 00, X 2 H2 if and only if
X 00 = 0000.
X 2 Ln if and only if X(n) = 0(n); for X < 00, X 2 Hn if and only if X(n) = 0(n+1).

Now we generalize to degrees not necessarily below 00 again trying to capture the idea
that the jump of a set is a small (low) or as large (high) as possible.

De�nition 4.6.4 X 2 GL1 if and only if X 0 = X _ 00; X 2 GH2 if and only if X 0 =
(X _ 00)0.
X 2 GLn if and only if X(n+1) = (X _ 00)(n); X 2 GHn if and only if X(n) = (X _ 00)(n).



Chapter 5

Embeddings into the Turing Degrees

5.1 Embedding Partial Orders in D
So far the only degrees we know are 0 and the iterations of the jump beginning with 00.
Are there others? Is D a linear order? If not, how �wide�is it? How far away from being
a linear order? Where do these other degrees lie with respect to the ones we already
know? We begin answering these questions by considering what is perhaps the simplest
question and showing that D is not a linear order.

Notation 5.1.1 We write AjTB, A is Turing incomparable with B, for A �T B and
B �T A.

KP Theorem 5.1.2 (Kleene and Post) 9A0; A1(A0jTA1).

How can we approach such a result. We will recast the desired properties of the sets
we want to construct into a list of simpler ones Re called requirements. Then we will
choose an approximation procedure so that we can build a sequence of approximations
�i;s �converging� to Ai so that the information in an an approximation h�i;si can be
su¢ cient to guarantee that we satisfy one of the requirements in the sense that Re will
be true of any pair Ai � �i;s.
Proof. We will build A0; A1. The requirements necessary to guarantee the theorem are:

Rhe;ji : �
Aj
e 6= A1�j

for all e 2 N, j 2 f0; 1g. It is clear that if we the sets we construct satisfy each
requirement then the sets satisfy the demands of the theorem. Our approximations in
this case will be �nite binary strings (so initial segments if characteristic functions) �j;s
such that Aj = [j�j;s.
The construction will not be recursive because A0; A1 can�t both be recursive and

incomparable. But, the approximations won�t change once de�ned at some x; in other
words, �j;s � �j;s+1 so we get better and better approximations.

23
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What actions will satisfy a requirement? Given �j;s (j = 0; 1), we want �j;s+1 � �j;s
to guarantee that we satisfy Rhe;ji. For de�niteness, let j = 0. We want �0 � �0;s,
�1 � �1;s such that for any A0 � �0, A1 � �1, �A0e 6= A1. In other words,

9x:
�
�A0e (x) 6= A1(x)

�
We can choose x as the �rst place x at which �1;s is not de�ned (formally x = dom(�1;s) =
j�1;sj). Ask if 9�0 � �0;s

�
��0e (x) #

�
. If so, we can choose � least�such �0. Which order-

ing does the � least�refer to? We can make a master list of all convergent computations
'(�; e; x; t), i.e. fh�; e; x; ti : '(�; e; x; t) #g and then � least� refers to least quadruple
h�; e; x; si in this list.
Then, set �0;s+1 = �0 and �1;s+1 = �^1;s(1 � ��0e (x)). By the use properties, if

A0 � �0 = �0;s+1 and A1 � �1;s+1 then

�A0e (x) = �
�0
e (x) 6= 1� ��0e (x) = A1(x):

What if no such �0 exists? We do nothing, i.e. we set �i;s+1 = �i;s. This �nishes the
construction.
A general principle of our constrictions is do the best you can, and if you can�t do

anything useful, then do nothing and hope for the best (i.e. that what you can is enough).
In this case, it is enough because if A0 � �0;s then �Ae (x) ". (If �Ae (x) # for any A � �0;s
then the computation only requires �nitely much information about A and so ��e (x) #
for some �nite initial segment � of A. As A0 � �0;s we can certainly take this � to
extend �0;s as well if �A0e (x) #.) So �A0e is not total and can certainly then not be the
characteristic function of a set, i.e. �A0e 6= A1.)
Thus we have actually veri�ed that the construction satis�es all the requirements and

so provides the desired sets. Consider Rhe;ji. Look at the stage s at which we acted for
this requirement. Either we did something (de�ned �i;s+1 6= �i;s) which guaranteed the
requirement by guaranteeing that �Aje (x) #6= A1�j(x) at some x; or we did nothing by
setting �i;s+1 = �i;s but in that case we also guaranteed that the requirement is satis�ed
by making �Aje (x) " for some x.
Questions:

1. How do we know that this construction keeps going...i.e. that there is no point
from which we � do nothing�. If that was the case, then both A0; A1 are �nite �
bad! Why doesn�t this happen? Is it necessary to include another requirement to
guarantee this: Qe : �j;s � e (these are easy to satisfy). Whenever we do act on
a requirement, we make one of the ��s longer and since in�nitely often there is an
index e which doesn�t look at its oracle and outputs 0, at stage where we deal with
requirement with index e, automatically extend the oracle approximation. Hence,
both strings get extended in�nitely often. This is a common phenomenon that
constructions often do more than you expect that they do.
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2. How complicated are A0; A1? We want a bound on their complexity, such as
A0; A1 �T 0(n) (this also gives de�nability properties). To determine what n is,
let�s look back at the construction. By recursion, we have �j;s. To calculate �j;s+1,
we asked one question:

9�0 � �0;s
�
��0e (x) #

�
;

a �1 question so 00 can answer it and tell us which case we�re in. The do nothing case
is easy to do. For the other case, we have to enumerate the master list fh�; e; x; ti :
'(�; e; x; t) #g, which we can do e¤ectively. So, once 00 told us which case we�re in,
everything else is recursive. Hence, A0; A1 � 00.

3. Where do A0; A1 lie in the jump hierarchy? Because of the symmetry of the con-
struction, even though A0 6=T A1, they should have some of the same properties.
Are they low (or can we add something to the construction to make sure that
they�re low)?

Recall: A0 is low i¤ A00 �T 00 i¤ fe : �A0e (e) #g �T 00.
We can add a new requirement:

Ne;j : make �Aje (e) # if we can

Suppose that at stage s we are acting on Ne;0, have �j;s. Ask if

9�0 � �0;s
�
��0e (e) #

�
:

If the answer is yes, let �0;s+1 be the least such �0 and let �1;s+1 = �1;s. On the
other hand, if the answer is no, then do nothing and put �j;s+1 = �j;s This is called
forcing the jump.

Claim 1: Construction is still recursive in 00. Why? Action for requirements Pe;j
are still the same. For Ne;j, 00 can answer the question 9�0 � �0;s

�
��0e (e) #

�
.

Claim 2: Can compute A00 from 0
0. Why? Since the whole construction is recursive

in 00, 00 can go along the construction until it gets to the stage s at which we act for
Ne;0. Then, it sees what the construction does and can compute A00 from this action.

Claim 3: We can relativize the construction to any degree x to get incomparables
AXj between X;X

0 such that (AXj )
0 = X 0. By relativizing, we mean that at each

part of the computation where we have oracle �j, we instead have the oracleX��j.
At the end, we build X �Aj. The veri�cation of the construction goes through as
before.
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Claim 4: It is easy to extend the construction to more than two incomparables.
We can change the requirements to

Pe;i;j : �
Aj
e 6= Ai i 6= j:

Thus, we can produce countably many low incomparables between 0 and 00.

Exercise 5.1.3 Show that the sets Ai of the original construction are already low.

We can strengthen the notion of lowness and prove a bit more:

De�nition 5.1.4 A is superlow if A0 �tt 00.

Exercise 5.1.5 Prove that the sets constructed in Theorem
KP
5.1.2 are superlow.

In general, given a countable partial order P, can we embed it in D or in D(� 00)
or in the low degrees? Let P = fp0; p1; : : :g;�P . Without loss of generality, we can
assume that p0 is the least element of P. If P doesn�t have a least element, add it and
then embedding of this enlarged partial order gives embedding of suborder P. We will
build Ai such that Ai �T Aj if and only if pi �P pj. To do so, we build Ci and let
Aj = �fCi : i �P jg. Does i �P j imply that Ai �T Aj? By transitivity,

hk; xi 2 Ai , x 2 Ck ^ k �P i ) hk; xi 2 Aj , x 2 Ck ^ k �P j

so if �P is recursive, i �P j implies that Ai �T Aj. We can use this fact to embed
recursive partial orders in the low degrees by using the construction above to guarantee
incomparability when needed and the recursiveness of P with this simple argument to
guarantee comparability when needed. If a partial order is not recursive, it is at least
recursive in some oracle so relativizing the proof for recursive partial orders gives em-
bedding into D. Perhaps this is the best we can do �it may not intuitively obvious that
D(� 00) is a universal countable partial order.

Exercise 5.1.6 The sets Ai constructed in the proof of Theorem
KP
5.1.2 are already low.

Q as universal countable linear order. back and forth but we could construct one
without knowing that Q has the desired property. We do it for partial orders.

Proposition 5.1.7 There is a recursive universal countable partial order.

Proof. Fraïssé.
As for linear orders there is a natural example

Proposition 5.1.8 Every recursive partial order P = (P;�P) with 0 can be embedded
in D;�T ; 0.
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Proof. Build sets Ci, de�ne Ai = �fCj : pj �P pig so pk �P pj implies Ak �T Aj since
�P is recursive.
Requirements: Rk;j;e : pk �P pj implies Ak �T Aj i.e. 8e�Cje 6= Ck.
Approximations: have �nitely many �nite binary strings 
j;s. We will want Cj =

[
j;s. Then approximate
Ai;s = �f
j;s : pj �P pig

i.e. Ai;s is de�ned at hj; xi if 
j;s(x) is de�ned. Think of each 
j;s as partial function
and Ai;s is the sum of these partial functions. To ensure that A is a set (i.e. has a
characteristic function), if pj 6= pi make Aj; i = 0 (for totality)...CHECK INDICES.
Suppose we act for Rk;j;e at stage s = hk; j; ei. We have Aj;s; Ak;s �nite characteristic

functions determined by the 
i;s so far de�ned. To guarantee �
Aj
e 6= Ak, can we take

x = j
k;sj and ask if there is extension of the 
�s such that �
Aj
e (x) #? However, an

extension of the 
�s which guarantees convergence might also determine the value Ak(x),
so we might not be able to diagonalize!
To make x not interfere with Ak, want x = hn; yi such that pn �P pj. Also, to be able

to de�ne Ak, need pn � pk (otherwise have empty column). And, need hn; yi � j
k;sj.
So we want pn � pk and pn �P pj. By assumption, pk �p pj, so choose n = k. Then,
x = hk; j
k;sji.
Now, ask for least extension of 
�s which makes �Aje (x) # and only depends on 
i

for pi �P pj. If such an extension exists, put Ak(x) = 1 � �Aje (x). If there is no such
extension, do nothing. Then, go to stage s+ 1.
To verify that the construction satis�es all the requirements, for Rk;j;e consider stage

s = hk; j; ei. Either we extended 
�s or we didn�t. If we extended, then there is x such
that �Aje (x) #6= Ak(x). If we didn�t then no such extension exists, and since Aj extends

s�s, �

Aj
e (x) ".

Corollary 5.1.9 The one-quanti�er theory of (D;�T ) is decidable.

Proof. A one-quanti�er sentence looks like

' � 9x19x2 � � � 9xn
�
xi � xj ^ � � � ^ xj � xk ^ � � � ^ xn = xn

�
:

Note that if we can decide whether an existential sentence is true or false then we can
�ip the answers to decide if universal sentences are true and false. Given such a sentence,
we can ask if there is a partial order that satis�es the sentence. If not, then (D;�T )
can�t because it itself is a partial order. So suppose (P ;�P) � P. If we can embed P
into D then we�re done because embedding preserves atomic sentences. Not every partial
ordering can be embedded into D (for example, huge ones can�t). But if there is any
partial order that satis�es ' then there is a �nite partial order that satis�es it, because
' only mentions n elements. So, we can assume that P is �nite, hence recursive. Then,
the theorem above says that P embeds into D. The last piece of the proof is to verify
that we can answer the question of whether ' is satis�able by a partial order. Well, we
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can enumerate all partial orders of size at most n and then check each one. And, if ' is
satis�able by a partial order then it is satis�able by a member of the list.
Questions about proof of embedding theorem:

1. How complicated are the images of the partial order under the embedding? Ai �T 00
uniformly: to check Ai(x) we ask if x = hj; ni 2 Ai. But, 9f �T 00

�
f(j; x) =

[
j;s(x)
�
. If pj � pi, can ask f(j; n) what construction does. If pj � pi, ask 00 how

construction goes. Hence, Ai � 00 and indeed �Ai � 00.

2. Can we ensure that all Ai are low? We can add requirements

Ne : �
�Ai
e (e) # if we can:

To act on Ne still takes just a 00 question. Alternatively, instead of adding in�nitely
many requirements we can add a top element 1 to P and then construction gives
A1 = �Cj � 00 and then just make sure that A1 is low.

Corollary 5.1.10 The one-quanti�er theory of (D(�T 00);�T ) is decidable.

The method of �nite approximations is used to build sets which are not necessarily
though of in terms of Turing degrees.

Theorem 5.1.11 There is a recursive partial order P such that every countable partial
order Q can be embedded in P

Proof. We will build P by �nite approximations, P = [Ps. At state s we have a �nite
partial order Ps and extend it to Ps+1 such that for every subset of Ps, every one element
partial order extension is realized in Ps+1. That is, for subset M � P , and a particular
partial order relation on M [ fzg (z, a new element), add z to P and de�ne its relation
to the elements in P n M as that dictated by the axioms of partial orders. Thus we
have the lemma that given any partial order and any �nite subset and any extension
by one element, there is a new partial order that realizes that extension. We can apply
this �nitely many times to take care of each �nite subset and each possible one-element
partial order extension. This construction is recursive so we have a recursive universal
countable partial order.
Given Q a countable partial order, we use a forth argument to embed Q into P. That

is, if Q = fq0; q1; : : :g we de�ne the embedding f by induction. Start with f(q0) = p0
and then given f � n, de�ne f(qn) to be element of P realizing the extension of f([n])
that qn does of fq0; : : : qn�1g.
Note that if we could run the back direction as well so that P is embedded in Q so we

have produced an ultrahomogeneous countable partial order. Other ultrahomogeneous
structures are dense linear orders and atomless Boolean algebras.

Corollary 5.1.12 Every countable partial order can be embedded in D(�T 00).
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Proof. The universal partial order P above can be embedded in D(�T 00) because P is
recursive. By universality, any countable partial order can be embedded in it.

De�nition 5.1.13 fAi : i 2 Ng is independent means that no Ai is computable from
the join of �nitely many of the other Aj.fAi : i 2 Ng is very independent means that
Ai �T �j 6=iAj for all i.

Very independent implies independent because Ai1 �� � ��Ain �T �j 6=iAj if no ik = i
(x 2 Ai , hi; xi 2 �j 6=iAj) However, while independence is a degree theoretic notion,
very independence is not. This is proved in the following exercises.

Exercise 5.1.14 Find fAi : i 2 Ng very independent. (Hint: either write down require-
ments and use �nite approximations, or use partial order embedding).

Exercise 5.1.15 Find fAi : i 2 Ng; fBi : i 2 Ng such that fAi : i 2 Ng is very
independent, fAi : i 2 Ng is not, but Ai �T Bi.

De�nition 5.1.16 An upper semi lattice is a partially ordered set P such that every pair
of elements x; y in P, has a least upper bound, x _ y.

Exercise 5.1.17 Every usl L is locally countable, i.e. for any �nite F � L the subusl
F of L generated by F (i.e. the smallest one containing F ) is �nite. Moreover, there is
a uniform recursive bound on jFj that depends only on jF j.

Exercise 5.1.18 Given usls Q � P and an usl extension Q̂ of Q generated over Q by
one new element (with Q̂\P = Q), prove that there is an usl extension P̂ of P containing
Q̂.

Exercise 5.1.19 Prove that there is a recursive usl L such that every countable usl can
be embedded in it (as an usl).

Exercise 5.1.20 Every countable upper semi lattice L can be embedded in D and even
in D(� 00) (preserving _ as well as �). Hint: Use a very independent set Ci. If
L = flig send li to �fCjjlj � lig.

Exercise 5.1.21 Need de�nitions and hints: Alternatively the atomless Boolean algebra
is countably universal for Boolean algebras, upper semilattices and partial orders. It also
has a recursive representation as a lattice of recursive sets.

We will see ?? that every countable lattice can be embedded in D but not by these
methods in the sense that there is no countable lattice L which is countably universal,
let alone a recursive one. Indeed local �niteness fails and there are 2@0 many lattices
generated by four elements. (ref??)
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What about uncountable partial orders, usls and lattices? Of course, they must have
the countable predecessor property. It is known that all partial orders and even lattices
of size @1 with the countable predecessor property can be embedded into D. However, it
is consistent that 2@0 = @2 and there is an usl of size @2 with the countable predecessor
property which cannot be embedded in D. It is a long standing open question if every
partial order of size 2@0 with the countable predecessor property can be embedded in D.
ref??

5.2 Extensions of embeddings

We now look at extensions of embedding results which give information about the
2quanti�er theory of (D;�T ). Explain ....

Theorem 5.2.1 (Avoiding cones) For every A > 0 there is B such that AjTB.

Proof. Given set A, we build B such that A �T B, B �T A. There are two kinds of
requirements:

Pe : �
A
e 6= B Qe : �

B
e 6= A:

The construction is by �nite binary string approximations �s for B. At the end, let
B = [s�s.
Suppose at stage s we work to satisfy Pe. We have �s and will construct �s+1

guaranteeing that B meets the requirement. Ask for value of �Ae (j�sj). If �Ae (j�sj) "
then Pe is satis�ed so do nothing. Otherwise, put �s+1 = �s^(1 � �Ae (j�sj)). So,
B(j�sj) = �s+1(j�sj) 6= �Ae (j�sj). Observe that we ask an A0 question and then do a
recursive procedure.
Likewise, suppose at stage s we work to satisfy Qe. Ask if there is extension � of �s

such that ��e (j�sj) #6= A(j�sj). If no such extension exists, do nothing. If there is an
extension, let �s+1 be least such extension. Note that this is a �

A
1 question followed by

a recursive procedure, so this step is recursive in A0.
To verify that this works, observe that all Pe are clearly satis�ed. Suppose we fail to

satisfy Qe. Then at stage s there was no extension � � �s such that �
�
e (j�sj) #6= A(j�sj).

But, if �Be (j�sj) " then Qe is satis�ed. Therefore, �Be (j�sj) #= A(j�sj). But, this means
that A is recursive. To compute A(x), look for extension of �s which makes �

�
e (x) # and

this must be correct value. This is a contradiction with our original hypothesis on A.
Thus, Qe is satis�ed.

Exercise 5.2.2 The B of the theorem can be made recursive in A0 and indeed we can
guarantee (or the construction already does) that B0 �T A0.

minpair Theorem 5.2.3 (Minimal Pair) There are A;B > 0 such that A ^ B = 0. In other
words, for all C, if C �T A;B then C = 0.
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Proof. We build A;B by �nite approximations �s; �s. There are three kinds of require-
ments:

Pe : �e 6= B Qe : �e 6= A Ne;i : �
A
e = �

B
i = C ) C is recursive:

To satisfy Pe; Qe (respectively): given �s (�s), ask if �e(j�sj) " (or �e(j�sj) "). If yes, then
the requirement is already satis�ed so put �s+1(j�sj) = 0 (�s+1(j�sj) = 0). Otherwise,
put �s+1(j�sj) = 1� �e(j�sj) ( �s+1(j�sj) = 1� �e(j�sj)).
Suppose at stage s we work onNe;i. Ask if (9� � �s) (9� � �s)9x(��e (x) #6= �

�
i (x) #).

If such extensions exist, pick the �rst pair (�; �) which satisfy the condition and put
�s+1 = �, �s+1 = �. If no such extensions exist, do nothing.
To verify that the construction works, �rst notice that all Pe; Qe are satis�ed so

A;B > 0. For Ne;i, we may assume that �Ae = �
B
i = C as otherwise the requirement is

automatically satis�ed. We want to show that C is recursive; in particular, let�s compute
C(x). Consider �s; �s for the stage s at which we work on Ne;i. To compute C(x),
�nd any �nite extension � � �s such that ��e (x). (There is one since A � �s and
�Ae (x) #.) We claim that ��e (x) = C(x). If not, there is a � � �s with � � B such that
��e (x) = �

B
e (x) = C(x) and so we would have acted at s with � and � contrary to our

assumption.
We will frequently use the idea see in this proof of searching for an extensions that

give di¤erent outputs when used as oracles for a �xed �e and if we �nd them doing some
kind of diagonalization. If there are none, we generally argue that the �Ae is recursive
(or recursive in the relevant notion of extension as in Theorem

exactpair
5.2.7). We extract the

appropriate notion and provide some terminology.

De�nition 5.2.4 We say that two strings � and � e-split (or form an e-splitting) if
9x(��e (x) #6= ��e(x) #. We denote this relation by �je� and say that � and � e-split at x.
Note that by our conventions in De�nition

useconv
2.1.3, ��e (x) = �

�
e;j�j(x) is a recursive relation

as is 9x(��e (x) #6= ��e(x) #); i.e. �je� .

Exercise 5.2.5 We may make the A and B of the theorem low or note that as constructed
they are already low. We can also relativize the result: 8C9A;B(A ^ B � C & A0 �
B0 � C 0).

We want a similar notion to minimal pairs, but above any countable ideal of degrees
rather than a single one.

De�nition 5.2.6 C is an ideal in the upper-semilattice D if C is closed under joins, and
is closed downwards (i.e. if Y 2 C and X �T Y then X 2 C).

exactpair Theorem 5.2.7 (Exact Pair) If C is any countable ideal in D, there are A;B such
that C = fX : X �T A;Bg = fX : X �T Ag \ fX : X �T Bg.

An alternative statement of the theorem is the following:
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Theorem 5.2.8 If C1 �T C2 �T � � � is an ascending sequence, then there are A;B such
that fX : X �T A;Bg = fX : 9n(X �T Cn)g.

These two statements are equivalent because we can list all the elements Dj of a
countable ideal and then consider the ascending sequence Ci = �j<iDj. More ?? We will
prove the second formulation of the theorem.
Proof. Given (Cn) ascending, we build A;B such that

� for all n, Cn �T A;B and

� C �T A;B implies that C �T Cn for some n.

Therefore, we need to satisfy the requirements

Rn : Cn �T A;B Ne;i : �
A
e = �

B
i = C ) 9n(C �T Cn):

We will build A;B by �nite approximations �s; �s. But, instead of these being thought
of as �nite strings, they are matrices. In each matrix, �nitely many columns are entirely
determined, and there is �nitely much additional information. Suppose at stage s we
work for Rn. Choose the �rst column in each of �s; �s which has no speci�cations yet.
Let �s+1 (�s+1) be the result of putting Cn into that column of �s (�s) and leaving the rest
of the approximation unchanged. This action is computable in Cn. Otherwise, suppose
at stage s we work to satisfy Ne;i. Ask if 9x (9� � �s) (9� � �s)(�

�
e (x) #= �

�
i (x) #). If

such extensions exist, set (�s+1; �s+1 to be the least such pair of extensions. If no such
extensions exist, do nothing.

A;B meet the condition that for all n, Cn �T A;B because all Rn requirements are
satis�ed. Consider the stage s at which we deal with requirement Ne;i. We may assume
that �Ae = �Bi = C as otherwise the requirement is automatically satis�ed. We want
to prove C �T Cn for some n. Indeed let n be the largest m such that we have coded
Cm into A and B by stage s. To compute C(x), �nd any �nite extension � � �s such
that ��e (x). (There is one since A � �s and �Ae (x) #.) We claim that ��e (x) = C(x). If
not, there is a � � �s with � � B such that ��e (x) = �

B
e (x) = C(x) and so we would

have acted at s with � and � contrary to our assumption. The crucial point now is that
checking whether � � �s is recursive in Cn.

Exercise 5.2.9 What is a bound on the complexity (degrees) of the A and B of the
theorem in terms of the Cn? (�Cn)0? How about a better bound? How low can we make
this bound? If Cn = 0(n)??

extemb Exercise 5.2.10 (Extensions of Embeddings ) Given a �nite usl P and a �nite par-
tial ordering Q extending P and with no x 2 Q � P below any y 2 P and an (usl)
embedding f : P ! D prove that there is an extension g of f embedding Q into D. ??or
prove??
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5.3 The range of the jump

5.3.1 The Friedberg Jump Inversion Theorem

This theorem describes the range of the jump operator on all the degrees.

Theorem 5.3.1 (Friedberg Jump Inversion Theorem )

8C � 009A(A0 =T C =T A _ 00):

The Friedberg Completeness theorem says that the only restriction on jump degrees
is the obvious one: above 00. This was a small part of Friedberg�s undergraduate thesis!
Proof. Let C �T 00. We build A by �nite approximations �s. The requirements are:

� C �T A0 (coding C into A0)

� A0 �T C (keeping A0 low)

� A0 �T A _ 00 (forcing the jump)

At stage s we have �s. Ask if there is � � �s such that ��s (s) #. If so, we can choose
� least� such extension � and let �s+1 = �^C(s).
The construction is recursive in C (because C � 00). So h�si �T C. Moreover,

A0 �T C because s 2 A0 i¤��s+1s (s) # (if �As (s) converges, it is forced to by stage s+ 1).
To check if C � A0 � A _ 00 it su¢ ces to check C �T A _ 00. Moreover, it is enough
to check that the construction is recursive in A _ 00. But, 00 can answer � � �s so then
recursively look for least extension and then if we know that A = [s�s, �s+1 = �^C(s)
is next element of A so C(s) = �s+1(j�s+1j) = A(j�s+1j) and we can read it o¤A. Thus,
C �T A _ 00.

Exercise 5.3.2 Prove that all pairs of relations between A and B on one hand and A0 and
B0 on the other not prohibited by the known facts that A < A0 and A �T B ) A0 �T B0

is possible.

Exercise 5.3.3 Jump inversion preserving partial order.

Does not extend to preserving join. State noninversion theorem.

5.3.2 The Shoen�eld Jump Inversion theorem

Is there a version of this theorem when we restrict the domain of the jump operator to
degrees below 00? If A �T 00 then 00 �T A0 �T 000 and A0 is RE in 00. But maybe all sets
above 00 are Turing equivalent to some RE set?

Exercise 5.3.4 Prove that there is an A � 00 such that 8e (A 6�T We) and so by rela-
tivization a C between 00 and 000 which is not r.e. in 00.



34 CHAPTER 5. EMBEDDINGS INTO THE TURING DEGREES

Shjumpinv Theorem 5.3.5 (Shoen�eld Jump Inversion Theorem) For every C � 00 which is
r.e. in 00, there is an A �T 00 such that A0 �T C.

Proof. ??
Prove this theorem. Hints: Work recursively in 00 and enumerate C. Use �nite

approximations to A. For coding C into A0 use the Shoen�eld limit lemma with the goal
being that is A[n] is �nite if n =2 C and co�nite if n 2 C. Use lowness type requirements
to preserve computations of �Ae (e).

StrShjumpinv Exercise 5.3.6 Strengthen the Shoen�eld jump inversion theorem by making A <T 0
0.

Exercise 5.3.7 Use the existence of nonrecursive low degrees, the previous exercise, rel-
ativizations and induction to prove the there are degrees in Ln and Hn for each n � 1.

We can strengthen the notion of highness as we did that of lowness in De�nition
slow
??:

De�nition 5.3.8 A �T 00 is superhigh if 000 �tt A0.

Exercise 5.3.9 If we take C in the proof of the Shoen�eld jump inversion theorem to be
000 then the set A constructed in Exercise

StrShjumpinv
5.3.6 is superhigh.

5.4 Trees and sets of size the continuum

There are several equivalent de�nitions of trees. One is that a tree is a connected undi-
rected acyclic graph. Another is that a tree is a subset of N<! closed under initial
segments, ordered by �. (Note that binary trees are subsets of 2!; n-ary trees are sub-
sets of n!.) A third de�nition is that a tree is a partially ordered sets with least element
such that fx : x � ag is linearly ordered for all a. Yet another de�nition uses the graph
of function F : S ! S with single �xed point (root) where each element has parent F (x).
Labelled trees are trees in any of these senses with an auxiliary function which labels
each node.
A path through a tree is linearly ordered, closed downward (if there�s an ordering).

For the graph theoretic de�nition, a path through a tree is a path through the graph. Do
we want to require that paths are maximal and/or in�nite? Let�s decide that paths are
maximal, but need not be in�nite. Denote by [T ] the set of paths through the tree T .

Theorem 5.4.1 There is a set of pairwise incomparable degrees of size continuum, 2@0.

Proof. We will build a tree with enough branching so that the number of paths through
it is 2@0. In particular, since we wish to construct sets, we will build a binary tree
T � 2<! such that if A;B 2 [T ], A 6= B, then AjTB. We want control over the structure
of the tree: no dead ends, and perfect (every node has two incomparable extensions ).
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This guarantees that there are enough paths. Then, we identify a path P on T with
[P : ! ! 2, a characteristic function for some set.
The requirements on the tree are

Re : 8A;B 2 [T ]8e(�Ae 6= B):

To meet these requirements, we construct T by �nite approximations. At stage s, we have
a �nite tree Ts. This �nite tree has maximal elements �1; : : : �n and any path through
the �nial tree T will have one of these as its initial segment. We consider what it means
to meet a requirement for �i; �j. In other words, let �i;k and �j;k be extensions such
that ��i;ks (x) 6= �j;k(x) (if convergent not equal, otherwise no extension converges). We
can meet the requirement for s for each pair and �nish in �nite time (because there are
�nitely many maximal elements of a �nite tree). This guarantees that if path A goes
through �i and path B goes through �j then �Bs 6= A. Next, we split (add branching)
by adding on 0; 1 to each path. This gives Ts+1.
To verify the construction, suppose A;B 2 [T ] . There is s; � 2 Ts; � 2 Ts such that

� 6= � and � � A; � � B. Notice that by the Padding Lemma, there is t > s; e such that
�t = �e;s so at stage t we ensured that �Ae 6= B.

Exercise 5.4.2 There is a size continuum set of degrees which are pairwise minimal.

Exercise 5.4.3 There is an independent set of degrees of size continuum.

This leads to many more embedding results. Using other ideas one can prove that any
size @1 partial order with the countable predecessor property can be embedded into D. it
is an open question if every size continuum partial order with the countable predecessor
property be embedded into D.
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Chapter 6

Forcing in Arithmetic and Recursion
Theory

6.1 Notions of Forcing and Genericity

Forcing provides a common language for, and generalization of, the techniques we have
developed so far. It captures the ideas of approximation to a desired object and how
individual approximations guarantee (force) that the object we are building satis�es
some requirement. Now approximations usually come with some sense of when one is
better or gives more information than another. Of course, one approximation may have
improvements which are incompatible , i.e. the set of approximations is partially ordered.
The intuition is that p � q means that p re�nes, extends or has more information than
q. We are generally thinking that the conditions are approximations to some object
G : N! N (typically a set) and that if p � q then the approximation p gives more
information than q and so the class of potential objects that have p as an approximation
is smaller then the one for q. In addition, we have some notion of what at least at a basic
level, the approximation p says about G. We formalize these ideas as follows:

forcing1 De�nition 6.1.1 A notion of forcing is a partial order P with domain a set P and binary
relation �P . For convenience, we assume that the partial order has a greatest element 1.
(For further restrictions see De�nition

forcing2
6.1.16.)

Example 6.1.2 If the notion of forcing is (2<!;�) then � � � � � � � . In many of
our previous constructions we used such binary strings � as approximations to a set G
such that � � G. So the longer the string, the fewer sets that �satisfy�it, i.e. have it as
an approximation (initial segment). This example is often called Cohen forcing.

Example 6.1.3 In ?? we used �nite binary trees with extension requiring that the ex-
tension add only strings that are extensions of leaves of the given tree. The object being
approximated was a binary tree T .

37
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Example 6.1.4 In ?? we used partial characteristic functions � de�ned on some initial
segment of columns and some �nitely many additional points. Again we were approxi-
mating a set G � �.

Example 6.1.5 If the notion of forcing is the set of perfect (de�nition??) recursive
binary trees under � then S � T � S � T . Think of a tree T as approximating the
set [T ] of its paths so more information means fewer paths, i.e. more information about
which path is being approximated. This notion of forcing is often called Spector forcing
(or perfect forcing or Sacks forcing or other names for di¤erent variations).

What is it or what class of objects is it that a condition p approximates? For Cohen
forcing a condition (string) � approximates the class of sets fGjG � �g. So the collection
of all approximations to a single set G is simply f�j� � Gg, the class of all the initial
segments of G. We want to isolate the salient features of this set of conditions or any set
G � P that might considered as an object its members are approximating. The general
notion that we want for an arbitrary notion of forcing begins with that of a �lter.
The idea is rather than comparing any two elements, compare them with the imag-

inary end point that we�re approximating. That is, between current positions and end
goal, there is an element.

De�nition 6.1.6 Two elements p; q are compatible if and only if 9r(r � p ^ r � q). If
p; q are incompatible we write p ? q (as opposed to incomparables which are written as
p j q).

De�nition 6.1.7 F is a �lter on P if and only if F is upward closed its elements are
pairwise compatible.

Thus we are thinking of �lters as connected with the object we are approximating.

Example 6.1.8 Suppose we want to approximate a set G 2 2! and our notion of forcing
is (2<!;�) (�nite binary strings). Then the set f� : � � Gg is a �lter. In particular,
the union of this set (�lter) is the characteristic function G. It will be common that the
object we want is de�ned from a �lter by some �simple�operation such as union. Note
that for �nite strings, being comparable is the same as being compatible.

Example 6.1.9 Suppose we want to approximate a set G 2 2! and our notion of forcing
is some countable set of in�nite binary trees (not necessarily perfect) such as the recursive
ones. Then the set fT : G 2 [T ]g = fT : 8� � A(� 2 T )g is a �lter: Suppose two trees
both have A as a path. Then the tree with just the path A is a common re�nement. For
upward closure, if A is a path on T and T � S then A is also a path on S. In this case,
the intersection of this �lter is the characteristic function G.
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Suppose F is a �lter on some notion of forcing P. We can often associate some set
or function with F in a canonical way. For example, for Cohen forcing we can naturally
try [F For forcing with binary trees we might try \f[T ]jT 2 Fg. Does this always make
sense even for Cohen or Spector forcing? For Cohen forcing it might be that [F is a
�nite string so itself a condition. For Spector forcing \f[T ]jT 2 Fg could be a the set
of paths through a binary tree with more than one branch which might not necessarily
be recursive or perfect. We need to add conditions on our �lter to make sure we get a
total characteristic function, or a single set at the end. We might for example require
for Cohen forcing that F contain strings of every (equivalently arbitrarily long) length,
i.e. (8n)(9� 2 F)(j�j � n). For Spector forcing we could require that there are trees
in F with arbitrarily long nodes � before the �rst branching (i.e. � has two immediate
successors in the tree but no � � � does). We can represent meeting these requirements
as getting into dense subsets of P.

De�nition 6.1.10 D � P is dense in P if

8p 2 P9q 2 D(q �P p).

D is dense below r if 8p �P r9q 2 D(q � p).

In general we want the conditions guaranteeing (forcing) each of our requirements to
be dense.

De�nition 6.1.11 If C is a class of dense subsets of P, we say that G is C-generic if
G \ D 6= ; for all D 2 C. We say that a sequence hpni of conditions is C-generic if
8D 2 C9n(pn 2 D). All collections of dense sets considered are assumed to include the
ones fpj jV (p)j � ng.

seqfilter Proposition 6.1.12 If hpni is a C-generic sequence then G =fpj9n(pn � pg is a C-
generic �lter containing each pn.

Proof. G is C-generic because it contains an element, pn, of Dn for all n. It is upward
closed because if p 2 G then p � pe for some e so if q > p � pe and q � pe as well.
Finally, it is pairwise compatible because given p � pe1, q � pe2 then p; q � pe where
e = minfe1; e2g.

Example 6.1.13 For Cohen forcing let Dn = f� : j�j � ng and consider C = fDng. It
is easy to see that this is a collection of dense sets. Then if �lter G is C-generic, it is
guaranteed that G = [G is a set (i.e. de�nes a characteristic function ! ! 2.

If our collection of dense sets is countable then generic sequences and �lters always
exist.

Theorem 6.1.14 If C is countable and p 2 P, then there is a C-generic sequence hpni
with p0 = p and so, by Proposition

seqfilter
6.1.12, a C-generic �lter G containing p.
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Proof. Let C = fDnjn 2 Ng. Then we de�ne hpni by recursion beginning with p0 = p.
If we have pn then we choose any q � pn in Dn as pn+1. One exists by the density of Dn.
It is clear that hpni is a C generic sequence and so G =fpj9n(pn � pg is C-generic �lter
containing p.

filterseq Exercise 6.1.15 If C is countable (as it always will be in our applications) and G is a
C-generic �lter containing p, then there is a C-generic sequence hpni with p0 = p such
that G =fpj9n(pn � pg. (This is a converse to Proposition

seqfilter
6.1.12.)

We thus always have a C-generics for countable C. We want to standardize and
formalize the procedure of producing a generic object G (for us always a set or more
generally a function from N into N) from a generic �lter or sequence. To do this we
incorporate a function V associating approximations to G with conditions p.

forcing2 De�nition 6.1.16 We always require that a notion of forcing have a function V into
!<! which is recursive on P and continuous in the sense that if p �P q then V (p) � V (q).
Moreover, we require that the sets Vn = fpj jV (q)j � n)g are dense. (When we say that
V is recursive on P we mean that it is the restriction of a partial recursive function to V
which is de�ned on all of V .)??de�ne elsewhere ?? We also require that any collection
of dense sets that we consider for the construction of a generic �lter or sequence include
the Vn.

As is our general practice, we will often care about how hard it is to compute a
C-generic. We must begin with the complexity of P and then consider how hard it is
to compute the generic sequence hpei and �nally the associated �lter G. We view the
elements of P as being (coded by) natural numbers. For convenience we let the natural
number 1 be the greatest element of P .

densityf De�nition 6.1.17 A notion of forcing P is A-recursive (or a-recursive) if the set P and
the relation �P are recursive in A (2 a). (As usual if A = ; (a = 0) we omit it from the
notation.) If C = fCng is a collection of dense sets in P then f is a density function for
C if 8p 2 P8n 2 N(f(p; n) 2 Cn).

meetdense Proposition 6.1.18 If P is an A-recursive notion of forcing and C = fCng is a uni-
formly A-recursive sequence of dense subsets of P and p 2 P then there is a C-generic
sequence hpni with p0 = p which is recursive in A. More generally, for an arbitrary notion
of forcing P, p 2 P and a class C of dense sets, if f is a density function for C, then
there is a C-generic sequence hpni �T f with p0 = p. The generic G associated with these
�lters or sequences are also recursive in A or f , respectively.

Proof. If P is an A-recursive notion of forcing and C = fCng is a uniformly A-recursive
sequence of dense subsets of P, then we can de�ne a density function f �T A by letting
f(p; n) be the least q �P p with q 2 Cn. The desired generic sequence is now given by
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setting p0 = p and pn+1 = f(n; pn). As V is recursive and the dense sets Vn are by our
conventions included among the Cn, the associated generic set G = [fV (pn)jn 2 Ng is
recursive in f as required.
Note that the generic �lter G de�ned from the generic sequence hpni in Propositionseqfilter

6.1.12 is �1 in hpni but not necessarily recursive in it. While in the other direction
(Exercise

filterseq
6.1.15) the sequence is recursive in the �lter and �Cn.

[There are various connections between forcing, (generic) �lters and topology. Order
topology on P...dense open sets , meager comeager, .generic..
In Cohen forcing the conditions correspond to (approximate) open sets in Cantor

space 2! i.e. � is an approximation to each set G � � and these form an open (even
clopen) set in 2!. Then the intersection of all the clopen sets in a �lter F is an open
set. If the �lter is mildly generic it is the single set G which is the union of the �lter.
In Spector forcing the intersection of the [T ] for T in some �lter is a closed set. It is
nonempty since the space is compact. If the �lter is mildly generic the intersection is
also a singleton.]
.

6.2 The Forcing Language and Deciding Classes of
Sentences

An ad hoc approach to constructions is to look at the speci�c theorem we want to prove,
decide what are the speci�c requirements we need to meet, and then build accordingly.
For example, this is what we did to build AjTB. Our approximations were P = fh�; �ig.
The requirements were �Ae 6= B (and �Be 6= A). Given �; �, we could �nd h�̂; �̂i � h�; �i
which would guarantee the requirement. In particular, if one exists, we chose h�̂; �̂i �
h�; �i such that 9x��̂e (x) #6= �̂(x) #; if not, we took h�; �i. In the terminology of forcing,
we had dense sets

De = fh�; �i : 9x��e (x) #6= �(x) # or (8h�̂; �̂i � h�; �i)(:9x��̂e (x) #6= �̂(x) #)g

Likewise, we de�ne dense sets Ce, which guarantee �Be 6= A. Then if G is fDe; Ceg-generic,
G0 jT G1.
In this manner, each of the proofs we did earlier by constructions with requirements

can be translated to dense sets and generics with the dense sets De determined by the
conditions that guarantee (force) that we satisfy the eth requirement. (Exercises??)
However, the bene�t of the forcing technology comes in the form of the generality it
allows. For example, we could try to tackle many of the constructions at once. We need
to de�ne the forcing relation (
) more generally, by induction on formulas ' that will
somehow say that if p 
 ' then '(G) holds for the set G determined by any su¢ ciently
generic �lter G.



42 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

Thus we want a relation 
 between elements p 2 P and sentences �(G) (where we use
G as the formal symbol that is to be interpreted as our generic setG). This relation should
approximate truth in the sense just described. We will use the language of arithmetic (in
a set theoretic forcing, one would use the language of set theory) augmented with another
parameter (G) for the set we are building, and possibly other parameters (X; Y;A) for
given sets. Recall that as in ?? we include bounded quanti�ers and functions for coding
and decoding sequences of numbers in our language of arithmetic. If desired we also
include the recursive relation '(e; x; �; s) = y which says that Turing machine e in input
x with oracle � when run for s many steps converges with output y. Note that the
truth of '(G) for ' a �0 formula depends on only �nitely much of G and, indeed the
amount of information needed is recursive in ' (and independent of G). (See ?? section
on arithmetic.)
We use G for the generic �lter, G for [fV (p)jp 2 Gg, the set or function that we are

building and G for the symbol in language that stands for that set or function. We will
de�ne the forcing relation p 
 ' for p 2 P and ' a sentence of our language by induction
on the complexity of sentences.

De�nition 6.2.1 We de�ne the relation p forces ' by induction.

� If ' is �0 formulas forcing is truth as far as V (p) can determine it. By this we
mean that V (p) su¢ ces to verify ' (in the sense of ??). Thus the forcing relation
for �0 sentences is a �1 relation (in P).

� For existential formulas:

p 
 9x', 9n (p 
 '(n)) :

� For conjunctions and disjunctions:

p 
 ' ^  , p 
 ' and p 
  :

p 
 ' _  , p 
 ' or p 
  :

� For negated formulas:
p 
 :', :9q � p(q 
 '):

or equivalently
p 
 :', 8q � p(q 1 '):

� For universal formulas: (remember that 8 � :9:)

p 
 8x', 8n8q � p9r � q (r 
 '(n)) :

or equivalently
p 
 8x', 8n8q � p (q 1 :'(n)) :
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deffor Theorem 6.2.2 If forcing for �0 relations is recursive (in A) and the partial order is
recursive (in A), then, for n � 1, forcing for �n (�n) sentences ' (i.e. whether p 
 ')
is a �n (�n) (in A) relation.

Proof. We proceed by induction on n and for notational convenience ignore A. If
' 2 �1 then p 
 ' is an existential quanti�er applied to forcing of �0 relations which by
de�nition is �1. Thus p 
 ' is a �1 relation for ' 2 �1. If ' = 8x�(x) 2 �1, consider the
second version of the de�nition of p 
 '. It says 8n8q � p (q 1 :�(n)). As :� is also �0

q 1 :� is �1 and so p 
 ' is �1. By induction and the de�nition for forcing an existential
sentence, we see that for ' 2 �n+1 ', p 
 ' is a �n+1 relation. For 8x�(x) = ' 2 �n+1,
p 
 ', 8n8q � p9r � q (r 
 �(n)). By induction r 
 �(n) is �n and so p 
 ' is a �n+1
relation.

ext Exercise 6.2.3 If p 
 ' and q � p then q 
 '.

Exercise 6.2.4 ??The order topology on a partial order P is de�ned by letting the sets
of the form fqjq � pg be the basic open sets. Show that as far as which formulas are
forced by conditions in a C-generic �lter are concerned we may as well assume that all
the dense sets in C are open as well.??

We now want to tackle the question of how much genericity do we need to make
forcing equal truth for generic �lters/sets in the sense that if p 
 ', p 2 G and G is
su¢ ciently generic then '(G) holds and, in the other direction, if '(G) holds then there
is a p 2 G such that p 
 '.

De�nition 6.2.5 G is n-generic (for n � 1)i¤ for every �n (in P) subset S of P,

9p 2 G(p 2 S _ 8q � p(q =2 S)).

We say that G is (!-) generic if it is n-generic for all n.

The following equivalence is now immediate.

Proposition 6.2.6 Let Cn be the class of sets fp : p 2 Se _ 8q � p(q =2 Se)g for all �n
(in P) subsets S of P. Then G is n-generic i¤ G is Cn-generic.

Exercise 6.2.7 If D � P is dense and �n then D meets every n-generic G. If D is
dense below p and �n then D meets every n-generic G containing p.

To build an n-generic G we proceed as in the construction of a generic given a count-
able class of dense sets. We can calculate how hard it is to carry out this construction.

Proposition 6.2.8 If forcing for �0 sentences is �1 (in P), then, for each n � 1, there
is an n-generic G �T 0(n) (P(n)). There is also a generic G �T 0(!) (P(!)).
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Proof. Exercise.??

De�nition 6.2.9 We say that a condition p decides a sentence ' if p 
 ' or p 
 :'.

for=t Theorem 6.2.10

1. If G is n-generic and ' 2 �n then there is p 2 G which decides '. Moreover, if
p 
 ' then '(G) holds while if p 
 :' then :'(G) holds.

2. If ' 2 �n (�n), p 
 ' and p 2 G which is n-generic then '(G) holds.

Proof. We prove (1) by induction on n � 1. Consider ' = 9x (x; G) with  2 �n�1.
Now the set S = fp : p 
 9x (x; G)g is �n by Theorem

deffor
6.2.2. So by the de�nition of

n-genericity, either there is p 2 G in S, i.e. p 
 9x (x; G), or there is p 2 G no extension
of which is in S. If p 2 G and p 
 9x (x; G), then (by de�nition) there is an n such
that p 
  (n; G). Now by induction (or de�nition for n = 1),  (n;G) holds and then
so does 9x (x;G) as required. On the other hand, suppose there is p 2 G such that
(8q � p)q 6
 9x (x; G); i.e. p 
 :'. In this case, we claim that that :9x (x;G). If not,
there would be an n such that  (n;G) and so by induction (or de�nition for n = 1), a
q 2 G such that q 
  (n; G). So, q 
 9x (x; G). But, since p; q 2 G they are compatible
and hence there is r 2 G with r � p; q. This would contradict Exercise

ext
6.2.3.

For (2) suppose p 
 ' and p 2 G. If ' = 9x (x; G) then p 
  (m; G) for some m
and so by induction (or de�nition for n = 1)  (m;G) holds. If ' = 8x (x; G) but ' fails
then for some m,  (m; G) holds and so by (1) there is a q 2 G such that q 
  (m; G).
By the compatibility of G there would be an r �P p; q in G. This would again contradict
Exercise

ext
6.2.3.

We will now look at degree theoretic properties of sets with various amounts of gener-
icity. We begin with a connection between genericity and lowness.

Proposition 6.2.11 If G is n-generic for Cohen forcing then G(n) = G _ 0(n).

Proof. It is immediate that for any G, G _ 0(n) �T G(n). Thus, it su¢ ces to show that
if G is n-generic then G(n) �T G _ 0(n). The formula '(e; G) which says that e 2 G(n) is
�n. Therefore, by above theorem and the n-genericity of G, either there is p 2 G such
that p 
 '(e; G) or there is p 2 G such that p 
 :'(e; G). But forcing is �n question and
forcing negation is �n so to ask if e 2 G(n) can search for p 2 G such that p 
 '(e; G) or
p 
 :'(e; G). This is a G _ 0(n) question. By Theorem

for=t
6.2.10, the one forced is the true

fact about G.

Exercise 6.2.12 If G is 1-generic for any notion of forcing then G0 = G _ 00.

The next proposition gives almost all our previous incomparability and embeddability
results in one fell swoop.
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genindep Proposition 6.2.13 If G is Cohen 1-generic then the columns G[i] = fhi; xig form a very
independent set, i.e. 8j(G[j] �T Gj) where we let Gj = �i6=jG[i] = fhi; xi 2 Gji 6= jg.

Proof. For each e we want to show that �Gje 6= G[j]. We consider the following set of
conditions:

Se = fp : 9x
�
�pje (x) #6= p[j](x)

�
g:

Here we use the natural extension of our notation for columns of a set to �nite binary
strings: p[j] = fhj; xi j hj; xi 2 pg and pj = fhi; xi 2 pji 6= jg. Since Se 2 �1 and G is
1-generic, there is p 2 G\Se or there is p 2 G no extension of which is in Se. If p 2 G\Se
then p � G so the requirement is satis�ed. Suppose that p � G and (8q � p)q =2 Se then
we claim that �Gje is not total. If it were, let hj; xi be outside the domain of p. We must
then have some q � G with q � p and �qje (x) #. Now let q̂(hj; xi) = 1 � q(hj; xi) and
q̂(z) = q(z) for z 6= hj; xi. So q̂j = qj and so �

qj
e (x) #= �q̂je (x) # but q̂(hj; xi) 6= q(hj; xi

and so one of q and q̂ (both of which extend p) is in Se for the desired contradiction.
Relativization to X:
Expand our language to include a symbol interpreted as X. De�ne forcing in the

same way as above and �n genericity relative to X by using sets �n in X. Theoremgenthm
?? and Proposition

genindep
6.2.13 then relativize to X. The Proposition now says that if G

is 1-generic relative to X, then independence results hold even relative to X. That is,
8j(G[j] �T X �Gj).

Exercise 6.2.14 If G is Cohen 1-generic over X and A;B �T X then

A �T B , A�G �T B �G:

Also, G jT X if X > 0.

Exercise 6.2.15 We say that G0 and G1 are mutually n-generic for P if each Gi is
n-generic over G1�i for P. Prove that if G is Cohen n-generic then the G[i] are very
mutually Cohen n-generic in the sense that each G[i] is Cohen n-generic over G[̂{] =
fhj; xi 2 Gjj 6= ig. ??Note notation use everywhere??

Exercise 6.2.16 Translate the Exact Pair Theorem into the language of forcing. Hint:
Given hCii, de�ne a notion of forcing P with conditions h�; �; ni for �; � 2 N<! and
n 2 N. The ordering is given by h�0; �0; n0i � h�; �; ni if �0 � �, �0 � �, n0 � n and, for
i < n, if �0(hi; xi) # but �(hi; xi) " then �0(hi; xi) = Ci(x) and similarly for �

0 and �.

Exercise 6.2.17 Construct a 1-tree T such that every G 2 [T ] is Cohen 1-generic. Show
that the Cohen 1-generic degrees generate D. Hint: Consider any F : N! f0; 1; 2g which
is 2-generic for forcing over �nite ternary (P = 3<! with extension). Let dn list the x
such that F (x) = 2 in increasing order and, for A 2 2!, let FA(x) = A(n) if x = dn
for some n and FA(x) = F (x) otherwise. Show that FA is Cohen 1-generic for every
A. Let F [j](x) = F (hj; xi) and F [j]A (x) = (F [j])A(x). Next show that for any j and A,
A �T F [j]A _ F [j]�A . Finally show that for any j 6= k, (F [j]A _ F [j]�A ) ^ (F

[k]
A _ F [k]�A ) �T A.
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Probably write out this proof as Theorem not exercise. D = fdnjn 2 Ng is an
indi¤erence set ....??

6.3 Embedding Latticeslatembsec

latemb Theorem 6.3.1 (Lattice Embedding Theorem) Every countable lattice L with least
element 0 is embeddable in D preserving the lattice structure and 0.

For later convenience, we actually want to prove an a priori stronger statement about
partial lattices.

De�nition 6.3.2 A partial lattice L is a partial order �L on its domain L together with
partial functions ^;_ which satisfy usual de�nition when de�ned, i.e. if x^ y = z then z
is the greatest lower bound of x and y in �L; if x_ y = z then z is the least upper bound
of x and y in �L. We say that L is recursive (in A) if L and �L are recursive (in A)
and _ and ^ are partial recursive (in A) functions on L with recursive (in A) domains.

It may seem that there is no reason to use partial lattices but both e¤ectiveness
considerations and convenience come into play. It is certainly often more convenient to
specify a partial lattice than to decide all the meets and joins.

Proposition 6.3.3 If L is a partial lattice then there is a lattice L̂ and an embedding
f : L ! L̂ which preserves order and all meets and joins that are de�ned in _L.

Proof. Consider the lattice I of ideals of L, i.e. subsets I of L closed downward and
under join in L (when de�ned). The ordering on I is given by set inclusion. Meet is set
intersection and the join of I1 and I2 is the smallest lattice containing both of them. The
map that sends x 2 L to Ix = fy 2 Ljy �L xg, the principle ideal generated by x, is the
desired embedding into the sublattice L̂ of I generated by the principle ideals. ??
??Not e¤ective, i.e. if L is recursive L̂ isn�t obviously so?? needn�t be??Put in e¤ective

embeddings of p.o. and usl... all the way into Boolean algebras where do p.o. and usl
embeddings??
To prove our theorem we need some lattice theory. In particular, we will use a type

of lattice representations called lattice tables.

latrep De�nition 6.3.4 A lattice table for the partial lattice L is a collection, �, of maps
� : L! N such that for every x; y 2 L and �; � 2 �

1. �(0) = 0.

2. If x �L y and �(y) = �(y) then �(x) = �(x).

3. If x �L y then there are �; � 2 � such that �(y) = �(y) but �(x) 6= �(x).
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4. If x _ y = z, �(x) = �(x) and �(y) = �(y) then �(z) = �(z).

5. If x ^ y = z and �(z) = �(z) then there are 
1; 
2; 
3 2 � such that �(x) � 
1(x),

1(y) = 
2(y), 
2(x) = 
3(x), 
3(y) = �(y). Such 
i are called interpolants for �
and � (with respect to x, y and z).

Notation 6.3.5 We de�ne equivalence relations on � for each x 2 L by � �x � if and
only if �(x) = �(x). For sequences p, q from � of length n and x 2 L, we say p �x q
if p(k) �x q(k) for every k < n. In general, we say an equivalence relation E on a set
S is larger or coarser than another one Ê if for every (8a; b 2 S)(a �Ê b ) a �E b).
Similarly, E is �ner or smaller than Ê if (8a; b 2 S)(a �E b ) a �Ê b). With this
ordering on equivalence relations the lub of E and Ê is simply their intersection. Their
glb is the smallest equivalence class on S that contains their union. This is also the
transitive closure of their union under the two relations.

The conditions of De�nition
latrep
6.3.4 can now be restated in terms of these equivalence

relations:

1. � �0 � for all � and � and so �0 is the largest congruence class identifying all
elements.

2. If x � y then � �y � implies � �x � for all � and � and so �x is larger than �y.

3. If x �L y then there are � and � such that � �y � but � 6�x � and so �x is not
larger than �y.

4. If x _ y = z and � �x � and � �y � then � �z � and so �z is the glb of �x and
�y.

5. If x ^ y = z then there are 
1; 
2; 
3 2 � such that � �x 
1 �y 
2 �x 
3 �y �. So
�z is certainly contained in the lub of �x and �y. It is part of the theorem that we
can arrange it so that chains of length three su¢ ce to generate the entire transitive
closure.

Thus a lattice table produces a representation by equivalence relations with the dual
ordering. A reason for reversing the order is that D is only an uppersemilattice. So joins
always exist and we want them to correspond to the simple operation on equivalence
relations of intersection. On the other hand, meets do not always exist and they then
correspond to lub on equivalence relations which requires work to construct.
We now prove our representation theorem in terms of lattice tables.

Theorem 6.3.6 (Representation Theorem) If L is a recursive (in A) partial lattice
with 0; 1 then there is a uniformly recursive (in A) lattice table � for L.
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??A versions of this result and proof are in Lerman ?? and Shore ??. This version is
based on a Greenberg and Montalbán ??.
Proof. De�ne �x;i for x; y 2 L, i = 0; 1 by

�x;0(y) =

(
hx; 0i if y 6= 0
0 if y = 0

�x;1(y) =

(
�x;0(y) if y � x

hx; 1i if y � x

The set of these �x;i satisfy (1), (2) and (4). We now want to sequentially close o¤ under
adding interpolants as required in (3) for each relevant instance . To do so, we have some
dovetailing procedure which does the following. Consider x ^ y = z and � �z �. We
want to add 
1; 
2; 
3 as required in (3) and preserve the truth of (1), (2) and (4) in the
expanded set. If x � y or y � x, it is easy to do so just using � and �. If not (i.e. x � y
and y � x), then choose new numbers a; b; c; d not used yet and put for w 2 L


1(w) =

(
�(s) if w � x

a if w � x

2(w) =

8><>:

1(w) if w � y

b if w � x and w � y

c otherwise


3(w) =

8><>:
�(w) if w � y

a if w � x and w � y

d otherwise

This is a recursive procedure and can check that it works. (Exercise)
Now we can turn to the proof of our embedding theorem.

Proof (of Theorem
latemb
6.3.1). We begin with a lattice table � for P recursive in L.

We de�ne a notion of forcing P with elements p 2 �<!, the natural ordering p �P q if
p � q and the obvious choice of V . Our generics will then be maps G : N!L. De�ne,
for x 2 L, Gx : N ! N by Gx(n) = G(n)(x). The desired embedding is the given by
x 7! deg(Gx). We use a su¢ cient amount of genericity to prove that this map really
is an embedding that preserves all the required structure. We follow the numbering of
clauses in De�nition

latrep
6.3.4.

1. G0(n) = 0 for all n and so 0 is preserved by our embedding.

2. Suppose x �L y. We must show that Gx �T Gy. Given n, want to compute
Gx(n) = G(n)(x). Find any � 2 � such that �(y) = G(n)(y) = Gy(n), i.e.
� �y G(n). One exists because G(n) is one such. As � is uniformly recursive we
can search for it. Then since x �L y and G(n) �y �, by De�nition

latrep
6.3.4(2) we have

that G(n) �x � so G(n)(x) = �(x) = Gx(n).

4 Suppose x _ y = z. We must show that Gz �T Gx � Gy. By the preservation of
order, Gz �T Gx �Gy, so it su¢ ces to compute Gz(n) = G(n)(z) from Gx(n) and
Gy(n). We search for an � 2 � such that �(x) = G(n)(x) and �(y) = G(n)(y),
i.e. � �x;y G(n). There is one and we can �nd it as above. Now as � �x;y G(n),
� �z G(n) by De�nition

latrep
6.3.4(3), so �(z) = G(n)(z).
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We can also say something about the image of 1 under the embedding. Given n,
G1(n) = G(n)(1) so G1 �T G since by De�nition

latrep
6.3.4(2) the value of any � 2 � at 1

determines it uniquely and it can be determined uniformly recursively (in A). Thus the
greatest degree in the embedding is the degree of the generic G (G�A if we send every
x to Gx � A).
Until this point, we have not used any genericity. We now turn to nonorder and

in�mum.

3 Suppose x � y. We want to prove that �Gye 6= Gx for every e. Suppose that G
is 1-generic (in A which we will generally omit repeating for brevity) and consider
the sets

Se = fp 2 �<! : 9n�pye (n) #6= px(n)g
where px 2 !<! is de�ned in the obvious way by px(m) = p(m)(x). Se 2 �1 because
given � we can compute p(n)(x) (since � is uniformly recursive ). Therefore, the
1-genericity of G implies that there is a p 2 G \ Se or there is a p 2 G no extension
of which is in Se. Suppose p 2 G \ Se, then �Gye (n) 6= Gx(n) as py � Gy and
px � Gx so we�re done. Otherwise, no extension of p is in Se but, for the sake of a
contradiction, �Gye = Gx. Let � and � be as in De�nition

latrep
6.3.4(3) for x and y. By

the obvious density of the sets Dn = fpj9m > n(p(m) = �g and the 1-genericity
of G, there is a q � p and an m > jpj such that q(m) = � and q 2 G. Moreover
as �Gye (m) # by our assumptions, we may also guarantee that �qye (m) # by simply
choosing q as a long enough initial segment of G. Consider now the condition q̂
such that q̂(k) = q(k) for k 6= m and q̂(m) = �. Our choice of �, � and q guarantees
that q̂ � p, q �y q̂ and q 6�x q̂. Thus �qye (m) #= �q̂ye (m) # but qx(m) 6= q̂x(m). So
one of q and q̂ is in Se by de�nition for the desired contradiction.

5 Suppose that x ^ y = z and �Gxe = �
Gy
e = D. We want to prove that D �T Gz.

Now the assertion that �Gxe and �Gye are total and equal is �2. So let us assume
that G is 2-generic (in A) and so there is (by Theorem

for=t
6.2.10) a p 2 G such that

p forces this sentence. So for each n and q � p there is an r � q such that
r 
 �Gxe (n) #= �

Gy
e (n) #. We now wish to compute D(n) from Gz. As above,

we can recursively �nd a q � p such that q 
 �Gxe (n) #= �
Gy
e (n) # and qz � Gz

(since some initial segment of G does this). We claim that �qxe (n) = D(n). To see
this consider a t 2 G such that t � p and t 
 �Gxe (n) #= �

Gy
e (n) #. Necessarily,

�txe (n) #= �
ty
e (n) #= D(n) and t �z q. By suitably lengthening t or q we may

assume that they have the same length m. Let l = jpj < m. We now use both the
interpolants guaranteed by De�nition

latrep
6.3.4(5) and the fact that p forces �Gxe and

�
Gy
e to be total and equal.

For each k with l � k < m we choose interpolants 
k;i (for i 2 f1; 2; 3g) between
q(k) and t(k) as in De�nition

latrep
6.3.4(5). We let qi(k) = p(k) = t(k) for k < l and

qi(k) = 
k;i for l � k < m. We also let q0 = q and q4 = t. So q = q0 �x q1 �y
q2 �x q3 �y q4 = t. We now extend the qi in turn to make them force convergence
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at n but remain congruent modulo z. In fact, we make a single extension for all of
them. By the fact that p 
 �Gxe = �

Gy
e and q1 � p, we can �nd an r1 = q1^s1 such

that r1 
 �Gxe (n) #= �
Gy
e (n) #. We now extend q2^s1 to r2 = q2^s1^s2 such that

r2 
 �Gxe (n) #= �
Gy
e (n) #. Finally we extend q3^s1^s2 to r3 = q3^s1^s2^s3. Let

s = s1^s2^s3 and consider qi^s for i � 4. Looking at each successive pair we see by
the alternating congruences (between x and y) that they all force the same equal
values for �Gxe (n) and �

Gy
e (n). Thus, by transitivity of equality and permanence of

computations under extension, �qxe (n) = �
tx(n) = D(n) as required.

??Omit "in A" case in proof and say relativize as exercise to save having to ..?
By Theorem

deffor
6.2.2, the embedding of L given by the generic G produced in Theorem

emblat
?? can be taken to be into the degrees below the double jump of L. We can improve this
by a direct construction ?? or the following result.

latemb1gen Exercise 6.3.7 The above proof that in�ma are preserves used 2-genericity. Give a
proof (Antonio??) that uses only 1-genericity. ??Hint: Suppose that x ^ y = z and
�Gxe = �

Gy
e = D. Consider the �1 sets Te = ftj9n(�txe (n) #6= �

ty
e (n) #g and Se = fs :

9n; 9q; s0; s2; r(of the same length) �qxe (n) #= �
qy
i (n) #6= �rxe (n) #= �

ry
i (n) # and q �x

s0 �y s �x s2 �y r so q �z rg restricted to the conditions extending a t witnessing the
1-genericity condition for Te.

Exercise 6.3.8 If L is a recursive lattice with 0 and 1 then it can be embedded in both
D(�00) and D(� g) preserving both 0 and 1 for any 1-generic g. (GM??)

??Direct construction below 00 search for interpolants �nd them of condition with no
extensions forcing convergence at a particular location??

Next, we disprove the homogeneity conjecture for D0 = hD;�T ;0 i. The conjecture,
like that for D, was based on the empirical fact that every theorem about the degrees or
the degrees with the jump operator relativizes and so if true in D (or D0) then it is true
in D(� c) or D0(� c) for every c. The conjectures asserted then that D �= D(�c) and
even that D0 �= D0(�c) for every degree c.

jhomc Theorem 6.3.9 There is c such that (D;�;0 ) 6�= (D(� c);�;0 ).

Corollary 6.3.10 The homogeneity conjecture for D0 does not hold.

Proof. If it did, then [0; 000] �= [c; c00]. To �nd a contradiction, it�s su¢ cient to �nd partial
lattice recursive in c which cannot be embedded in [0; 000]. (Using Exercise

latemb1gen
6.3.7 one can

replace 000 and c00 by 00 and c0, respectively.)
There are continuum many �nitely generated lattices (fact of lattice theory, true for

� 4 generators). But, only countably many �nitely generated lattices can be embedded
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in [0; 000] (because the lattice embedded is determined by image of its generators). Choose
L �nitely generated but not embeddable in [0; 00]. L has some degree, say c. By theorem
latemb
6.3.1 relativized to c, L is embeddable in [c; c00]. Thus [0; 000] � [c; c00] as required.
??Feiner, 1969 or so, gave �1 presentable Boolean algebra which cannot be recursively

presented. As a corollary to this and di¢ cult but known initial segment results he gave
the �rst proof of Theorem

jhomc
6.3.9.??

??Put in when need it and can prove theorem?? For later applications, we would like to
have speci�c more complicated lattices embedded below 00 than are given directly by The-
orem

latemb
6.3.1 or Exercise

latemb1gen
6.3.7. To do so, we consider e¤ectively generated successor struc-

tures. Explain/de�ne w/o gi then add?? Consider the generators e0; e1; d0; f0; f1; g0; g1
with relations

(d2n _ e0) ^ f1 = d2n+1 (d2n+1 _ e1) ^ f0 = d2n+2:

So e0; e1; d0; f0; f1 give lattice structure. g0; g1 will pick out the set. Given set S,

n 2 S , dn � g0; g1:

Thus, we code S into partial lattice LS. How complicated can S be? How hard is it to
recover S from LS? If fdng formed an independent set, then for every S, get g0; g1 and
ideals generated by S are distinct. That is,

IS = fx : x � g0; g1g:

To guarantee this, can write down axioms in terms of join, order that yield independence
of fdng. Or, can add elements to the lattice: d̂n above dm for all m 6= n and d̂n ^ dn = 0.
Suppose we have e0; e1;d0; f0; f1;g0;g1�00 . Given the lattice generated by them,

how complicated is S? To answer these questions, we need to understand the complexity
of the structure D(� 00). That is, how hard is it to compute the various lattice operations
in D? �Xe being total is a �X2 question. To ask if �Xe �T �Xi , means

9j(��
X
i

j = �Xe ) , 9j8n9s(��
X
i;s

j;s (n) = �e;s(X)(n)):

Hence, order is �X3 . What about join? There is a recursive f such that

�Xe _ �Xi = �Xj , �Xf(e;i) �T �Xj & �Xf(e;i) �T �Xj ):

So join is �3 on indices. Finally, infs �Xe ^ �Xi = �Xj is �4.
In�ma add another quanti�er alternation. We may try to get around them: instead

of d1, consider cone below d1 (which we can get using only order) excluding 0. To exclude
0, we need to say � not below 0�. This is a �3 statement �better than �4 but still not
great. Is there a positive way of saying that you�re not equal to 0?
Start by de�ning positive �1 formulas 'n in �;_ such that 'n(x) i¤ x � dn. By

recursion on n,

'0(x) � x = d0; '2n+1(x) � 9y('2n(y)&x � (y _ e0); f1);
'2n+2(x) � 9y('2n+1(x)&x � (y _ e1); f0)
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These ' pick out equivalence classes below each dn. Is this enough to determine S?
Suppose we have x such that 'n(x) and x � g0; g1. We still need to ensure that x 6= 0. Is
there a way to say this with a positive formula? Add parameters p; q to the lattice with
the properties

p 6� q; 8n(p _ dn � q):

Then we can modify 'n by adding (x _ p � q) to all of them.
The condition on independence of the dn ( d̂n ^ dn = 0 ) implies that :9x(0 < x <

dn; dm) for n 6= m. So,

2n+ 1 2 S , 9x('2n+1(x)&x � g0; g1)

2n+ 2 2 S , 9x('2n+2(x)&x � g0; g1):

Therefore, if have a lattice LS embeddable below degree of set X, then S 2 �X3 .
Notice that if leave out g0; g1, the partial lattice that remains is recursive. So, we

know that it is embeddable below any 1-generic. Recall that in the Exact Pair theorem,
the construction was recursive in (�Ai)0. We will see that can build S recursive in 00
using these lattice embeddings.

Exercise 6.3.11 Given S 2 �3, show that can embed LS below 00, and probably below
any 1-generic. (May be hard.)

??Do now or later??



Chapter 7

The Theories of D and D(� 00)

In the previous section, we talked about isomorphisms and embeddability issues. We
need to consider more in order to understand theory of the degrees. We now approach
theorems which say that the theories of (sets of sentences true in) D and D(� 00) are as
complicated as possible. More precisely they are of the same Turing (even 1� 1) degree
as true second and �rst order arithmetic, respectively.

7.1 Interpreting Structuresinterp

??Explain interpreting one structure in another for �rst order structures. Example of
D(� 00) in arithmetic. Then second order arithmetic and logic (on countable structures).
Equivalence. Role of parameters, equivalence relations. So for D we need to code count-
able subsets and quanti�cation over arbitrary relations on them. For D(� 00) will want
to code arithmetic??
In the next section, we will show that we can code and quantify over all countable

relations on D by quantifying over elements of D. We use this coding to show that
Th(D) �1 Th2(N;�;+;�; 0; 1). Clearly, any sentence of Th(D) can be interpreted in
Th2(N;�;+;�; 0; 1) because the relation X �T Y is arithmetic. To interpret Th2(N;�
;+;�; 0; 1) inside Th(D), we need to encode the standard model of arithmetic. Such an
encoding will be a set N of degrees, relations R�; R+; R� on N , and degrees n0; n1 2 N
such that the axioms of Robinson arithmetic hold when

� quanti�cation is over N , and

� �;+;� are interpreted as R�; R+; R�, and

� 0; 1 are interpreted as n0; n1, and

� every nonempty subset of N has a least element.

Such encodings are de�nable from parameters, and we quantify over subsets of N
by quantifying over degrees �p de�ning countable sets. Thus, given a sentence ' of

53
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second order arithmetic, we test whether ' is true by asking if there is such a model
(n;R�; R+; R�; n0; n1) as above for which the translation of ' is true in D.
We begin with D and coding countable subsets of pairwise incomparable degrees. To

prove this, we will use Slaman-Woodin forcing. We will then show how to deal with
arbitrary countable sets of, and relations on, degrees.

7.2 Slaman-Woodin Forcing and Th(D)
Let S = fciji 2 Ng be a countable set of pairwise incomparable degrees. We want to
make S de�nable in D from three parameters c, g0 and g1. The de�nition will be that S
is the set of minimal degrees x � c such that (x _ g0)^ (x _ g1) 6= x in the strong sense
that there is a d � x _ g0;x _ g1 such that d � x.

sw Theorem 7.2.1 For any set S = fC0; C1; : : : ; g of pairwise Turing incomparable subsets
of N let C = �Ci. There are then G0,G1 and Di such that, for every i 2 N and j < 2�
Di �T Ci �Gj while Di �T Ci. Moreover, the Ci are minimal with this property among
sets recursive in C in the sense that for any X �T C for which there is a D such that
D �T X �Gj (j < 2) but D �T X there is an i such that X �T Ci.

Proof. Without loss of generality we may assume that each Ci is recursive in any of its
in�nite subsets: simply replace Ci by the set of binary stings � such that � � Ci. We
take C to be �Ci, the uniform join of the Ci. We build Gi as required by forcing in such
a way as to also uniformly de�ne the Di from G0 and Ci so that Di will also be recursive
in G1 �Ci as well. We begin with the coding scheme that says how we compute the Di.
Let fci;0; ci;1; : : :g list Ci in increasing order. Our plan is that Di(n) will be G0(ci;n).

To make sure that Di �T G1 � Ci as well, we will guarantee that G
[i]
0 =

� G
[i]
1 . (Recall

that =� means equality except possibly on a �nite set.) We now turn to our notion of
forcing P.
The forcing conditions are p of triples the form hp0; p1; Fpi where p0; p1 2 2<!, jp0j =

jp1j, and Fp is a �nite subset of !. We let the length of condition p be jpj = jp0j = jp1j.
Re�nement of the forcing conditions is de�ned by

p � q , p0 � q0; p1 � q1; Fp � Fq; and

if i 2 Fp and jqj < hi; ci;ni � jpj then p0(hi; ci;ni) = p1(hi; ci;ni):

This is a �nite notion of forcing with extension recursive in C. Our generic object de�ned
from a �lter G will be G0 � G1 where Gk = [fpkjp 2 Gg. We use Gk in our language
to mean the kth coordinate the generic object. The function V is de�ned in the obvious
way: V (p) = p0� p1. Note that C �T P as well (Exercise) and so n-generic for P means
generic for all �Cn sets.
We call hi; ki a coding location for Ci if k 2 Ci. The de�nition of extension above

implies that extensions of p agree at the coding locations for Ci for i 2 Fp. As the sets
fpjn 2 Fpg are
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Note that for any ' 2 �0, if p 
 ' then (p0; p1; ;) 
 '. So if q � p and q 
  for  2
�1 then (q0; q1; FP ) 
  as well.
Suppose that G is 1-generic for P. It is immediate from the de�nition of �P and the

density of the recursive (in P) sets fpji 2 Fpg that G[i]0 and G
[i]
1 di¤er on at most �nitely

many n 2 Ci. (If i 2 Fp and p 2 G then G[i]0 (m) = G
[i]
1 (m) for m 2 Ci and m > jpj.)

Thus Di �T G1 � Ci as required.
We next show that Di �T Ci, that is �Cie 6= Di for each e. Suppose for the sake of a

contradiction that Di = �
Ci
e for some e. Consider the �C1 set

Si;e = fp : 9m(p0(hi; ci;mi) 6= �Cie (m))g.

Then Si is dense because if p 2 P and m is such that hi; ci;mi > jpj then de�ne q � p by
Fq = Fp and for jpj � j � hi; ci;mi put q0(j) = q1(j) = 1��Cie (m). So q 2 Si;e and q � p
as desired. Thus, there is p 2 G \ Si;e for which

Di(m) = G0(hi; ci;mi) = p0(hi; ci;mi) 6= �Cie (m);

contradicting Di = �
Ci
e .

Now, we have to ensure minimality. In other words, we want to prove that if

�X�G0e = �X�G1e = D; X �T C; D �T X

thenCk �T X for some k. Consider the sentence ' that says that�X�G0e are�X�G1e total and equal.
It is �2 in C (because X �T C) and true of G = G0 � G1. So, if we now assume that
G is 2-generic, there is p 2 G such that p 
 '. Suppose �rst that :9n (9� � p0)
(9� � p0)[�

X��
e (n) #6= �X��e (n) #]. Then D is computable from X: to compute D(n)

search for any � � p0 such that �X��e (n) # and output this as the answer. There is
such a � � G0 by the totality of �X�G0e . Our assumption that there is no pair of ex-
tensions of p0 that give two di¤erent answers implies that any such � gives the answer
�X�G0e (n) = D(n).
On the other hand, suppose there is such a splitting for n given by p0^�, p0^� . By

extending one of � and � if necessary, we may assume that j�j = j� j. We claim that p0^�
and p0^� di¤er at a coding location hk; ck;mi for some k 2 Fp. Let � 0 be such that

�X�(p1^�^�
0)

e (n) #= �X�(p0^�^� 0)e (n) # :

There must be such a � 0 as (p0^� ; p1^� ; Fp) � p and so it has a further extension
q = (p0^�^�0; p1^�^�1; Fp) which forces �

X�G0
e (n) #= �X�G1e (n) #. Next consider

q̂ = (p0^�^�0; p1^�^�0; Fp) � p. It also has an extension (p0^�^�0^�0; p1^�^�0^�1; Fp) 

�X�G0e (n) #= �X�G1e (n) #. It is now clear that � 0 = �0^�1 has the desired property.
Next, consider the condition q = (p0^�^� 0; p1^�^� 0; Fp). Notice that q � p because:

1. �X�(p0^�)e (n) = �
X�(p0^�^� 0)
e (n) as p0^�^� 0 � p0^�.

2. �X�(p1^�^�
0)

i (n) = �
X�(p0^�)
e (n) by choice of � 0, but
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3. �X�(p0^�)e (n) 6= �X�(p0^�)e (n) because n; p0^�; p0^� were chosen to be splitting.

Hence, �X�(p0^�^�
0)

e (n) 6= �
X�(p1^�^� 0)
e (n) and so q does not extend p. However,

p0^�^�
0 � p0 and p1^� ^� 0 � p1, so it must be that p0^�^� 0 and p1^� ^� 0 di¤er at a

coding location. Therefore, p0^� and p0^� di¤er at a coding location hk; ni with k 2 Fp.
We now show that there must be such p0^� and p0^� which di¤er at only one number

(which then must be a coding location hk; ni for some k 2 Fp). Suppose �; � are strings
as above with j�j = j� j = `. Let � = 
00; 


0
1; : : : ; 


0
z = � be a list of strings in f0; 1g` such

that 
0i ; 

0
i+1 di¤er at only one number for each i. Let � be such that �

X�(p0^
01^�)
e (n) #

(such a � exists by the same argument as before). Set 
1i = 
0i ^� for each 0 � i � z.

Repeat this process for each j � z. At step j + 1, let � be such that �
X�(p0^
jj+1^�)
e (n) #,

and set 
j+1i = 
ji^� for each 0 � i � z. At the end, we have strings 
z0; 

0
1; : : : ; 


z
z such

that �X�(p0^

z
i )

e (n) # for each i, and p0^
zi ; p0^
zi+1 di¤er at only one number for each i.
Since

�X�(p0^

z
0)

e (n) = �X�(p0^�)e (n) 6= �X�(p0^�)e (n) = �X�(p0^

z
z)

e (n);

there must be an i for which �X�(p0^

z
i )

e (n) 6= �X�(p0^

z
i+1)

e (n). The strings p0^
zi ; p0^

z
i+1

di¤er at only one number and it must be a coding location hk;mi for some k 2 Fp as
required.
Next, we show that X can �nd in�nitely many coding locations hk;mi for some �xed

k 2 Fp. Suppose we want to �nd such a location hk;mi with m > M . Search for strings
p0^� and p0^� that agree on the �rstM positions, di¤er at only one position, and satisfy
�
X�(p0^�)
e (n) 6= �X�(p0^�)e (n). Such strings must exist because we could have started the
above analysis at any condition q 2 G with q � p (so we can �nd such strings agreeing on
arbitrarily long initial segments). The position at which p0^� and p0^� di¤er must be a
coding location bigger thanM . Since Fp is �nite in�nitely many of these coding locations
must be for the same k. so can be given to X as data, X can �nd in�nitely many coding
locations hk; ck;mi for any �xed k. Hence, X can enumerate an in�nite subset of Ck and
so can compute a (perhaps smaller) in�nite subset of Ck and hence all of Ck by our initial
assumption on the Ci.

As 2-genericity su¢ ced for the proof of the theorem above , we can get the required
Gj �T C 00 and,indeed with (G0�G1)00 �T C 00. We see below (Theorem

sw0�
7.3.1 and Exercise

sw1gen
7.3.3) that we can do better.
Now we work toward coding arbitrary countable relations on D.

joinw1gen Proposition 7.2.2 If H is a Cohen 1-generic relative to C then for any X; Y � C if
X �H [i] � Y �H [j] then i = j and X � Y .

Proof. Suppose that for some e, X;Y �T C, �Y�H
[j]

e = X �H [i] and consider the set

Se = f� 2 2<! : 9n
�
�Y��

[j]

e (n) #6= X � �[i](n)
�
g:
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Se 2 �1(C) so either there is � 2 Se \ H or there is � � H no extension of which is
in Se. The �rst alternative clearly violates our assumption that �Y�H

[j]

e = X �H [i] and
so there is a � � H such that � =2 Se for all � � �. Let n = j�[i]j. If i 6= j and there
were � � �[j] such that �Y��e (2n + 1) #, we could extend � to � such that � [j] = � and
� [i](n) = 1��Y��e (2n+ 1) (as the value of � [i](n) is independent of � [j]. In this case, we
have

�Y��
[j]

e (2n+ 1) #6= � [i](n) = (X � � [i])(2n+ 1)

and so � 2 Se, contradicting our choice of �. Therefore, there can be no � � �[j]

making �Y��e (2n + 1) converge while �Y�H
[j]

e is total by assumption and �[j] � H [j] for
a contradiction. Thus i = j.
Next, we show that X �T Y . To compute X(n) from Y , search for a � � � such that

�Y��
[j]

e (2n) converges (such a � exists because �Y�H
[i]

e is total and �[j] � H [j]). Then, as
usual, we claim that �Y��

[j]

e = (X � � [i])(2n) = X(n) for if not, � 2 Se and extends � for
a contradiction.

Theorem 7.2.3 Every countable relation R(x0; : : : ; xn�1) on D is de�nable from para-
meters. Indeed for each n there is a formula '(x0; : : : ; xn�1; �y) with �y of length some k > 0
(depending only on n) which includes the clauses that xi � y0 for each i < n such that
as �p ranges over all k-tuples of degrees, the sets of n-tuples of degrees f�ajD � '(�a; �p)g
range over all countable n-ary relations on D.

Proof. We want to de�ne R from parameters. As R is countable the degrees in its
domain are countable and so we may assume they are all uniformly below some degree c
(c is the degree of a set C which is a uniform upper bound for all the sets X of degrees
in the domain of R) which we take to be our �rst parameter. Let H be Cohen 1-generic
over C 2 c and hi;j be the degree of H [hi;ji]. Suppose fxjg lists all the degrees � c. We
code R using the following countable sets of pairwise incomparable degrees.

Hi = fhi;jjj 2 Ng for i < n

Fi = fxj _ hi;jjj 2 Ng for i < n

R = fh0;j0 _ h1;j1 _ � � � _ hn�1;jn�1 : R(xj0 ;xj1 ; : : : ;xjn�1)g

Each of these sets consists of pairwise incomparable degrees. The �rst and third by
the fact (Exercise ??) that for a Cohen 1-generic H the sets H [k] form a very independent
set. (So, for any �nite A and B, _fxjx 2Ag � _fxjx 2Bg if and only if A � B.) The
elements of each Fi are pairwise incomparable by Proposition

joinwigen
??. Our de�ning formula

' for R is now

&i<n(xi � c) & (9yi)i<n(yi 2 Hi & &i<n(xi _ yi) 2 Fi &
_
i<n

yi 2 R)
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where we understand membership in the sets Hi, Fi and R as being de�ned by the ap-
propriate parameters. The veri�cation that this formula de�nes the relation is straight-
forward. If R(�x) then every element of the sequence �x is below c and is therefore equal
to an xji (for i < n). The degrees hi;ji 2 Hi then are the witness yi required in '.
In the other direction, if ' holds of any n-tuple then all its elements are below c and
we need to consider the situation where '(xj0 ; : : :xjn�1) for some ji, i < n. Let the

required witnesses be yi. As yi 2 Hi and (xji _ yi) 2 Fi, yi = hi;j. Then as
_
i<n

yi 2 R,

R(xj0 ;xj1 ; : : : ;xjn�1).
The assertions in the Theorem about the form of the required formulas ' are now

immediate.
Our discussions of coding second order arithmetic in §

interp
7.1 now show that we have

precisely determined the complexity of the theory of the Turing degrees.

Theorem 7.2.4 Th(D;�) �1Th2(N;�;+;�; 0; 1).

Slaman Woodin "De�nability in the Turing Degrees" IL. J. Math 30 (1986), 320-334
Odifreddi, Shore "Global Properties of Local Degree Structures" 1971 Bul. U. M. I.
Greenberg, Montalbán "Embedding and Encoding Below a 1-generic" JSL 2003

7.3 Th(D � 00)
We want to now improve our coding results so that they become applicable below 00. We
begin with the Slaman and Woodin coding of sets of pairwise incomparable degrees.

sw0� Theorem 7.3.1 For any set S = fC0; C1; : : : ; g of pairwise Turing incomparable subsets
of N let C = �Ci. There are then G0,G1 �T C 0 and Di such that, for every i 2 N and
j < 2�Di �T Ci �Gj while Di �T Ci. Moreover, the Ci are minimal with this property
among sets recursive in C in the sense that for any X �T C for which there is a D such
that D �T X �Gj (j < 2) but D �T X there is an i such that X �T Ci.

Proof. We build Di �T G0 � Ci; G1 � Ci such that Di �T Ci. The requirements for
diagonalization here are:

Pe;i : �
Ci
e 6= Di:

Let Xj = �
C
j . We also have requirements for minimality:

Re;;j : �
G0�Xj
e = �G1�Xje = D ) D �T Xj or 9i(Ci �T Xj):

We list all the requirements as Qs. We build G0; G1 by �nite approximations 
0;s; 
1;s
of equal length. As before we let Di(m) = G0(hi; ci;mi) where fci;mg is enumeration
of Ci in increasing order. So Di �T G0 � Ci. We guarantee that Di �T G1 � Ci as
before by making sure that, for each i, G0(hi;mi 6= G1(hi;mi for at most �nitely many
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m 2 Ci. In particular we institute a rule for the construction that when we act to
satisfy requirement Qn at stage s by extending the current values of 
k (k = 0; 1) we
require, for i � n, hi;mi � j
0;sj = j
1;sj and m 2 Ci, that the extensions 


0
k are such

that 
00(hi;mi) = 
01(hi;mi). As we will act to satisfy any Qn at most once, this rule
guarantees that there are at most �nitely many relevant di¤erences between G0 and G1
for each i.
At stage s, if Qs = Pe;i, we act to satisfy Pe;i. Choose m such that hi; ci;mi � j
0;sj.

Ask if �Cie (m) #. If not, let 
k;s+1 = 
k;s for k = 0; 1: (As usual this satis�es Pe;i.) If it does
converge, extend each of 
0;s; 
1;s by same string � to 
0;s+1; 
1;s+1 with 
0;s+1(hi; ci;mi) 6=
�Cie (m). This also satis�es the requirement because Di(m) = G0(hi; ci;mi) by de�nition
and trivially obeys the rule of the construction.
Note that C 0 can answer the question �Cie (m) #, so this action is recursive in C 0.
If Qs = Re;j, this stage will have a substage for each requirement Qn = Re0;j0 with

n � s that has not yet been satis�ed. For notational convenience we write 
k for 
k;s in the
description of our action at stage s. At the end of each substage we will de�ne successive
extensions 
k;l of 
k satisfying the rule of the construction. We �rst try to satisfy Re;j
(which, of course, we have not attempted to satisfy before). We ask if 9x9�k � 
k which
satisfy the rule of our construction and such that the �k �X e-split, i.e.

��0�Xje (x) #6= ��1�Xje (x) # :

(Note that when we are acting to satisfy any Qn checking if extensions of the current
values of 
k satisfy the rule of the construction is recursive in �fCiji � ng and so
uniformly recursive in C. Thus this question can be answered by C 0. There is one
subtlety here. We must be careful with what we mean by a computation from Xj as
there is no list of all the sets recursive in C that is uniformly recursive in C. So what
we mean here is that there is a computation of �Cj providing long enough initial segment
of Xj so as to make the desired computations at m converge. This makes the whole
question one that is �C1 and so recursive in C

0.) If the answer is yes, choose as usual the
�rst such extensions (in a uniform search recursive in C) as 
0;0; 
1;1. Note that we have
now satis�ed Re;j. If the answer is no, ask if 9x9�; � ((
0^� �Xj)je(
0^� �X)). (This
question is also �1(C)).

� If not, let 
k;s;0 = 
k;s. Then, as usual, if �
G0�Xj
e is total, it is recursive in X as we

will have G0 � 
0;0. To calculate it at x, �nd any � such that �

0^��Xj
e (x) #. This

computation must give right answer. So in this case we have also satis�ed Re;i;j.

� If so,we can �nd such � and � (recursively in C). We interpolate between �; � with
strings � = �0 = �1; : : : ; �z = � which di¤er successively at exactly one number.
Ask if 9�1 such that �
0^�1^�1�Xje (x) #. If not, let 
k;0 = 
k^�1. Note that this
extension satis�es the rule of the construction and that we have satis�ed Re;j by
guaranteeing that �G0�Xje (x) ". If yes, consider �2^�1 and ask again if there is a �2
such that ��2^�1^�2�Xje (x) #. If not, let 
k;0 = �2^�1 as before obeying the rule of
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the construction and satisfying Re;j. If so, we continue on inductively through the
�k.

� Eventually we either de�ne 
k;0 and satisfy Re;j or we �nd �1; : : : ; �z such that
�

0^�l^��Xj
e (x) # for every l � z where � = �1^ : : : ^�z. In the second case, we set


k;0 = 
k;s. This action does not satisfy Re;i but it demonstrates that there are
�̂ and �̂ which di¤er at exactly one number and for which (
0^�̂ � X)je(
0^�̂ �
X). The point here is that, as �
0^�0^��Xje (x) #= �
0^��Xje (x) #6= �
0^��Xje (x) #=
�

0^�z^"�Xj
e (x) #, there is an l such that �
0^�l^��Xje (x) #6= �
0^�l+1^��Xje (x) # while

�l^� and �l+1^� di¤er at exactly one number. Now consider 
1^�̂. If there is no
� such that �
1^�̂^��Xje (x) # then we can again satisfy Re;j by setting 
k;s;0 =


k;s^�̂. If there is such a �, we compare �

1^�̂^��Xj
e (x) # with �
0^�̂^��Xje (x) # and

�

0^�̂^��Xj
e (x) #. As the last two are di¤erent one of them must be di¤erent from
the �rst. If �
1^�̂^��Xje (x) #6= �
0^�̂^��Xje (x) #, we would contradict our assumption
that the answer to our very �rst question was no as 
1^�̂^� and 
0^�̂^� certainly
satisfy the rule of the construction. If �
1^�̂^��Xje (x) #6= �
0^�̂^��Xje (x) #, the only
way we would not have the same contradiction is if the one point at which �̂ and
�̂ di¤er must be a coding location hk; ck;mi with k < s. Thus the only was our
actions at this stage do not satisfy Rhe;ji is if there are �̂^� and �̂^� which di¤er
at at exactly one point such that (
1^�̂^��Xj)je
0^�̂^��Xj and for any such �̂
and �̂ the point of di¤erence must be a coding location hk; ck;mi with k < s.

� In this last case we set 
0;0 = 
0 and 
1;0 = 
1;s. In any event, we now proceed to
extend 
1;0 (and then 
1) in the same way but attempting to satisfy eachQn = Re0;j0
with n < s that has not yet been satis�ed. After some �nite number of such
attempts we have tried them all, satisfying some and for the others producing
one more example of an x and two strings �̂ and �̂ di¤ering at one number only
(after j
0j) such that (
0^�̂�Xj0)je(
1^�̂ �Xj0) for each he0; j0i which we have not
yet satis�ed and a guarantee that any two such strings di¤er at a coding location
hk; ck;mi with k < s.

� At the end of this process we let 
k;s+1 be the �nal extension of 
k that we have
produced.

We now claim that all the requirements are satis�ed. It is immediate that Pe;i is
satis�ed when we act for Qs = Pe;i at stage s: Consider any Re;j = Qs0. If we ever act so
as to satisfy it at some stage s of the construction, it is clearly satis�ed and we never act
for it again. As we violate the rule of the construction at some hk; ck;mi only when we act
to satisfy requirement Qn for n � k and we do so at most once for each n, Di �T G1�Ci
as required.
Finally, suppose that the �rst requirement that we never act to satisfy during the

construction isQn. It must be some Re;j. Suppose that all requirementsQr for r < n have
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been satis�ed by stage s0 > n. At each stage s > s0 with Qs = Re0;j0 we attempt to satisfy

Re;j as some substage of the construction. As we fail, there are �
�0�Xj0
e0 (x) #6= ��1�Xj0e0 (x) #

with �k � 
k;s � 
k;n which di¤er at exactly one point and any such pair di¤er at a
coding location hk; cm;ki with k � n. Recursively in Xj we can then search for and �nd
in�nitely many extensions �k of 
k;n with this property with the points at which they
di¤er becoming arbitrarily large (as j
k;sj is clearly going to in�nity). As there are only
�nitely many k � n, there must be one k � n for which in�nitely many of these �k di¤er
at a point of the form hk; zi with in�nitely many di¤erent z. As every such point is a
coding location, recursively in X we can compute an in�nite subset of Ck, so by our
initial assumption that each Ci is recursive in everyone of its in�nite subsets Ck �T Xj

as required to satisfy Re;j in the end.

Exercise 7.3.2 It is easy to show that the Gi of Theorem
sw0�
7.3.1 can be made to have (or

already have) jumps below C 0. What about (G0 �G1)
0?

sw1gen Exercise 7.3.3 With the notation as in Theorem
sw
7.2.1 show that for any G 1-generic

for P, G0 and G1 have the properties required by the Theorem. Hint: Greenberg and
Montalbán.

??This step-by-step construction is the same as the forcing argument we saw before,
but grittier and we gain a quanti�er. This helps us to determine the true complexity of
Th(D;� 00). We�d like to show Th(D;� 00) �m Th(N;+;�;�).
If �Ci = C is low (that is, C 0 �T 00) then can get coding < 00. By the Lattice

Embedding Theorem (Theorem ??), get e¤ective successor model with top element 1-
generic so low. Then get parameters via Slaman-Woodin forcing which code fdng. Can
also code relations of arithmetic on them.
If start with 1-generic and add more things which are 1-generic relative to it, or

low relative to it, then stay 1-generic so keep everything below 00. Thus, can code
arithmetic below 00. That is, can code set N, and relations +;�; < so that satisfy
Robinson arithmetic. How do we say that this is a standard model of arithmetic? We
can�t quantify over all subsets of (D;� 00) because there are only countably many codes
but continuum many subsets. It is enough to show that the standard part has a code in
the model. Using our coding below 00, we can �nd parameters below 00 which code the
fdng of the successor model , and arithmetic on them. The ideal generated by fdng is
�3 if allow the top element of the lattice as a parameter (because it is e¤ective successor
model). So need to show that �3 in C ideal has exact pair below 00, where C is arbitrary
complete RE degree below 00.??

7.3.1 De�nability in D(�00)
jump classes
invariant under double jump
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Chapter 8

Domination Properties

8.1 Introduction

Notions and ideas.

De�nition 8.1.1 1. The function g dominates the function f (f < g) if, for all but
�nitely many x, f(x) < g(x).

2. The degree g dominates the function f if some g 2 g dominates f .

3. The function g dominates the degree f if g dominates every function f 2 f .

4. The degree g dominates the degree f if for every f 2 f there is a g 2 g which
dominates f .

We also sometimes express these relations in the passive form saying, for example,
that f is g-dominated or f is g-dominated for the �rst two relations. A function g that
dominates the degree 0 is called dominant.

In the literature a degree f that is not 0-dominated (i.e. there is an f 2 f which is not
dominated by any recursive function) is, for historical reasons unrelated to our concerns,
called hyperimmune. If f is not hyperimmune, i.e. it is 0-dominated, is also called hyper-
immune free. For example, we will see that every 0 < a < 00 is hyperimmune (Theorem
delta2dom
8.2.3) while the minimal degrees constructed by Spector (§

spectormin
9.2) are hyperimmune free.

0domtt Exercise 8.1.2 Prove that if a is 0-dominated and B �T A 2 a then B �tt A. So
any 0-dominated Turing degree consists of exactly one tt (and so wtt) degree. Hint: if
B = �Ae then consider the function f such that f(n) = �s(�A�se;s (n) #).

63
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8.2 R.E. and �02 degrees

redom Theorem 8.2.1 If A >T 0 is r.e. then there is a function m �T A which is not 0-
dominated, i.e. it is not dominated by any recursive function. Indeed, any function g
which dominates m computes A.

Proof. For A r.e., let As be the standard approximation to A at stage s.?? Let m be the
least modulus function for this approximation: m(x) = �s(8t � s)(As � x = At � x). For
r.e. sets, the approximation changes its mind at most once and is correct in the limit, so
m(x) is also the �s(As � x = A � x) and is clearly of the same degree as A. Moreover, if
g(x) � f(x) for almost all x, then A �T g as A � x = Ag(x) � x for all but �nitely many
x. Thus, if A >T 0, then f is not dominated by any recursive function and any g that
dominates f computes A.
The Shoen�eld limit lemma (Theorem

limitlemma
4.3.9) gives us a recursive approximation h(x; s)

to any A 2 �0
2 (or equivalently A �T 00). So the least modulus function m makes sense

for such an approximation as well. So does the second version used in the above proof.
Here we call it the computation function: f(x) = �(s > x)(8y < x)(h(y; s) = A(y)) (for
technical reasons, we don�t consider �rst few stages). It calculates the �rst stage after x
at which the approximation is correct up to x. But, since we are no longer looking at
r.e. sets, the approximation might change even after it�s correct and the computation
function f need not be the same as the least modulus m. The two functions may not be
the same even up to degree.

Exercise 8.2.2 Find an A <T 0
0 and an approximation h(x; s) to A for which the least

modulus function m computes 00. On the other hand, the computation function f for h
is always of the same degree as A.

We can, nonetheless extend Theorem
redom
8.2.1 to all A 2 �0

2.

delta2dom Theorem 8.2.3 If A is �0
2, then there is an f �T A which is not 0-dominated. Indeed,

any function g which dominates f computes a.

Proof. By the Shoen�eld limit lemma, there is a recursive h(x; s) such that lims!1 h(x; s) =
A(x). Let f(x) be the computation function for this approximation. Suppose f < g. We
claim that even though h(z; s) may change at z < x for s > f(x), we can still compute
A from g. Let s0 be such that (8m � s0)(f(m) < g(m)). To calculate A(n) for n > s0
�nd an s > n such that h(n; t) is constant for t 2 [g(s); gg(s)]. Since h(n; t) is eventually
constant, such an s exists. Moreover, we can �nd it recursively in g: compute the inter-
vals [g(n+ 1); gg(n+ 1)]; [g(n+ 2); gg(n+ 2)]; [g(n+ 3); gg(n+ 3)]; : : : checking to see if
h is constant on the intervals. By the clause that makes f(x) > x in the de�nition of the
computation function and our choice of s0, gg(s) > fg(s) > g(s), so the �rst t > g(s) at
which h is correct for all elements below g(s) is in [g(s); gg(s)]. For this t, h(n; t) = A(n).
As we chose s so that the value of h(n; t) is constant on this interval, A(n) = h(n; t) for
any t 2 [g(s); gg(s)] and we have computed A recursively in g as required.
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Exercise 8.2.4 What are the correct relativizations of the previous two Theorems?

Exercise 8.2.5 The above results can be extended by iterating the notions of �r.e. in�
or more generally ��0

2 in� as long as one includes the lower degrees. We say that A
1-REA if it is r.e. then we de�ne n-REA by induction: A is n + 1-REA if A is of the
form B �WB

e where B is n-REA. (REA stands for r.e. in and above.) Prove that any
n-REA set A has an f �T A such that any g > f computes A: Do the same with �0

2

replacing r.e. These results can be carried into the trans�nite. Prove, for example, that
0(!) has the same property.

re1gen Theorem 8.2.6 If A > 0 is r.e. and P is a recursive notion of forcing then there is is
1-generic G such that (the corresponding) G is recursive in A.

Proof. We will build a 1-generic sequence ps recursive in A. Let f �T A be the least
modulus function for A. The requirements are

Re : for some s, ps 2 Se or (8q � ps)(q =2 Se), where Se is eth �1 set of conditions.
At stage s, we have a condition ps. Note that we are thinking of P as a subset of N
and so have the natural ordering � on its members (and all of N) as well as the forcing
ordering �P . We say that Re has been declared satis�ed by stage s if there is a pn with
n � s such that pn 2 Se:f(s). Find the least e < s such that Pe has not yet been declared
satis�ed and such that (9q �P ps)(q � f(s) & q 2 Se;f(s)). For this e, choose the least
such q and put 
s+1 = q. If there is no such e, let ps+1 = ps.
To verify that the construction succeeds, suppose for the sake of a contradiction that

e0 is least such that
:9s(ps 2 Se0 _ (8q �P ps)(q =2 Se0)):

Choose s0 > e0 such that 8i < e0 if there is a ps 2 Si then there is on with s < s0
and ps 2 Se;f(s0) (so by this stage we have already declared satis�ed all higher priority
requirements that are ever so declared). We claim that we can now recursively recover
the entire construction and the values of f(s) for s � s0. As this would compute A
recursively, we would have our desired contradiction. Consider what happens in the
construction at each stage s � s0 in turn. Suppose we have ps. At stage s we look for the
least e < s such that (9q �P ps)(q � f(s) & q 2 Se;f(s)). There is no such e < e0 by our
choice of s0. If e0 itself were such an e, we would act for it and declare Pe0 to be satis�ed,
contrary to our choice of e0. On the other hand, by our choice of e0 there is a q �P ps
with q 2 Se0 . We can �nd such a q recursively (because we know it exists). We did not
�nd this q in the construction at stage s because either q > f(s) or q 2 Se0 � Se0;f(s).
So we can now �nd a bound t on f(s) by �nding the stage at which q enters Se0. Given
t � f(s) we can calculate f(s) as the least z such that Az � s = At � s. Once we have
f(s) we can recursively determine what happened at stage s of the construction and in
particular the value of ps+1. Thus we can continue our recursive computation of f(s) as
claimed.
Relativizing Theorem

re1gen
8.2.6 to C gives, for any C recursive notion of forcing P, a

G �T A which is C 1-generic for P for any A >T C which is r.e. in C.
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Exercise 8.2.7 The crucial property of the function f used in the above construction was
that there is a uniformly recursive function computing f(x) from any number greater than
it. Prove that if there is a partial recursive '(x; s) such that (8s � f(x))('(x; s) = f(x))
then f is of r.e. degree.

recohen Corollary 8.2.8 If a > 0 is r.e. then there is Cohen 1-generic G <T A and so, for
example, every countable partial order can be embedded in the degrees below a.

Similarly we have

Corollary 8.2.9 If a is r.e. in b and strictly above it, then every partial lattice recursive
in b can be embedded into [b; a).

renomax Corollary 8.2.10 If a is r.e. then every maximal chain in (D(� a);�T ) is in�nite. In
fact, there is no maximal element less than a in (D(� a);�T ).

Proof. Suppose b < a. Then a is r.e. in and strictly above b. Relativizing Theorem
re1gen
8.2.6 to a B 2 b and using Cohen forcing gives us a G �T A which is Cohen 1-generic
over B. So the degrees of B�G[i] are in fact all between b and a and even independent.

Exercise 8.2.11 Prove that every recursive lattice L with 0 and 1 can be embedded in
D(�a) preserving 0 and 1 for any r.e. a.??

We now apply Theorem
re1gen
8.2.6 to provide the missing way of identifying the standard

parts of e¤ective successor models coded below 00 that we need to calculate the complexity
of Th(D(�00)).

resigma3ideal Theorem 8.2.12 If A >T C, A is r.e. in C and I is an ideal in D(� C) such that
W = fe : �Ce 2 Ig 2 �C3 then there is an exact pair G0, G1 for I below A.

Proof. We provide a C-recursive notion of forcing P such that any 1-generic for P gives
an exact pair for I and apply Theorem

re1gen
8.2.6 relativized to C. The conditions of P are of

the form p = hp0; p1; Fp; npi where pi 2 2<!, jp0j = jp1j = jpj, Fp 2 !<!, np 2 ! such that

(8i 2 f0; 1g)(8he; x; yi)(9�1hw;mi) (he; x; y; w;mi 2 pi) .

We de�ne V as expected V (p) = p0� p1. So for a 1-generic G, we have Gi = [fpijp 2
Gg. If e 2 W , we want �Ce to be coded into Gi. The unusual restriction above on
conditions in P suggests how we intend to do this coding. Since W 2 �C3 we have
a relation R �T C such that e 2 W , 9x8y9zR(e; x; y; z). We denote the pairs of
elements of W and their witness by Ŵ = fhe; xi : 8y9zR(e; x; y; z). To calculate �Ce
for e 2 W , our plan is to �rst choose an x such that he; xi 2 Ŵ . We then search for
hw;mi such that he; x; y; w;mi 2 Gi and announce that �Ce (y) = m. The de�nition of P
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guarantees that this procedure gives at most one answer. The de�nition of the partial
order �P below will guarantee that this procedure makes only �nitely many mistakes
for any 1-generic. Genericity will also guarantee that, when he; xi 2 Ŵ , it gives a total
function.
The number np in our conditions acts as a bound for how far we can verify the �2

assertion that x is a witness that e 2 W (and so also that �Ce is total). The set Fp will
tell us for which he; xi we can make no further mistakes in our coding of �Ce into G

he;xi
i

when we extend p. With this intuition, we de�ne extension in P by q �P p i¤

qi � pi; Fq � Fp; nq � np;

and

(8i 2 f0; 1g)(8he; x; y; w;mi 2 [jpj; jqj)(he; xi 2 Fp & he; x; y; w;mi 2 qi
! �Ce;nq(y) = m & 8y0 � y9z � nq (R(e; x; y

0; z))

Note that P is recursive in C.
Suppose that G0; G1 are given by a C-1-generic sequence hpsi �T A as in Theorem

re1gen
8.2.6 relativized to C. We claim that G0; G1 are an exact pair for I.
First assume that he; xi 2 Ŵ . We show that �Ce �T Gi. As the sets fpj he; xi 2 Fpg

are obviously dense in P, there is an s such that he; xi 2 Fps . For any he; x; y; w;mi 2 pt
with t > s, �Ce (y) = m by de�nition and so as noted above, the prescribed search
procedure which is recursive in Gi returns only correct answers for y > jpsj. Next,
we claim that for each y > jpsj, i 2 f0; 1g and m = �Ce (y) the �

C
1 sets Se;x;y;m;i =

frj9w(he; x; y; w;mi 2 rig are dense below ps. This guarantees that hpti meets each of
these sets and so the search procedures are total and correctly compute �Ce (x) for all
but �nitely many x. To see that these sets are dense below ps, consider any q � ps
with no w such that he; x; y; w;mi 2 qi. Choose any w > jqj and de�ne an r �P q by
making jrj =



e; x; y; w;�Ce (y)i+ 1

�
, ri = qi [ fhe; x; y; w;�Ce (y)ig (i.e. we let them be 0

at other points below the length), Fr = Fq and letting nr be the least n � nq such that
8y0 � y9z < n(R(e; x; y0; z) & �Ce;n(y) #) (one such exists since we are assuming that
he; xi 2 Ŵ ). Then r�Pq and r 2 Se;x;y;m;i as desired.
We next want to deal with the minimality conditions associated with the Gi being

an exact pair for I. Suppose then that �G0e = �G1e = D is total. We want to prove that
D � �f�Ce : e 2 Fg for some �nite F � W . Consider the �1 set Se of conditions p:

Se = fp : 9n (�p0e (n) #6= �p1e (n)) #g

By our assumption there is no ps 2 Se so we have a ps = p such that 8q �P p(q =2 Se).
We claim that D � �f�Ce : he; xi 2 Fp \ Ŵg. For every he; xi 2 Fp n Ŵ , let y(e; x)
be the least y such that :8y0 � y9zR(e; x; y0; z) _ �Ce (y) ". It is clear that there is
no q �P p with any he; x; y; w;mi 2 qi for he; xi 2 Fp n Ŵ and y � y(e; x). Choose
q �P p in hpsi so that it has the maximal number of y�s with some he; x; y; w;mi 2 qi for
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y < y(e; x) and i 2 f0; 1g. To compute D(y) for y > jqj, we �nd a t 2 P such that ti � qi,
�t0e (y) #= �t1e (y) #, no elements not in qi are added into ti in columns he; xi 2 FpnŴ and
for any he; x; y; w;mi 2 ti with he; xi 2 Fp \ Ŵ , �Ce (y) = m. Such an extension exists
because �G0e (y) #= �G1e (y) # and by the maximality property of q and the de�nition of
�P , G[he;xi]i = q

[he;xi]
i for he; xi 2 Fp n Ŵ and so there is such a t̂ 2 hpsi. Finding one such

t is clearly recursive in �f�Ce : he; xi 2 Fp \ Ŵg. Thus we only need to show that any
such ti provide the right answer. If one such gave an answer di¤erent than that given by
t̂ (and so G0 and G1) then



t0; t̂1; Fp; n

�
(where n � nq is large enough so that �Ce;n(y) #

for every he; x; y; w;mi in t0 or t̂1 with he; xi 2 Fp \ Ŵ ) would be an extension of p in Se
for the desired contradiction.

8.3 High and GL2 degrees

We now look at stronger domination properties and their relation to the jump classes H1

and �L2 below 00 and their generalizations. Recall from §
jumphier
4.6 that for a � 00, a 2 H1 ,

a0 = 000; a 2 L2 , a00 = 000. For degrees a not necessarily below 00, a 2 GL2 ,
(a _ 00)0 = a00; a 2 GH1 , a0 = (a _ 00)0. It is also common to say that a is high if
a0 � 000. As it turns out these are the degrees of dominant functions. Of course, a 2GL2
means that a =2 GL2.
Let�s begin by showing that there is there a dominant function. In fact, if C is any

countable class of functions ffig then there is function f which dominates all the fi. For
example, put f(x) = maxffi(x) : i < xg+1. This construction requires a uniform list of
all the functions fi. For the recursive functions we know that 000 can compute such a list.
Indeed, Tot = fe : �e totalg �T 000 (Exercise

Tot
4.5.4) and so there is a sequence fi uniformly

computable from 000 which then computes a dominant function as described. We can do
better than this and avoid using totality. If f(x) = maxf�e(x) : e < x & �e(x) #g then
f �T 00 and is also clearly dominant. We can even do a bit better and get away with
functions of high degree.

martin Theorem 8.3.1 (Martin�s High Domination Theorem) A set A computes a dom-
inant function f if and only if 000 �T A0.

Proof. Suppose �rst that 000 �T A0. By the Shoen�eld limit lemma (Theorem
limitlemma
4.3.9)

and the fact that Tot �T 000, there is an h �T A with lims!1 h(e; s) = Tot(e). We want
to compute a function f recursively in A such that, for every e for which �e is total,
f(x) is larger than �e(x) with at most �nitely many exceptions. Any such f will be
dominant. To compute f(x) we compute, for each e < x, both �e;t(x) and h(e; t) for
t � x until either the �rst one converges, say to ye, or h(e; t) = 0. As if �e is not total,
limh(e; t) = 0, one of these outcomes must happen. We set f(x) to be one more than
the maximum of all the ye so computed for e < x. Note that f �T h �T A. It remains
to verify that if �e is total then �e < f . By our choice of h, 9s0(8s � s0)(h(e; s) = 1).
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So for x > s0 when we calculate f(x) we always �nd a t such that �e;t(x) #= ye and so
f(x) > �e(x) for all x > s0.
For the other directions, suppose we have a dominant f . As Tot is �02 and computes

000, it su¢ ces to show that it is also �2(f) as it would then be �2(f) and so recursive in
f 0. We claim that

8x9s�e;s(x) # , 9c8x�e;f(x)+c(x) # :
Suppose �e is total (if not, then of course both conditions fail). Let k(x) = �s�k;s(x) #.
Then k is recursive (because we know that8x�e(x) #). By hypothesis, f dominates k.
Thus, the right hand side holds. This is a �2(f) formula as desired.
Now a look at the de�nitions shows that for a �T 00, a =2 L2 is equivalent to 00 not

being high relative to a. Relativizing Theorem
martin
8.3.1 to an a �T 00 we see that a =2 L2

if and only if no f �T 00 dominates every (total) function recursive in A. We can then
handle GL2 by relativizing to a _ 00 to prove the following:

Proposition 8.3.2 A set A �T 00 has degree in L2 if and only if (8g �T 00)(9f �T
A)(f � g). An arbitrary set A has degree in GL2 if and only if (8g �T A _ 00)(9f �T
A)(f � g).

This says that, while sets that are not high do not compute dominant functions, if
they are not too low they compute functions which are not dominated by any recursive
function. This su¢ ces for many applications.

gl21gen Theorem 8.3.3 If A =2 GL2 then for any recursive notion of forcing P there is 1-generic
G �T A.

Proof. For any g �T A _ 00, there is an f �T A not dominated by g. Without loss of
generality we may take f to be strictly increasing. We �rst construct the function g that
we want and then using the associated f , we construct a 1-generic sequence ps recursively
in f (and so A). We again make use of the natural order � on P � N.
Let Se list the �1 subsets of P . As usual, we declare Se to be satis�ed at s if

(9n � s)(pn 2 Se;s). We de�ne g by recursion using 00. Given g(s), we want to determine
g(s+1). For each condition p � g(s)+1, ask 00 if (9q �P p)(q 2 Se) for each e � g(s)+1.
If such an extension exists, let xe be the least x such that (9q �P p)(q � x & q 2 Se;x).
Put g(s+ 1) = maxfxeje � g(s) + 1g.
We cannot use g itself in the construction of the desired 1-generic because want

G �T A. But, since g �T A _ 00, we can use an increasing f �T A not dominated
by g. The construction of G will be recursive in f (hence in A). At stage s, we have
�nite a condition ps. For each e � s not declared satis�ed at s, see if (9q �P ps)(q <
f(s+ 1) & q 2 Se;f(s+1)). If so, take the smallest such q for the least such e and let it be
ps+1. If not, ps+1 = ps. The construction is recursive in f , hence in A. Thus hpsi �T A
and the associated generic G �T A as well. Note that ps � f(s) by induction. Indeed
ps � g(s) as well because g(s) gives a bound on the witness required in the de�nition of
ps.
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To verify that G is 1-generic suppose, for the sake of a contradiction, that there is a
least e0 such that

:9s(ps 2 Se0 _ (8p �P ps)(p =2 Se0)):
Choose s0 such that (8i < e0)(9s)(Si is declared satis�ed at s) ! Si is declared satis�ed
at s0). Consider any s > s0 at which f(s+ 1) > g(s+ 1). By our choice of e0, there is a
q �P ps such that q 2 Se0. Moreover, as ps � g(s), by de�nition of g there is one� g(s+1)
such that it belongs to Se0;g(s+1) as well. By our choice of s, q � g(s+1) < f(s+1). Thus
at stage s+1, we would act to extend ps to a ps+1 2 Se0 for the desired contradiction.

cohenanr Remark 8.3.4 The function g we used in the above proof was actually recursive in 00.
In fact, for Cohen forcing g �wtt 00. Thus we used the weaker property that for every
function g �wtt 00 there is an f �T A not dominated by g. This property is called array
non-recursiveness and is discussed in the next section.

As with r.e. degrees, having a 1-generic below a degree a =2 GL2 provides a lot of
information about the degrees below a. For example, as in Corollary

recohen
8.2.8, we can embed

every countable partial order below any a =2 GL2. It is tempting to think that we could
also prove the analog of Corollary

renomax
8.2.10 that every maximal chain in the degrees below

a is in�nite. This is true for a < 00 (Exercise ?? ) but was an open question in Lerman
[1983]. Cai ?? has now proven that it is not true. There are a =2 GL2 which are the tops
of a maximal chain of length three.

Exercise 8.3.5 Prove that if a 2 L2 then any maximal chain in the degrees below a is
in�nite.

On the other hand, we can say quite a bit about the degrees above a as well when
a =2 GL2 that is not true of arbitrary r.e. degrees.

De�nition 8.3.6 A degree a has the cupping property if (8c > a)(9b < c)(a _ b = c).

Theorem 8.3.7 If a 2GL2 then a has the cupping property. Indeed, if A =2 GL2 and
C >T A then there is G �T A such that A _G �T C and G is Cohen 1-generic.

Proof. We need to add requirements Re : �Ge 6= A to the proof of Theorem
gl21gen
8.3.3 for

Cohen forcing (making all the requirements into a single list Qe) and code C into G as
well (so as to be recoverable from A � G). In the de�nition of g(s + 1) in that proof,
for each p � g(s) + 1 look as well for q0; q1 � p and x such that q0jeq1. Then make
g(s+1) also bound the least such extensions � 0; � 1 for each e; p � g(s)+1 for which such
extensions exist.
Again choose f �T A strictly increasing and not dominated by g. The construction is

done recursively in f �C. At stage s we have ps and we look for the least e such that Qe
has not yet been declared satis�ed and for which there is either a q �P p with q � f(s+1)
that would satisfy Qe as before if it is an Si or q0; q1 � ps with qi � f(s + 1) such that
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q0jeq1 if Qe = Ri. Let e be the least for which there are such extensions. If Qe = Si
choose q as before. If it is Ri Let q be the qj such that �

qj
e (x) #6= A(x). We then let

ps+1 = q^C(s) and declare Qe to be satis�ed. If there is no such e, we let ps+1 = ps^C(s).
Note that ps+1 � f(s+ 1) + 1 (the extra 1 comes from appending C(s)).
Since the construction is recursive in f � C and f �T A �T C, we have G �T C.

But, C �T hpsi because C(s) = ps+1(jps+1j). However, hpsi �T A _ G because f �T A
tells how to compute each stage from the given ps to the choice of q. Then G tells us the
last extra bit at end of ps+1.
To verify thatG has the other required properties suppose e0 is least such thatQe fails.

Assume that by stage s0 we have declared all requirements with e0 < e0 which will ever
be declared satis�ed to be satis�ed. Consider a stage s > s0 at which f(s+1) > g(s+1).
If Qe = Si then we argue as in the previous theorem. If Qe = Ri and there were any
q0; q1 � ps with q0jeq1 then would have taken one of them as our q and declared Qe = Ri
to be satis�ed contrary to our choice of e0. On the other hand, if there are no such
extensions, then as usual �Ge is recursive if total and so Ri would also succeed contrary
to our assumption.

Remark 8.3.8 Not every r.e. degree has the cupping property [??].

For other results about GL2 degrees it is useful to strengthen Theorem
gl21gen
8.3.3 to deal

with notions of forcing recursive in A rather than just recursive ones.

gl2genseq Theorem 8.3.9 For A 2 GL2, given an A recursive notion of forcing P and a sequence
Dn of dense sets (including the sets fpj jV (p)j > mg for each m) uniformly recursive in
A _ 00 there is a generic sequence hpsi �T A meeting all the Dn. Of course, the generic
G associated with the sequence is recursive in A as well.

Proof. Let mK be the least modulus function for K = 00 and let 	A�Kn = Dn, i.e. the
	n uniformly compute membership in Dn. We de�ne g �T A _ 00 by recursion. Given
g(s) we �nd, for each p; n � g(s) + 1 the least q such that q �P p and q 2 Dn. We then
�nd the use u (from A�K) needed to compute 	n at each number less than or equal to
any of these q. We then let g(s+ 1) be the least number larger than q, u and mK(u) for
all of these q and u as well as mK(g(s) + 1). As g �T A _ 00 and A 2 GL2 there is an
increasing f �T A not dominated by g.
We construct the sequence hpsi recursively in f �T A. At stage s we have ps. Our

plan is to satisfy the requirement of meeting Dn for the least n for which we do not seem
to have done so yet and for which we can �nd an appropriate extension of ps when we
restrict our search to q � f(s + 1) as well as our use of 00 to what we have at stage
f(s + 1). More formally, we determine (recursively in A) for which Dn (n � s) there is

a t � s such that 	
(A�Kf(s+1))�f(s+1)
n (pt) = 1. Among the other n � s, we search (again

recursively in A) for one such that (9q �P ps)(q � f(s+1) & 	
(A�Kf(s+1))�f(s+1)
n (pt) = 1).

If there is one we act for the least such n by letting ps+1 be the least such q for this n. If
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not, let ps+1 = ps. Note that ps+1 � f(s+ 1) by the restriction on the search space and
ps+1 � g(s+1) as well since g(s+1) also bounds the least witness by the de�nition of g.
We now claim that for each n there is a ps 2 Dn. If not, suppose, for the sake of a

contradiction, that n is least counterexample. Choose s0 such that for all m < n there is
t < s0 such that pt 2 Dm and indeed such that 	

(A�Ks0 )�s0
m (pt) = 1 and Ks0 � u = K � u

where u is the use of this computation of 	m at pt. Thus, by construction, we will
never act for m < n after s0. As g does not dominate f we may choose an s > s0 with
f(s+1) > g(s+1). At stage s we have ps and pt =2 Dn for all t � s in the sense required,

i.e. 	
(A�Kf(s+1))�f(s+1)
n (pt) = 0 since any computation of this form gives the correct answer

by our de�nition of g(s + 1) and the fact that f(s + 1) > g(s + 1). There is a q �P ps

with q 2 Dn and the least such is less than f(s + 1) and 	
(A�Kf(s+1))�f(s+1)
n (q) = 1 with

the computation being a correct one from A�K by the de�nition of g(s+1) < f(s+1).
Thus we would take the least such q to be ps+1 2 Dn for the desired contradiction.
We now give a couple of applications that will play a crucial role in our global analysis

of de�nability in D and, in particular, of the jump operator [??]. The �rst is a jump
inversion theorem that ??strengthens and (check original)?? generalizes Shoen�eld�s ??.

gl2completeness Theorem 8.3.10 (GL2 jump inversion) If A 2 GL2, C �T A _ 00, and C is r.e. in
A, then there is B �T A such that B0 �T C.

Proof. Let Cs be an enumeration of C recursive in A. We want a notion forcing recursive
in A and a collection of dense sets Dn such that for any hDni generic G, G0 �T C. This
time, our notion of forcing has conditions p 2 2<!. The de�nition of extension for P is
a bit tricky. If q � p and

he; xi 2 [jpj; jqj)) [Cjpj(x) = q(he; xi) or 9n � e (�pn(n) " & �qn(n) #)]

we say that q �1 p. Now this relation is clearly recursive in A since A computes Cjpj
for each p. However, it need not be transitive (Exercise

ntran)
??. We let �P be its transitive

closure. As, given any r � p, there are only �nitely many q�s with r � q � p we can
check all possible routes via �1 from p to r recursively in A and so �P is also recursive in
A. The plan for coding C into G0 uses the Shoen�eld limit lemma and partially explains
the notion of extension. It guarantees that e 2 C ) G[e] =� ! while e =2 C ) G[e] =� ;.
Thus e 2 C , limsG(he; si = 1 and so C �T G0. Suppose we have a generic sequence
hpsi �T A for some collection of dense sets as in Theorem

gl2genseq
8.3.9. The de�nition of

extension guarantees that coding mistakes can happen in column e only when �psn (n)
�rst converges for some n � e. Thus we will have C �T G0.
Our �rst class of dense sets include the trivial requirements and in addition force the

jump of G in the hope of making G0 �T C:

Dm;j = fp : jpj � j & [�pm(m) # or (8q � p)(�qm(m) "
or [(9e < m)(9he; xi 2 [jpj; jqj)(Cjpj(e) 6= q(he; xi) but :(9n � e)(�pn(n) " & �qn(n) #)])g
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Note that after we use A to compute Cjpj, membership in Dm;j is a �01 property and so
recursive in 00. Thus, the Dm;j are uniformly recursive in A _ 00. We must argue that
they are dense. Consider any p. We can clearly extend it to a q with jqj � j by making
q(he; xi) = Cjpj(e) for he; xi 2 [jpj; j). So we may as well assume that jpj � j. If �pm(m) #
then p 2 Dm;j and we are done. So suppose �pm(m) ". If there is q � p such that �qm(m) #
and (8e < m)(8 he; xi 2 [jpj; jqj)[Cjpj(x) = q(he; xi) or 9n � e (�pn(n) " & �qn(n) #)],
q �P p by de�nition. (because �pm(m) " while �qm(m) # so any violation of coding is
allowed for e � m) and is in Dm;j. If there is no such q then p 2 Dm;j by de�nition.
Now we verify that G = [ps has the desired properties. By Theorem

gl2genseq
8.3.9, G �T A.

To see that C �T G0 consider any e. Let s be such that (8i � e)(�Gi (i) #) �psi (i) #
& i 2 C ) i 2 Cjpsj): It is clear from the de�nition of �P that for any t > s and
hi; xi 2 [jpsj; jptj) with i � e, hi; xi 2 pt , i 2 C. Thus C(e) = limtG(he; ti and so
C �T G0 by the Shoen�eld limit lemma. For the other direction we want to compute
G0(e) recursively in C. (Of course, A �T C and so then is hpsi.) Suppose we have, by
induction, computed an s as above for e � 1. We can now ask if e 2 C. If so. we �nd
a u � t � s such that e 2 Cjptj and pu 2 De;jptj. If �

pu
e (e) #, then, of course, e 2 G0.

If �pue (e) " but e 2 G0, then there would be a v > u such that �pve (e) # and, of course,
pv �P pu. This would contradict the fact that pu 2 De;jptj by our choice of s and t and
the de�nitions of De;jptj and �P .

Corollary 8.3.11 (Shoen�eld Jump Inversion Theorem) For all C � 00 there is
B < 00 such that B0 �T C if and only if C is r.e. in 00.

Proof. The �only if�direction is immediate. The �if�direction follows directly from the
Theorem by taking A = 00.
For later applications we now strengthen the above jump inversion theorem to make

B <T A.

stgl2completeness Theorem 8.3.12 If A 2 GL2, C �T A _ 00, and C is r.e. in A, then there is B <T A
such that B0 �T C.

Proof. In addition to the requirements of Theorem
gl2completeness
8.3.10, we need to make sure that

�Gi 6= A for each i. To do this we modify the de�nition of extension to also allow viola-
tions of the coding requirements for e when we newly satisfy one of these diagonalization
requirements for i � e. (As we did above for making �Gi (i) #.) We say q �1 p if he; xi 2
[jpj; jqj)) [Cjpj(x) = q(he; xi) or 9n � e ([�pn(n) " & �qn(n) #] or [9y�qn(y) #6= A(y) & :9y�pn(y) #6= A(y)]).
Again �P is de�ned as the transitive closure of this relation and it is recursive in A _ 00
as before. We then adjust the Dm;j accordingly

Dm;j = fp : jpj > j & [�pm(m) # or (8q � p)(�qm(m) "
or [(9e < m)(9he; xi 2 [jpj; jqj)(Cjpj(e) 6= q(he; xi) but
:(9n � e)([�pn(n) " & �qn(n) #] & :(9y)[�qn(y) #6= A(y) & :9y�pn(y) #6= A(y)])]g.
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We also need dense sets that guarantee that �Ge 6= A:

Di = fpj(9x)(�pi (x) #6= A(x) or

(8q0; q1 � p)(8x < jq0j; jq1j)[:(�q0i (x) #6= �
q1
i (x) #) or

((9e < i)(9he; xi 2 [jpj; jqj)(9j 2 f0; 1g)[(Cjpj(e) 6= qi(he; xi) but
:(9n � i)([�pn(n) " & �qn(n) #] & :(9y)[�qn(y) #6= A(y) & :9y�pn(y) #6= A(y)])]g.

The proof now proceeds as in the previous Theorem. The arguments for all the veri�ca-
tions are now essentially the same as there and are left as an exercise.??

Exercise 8.3.13 Verify that the notion of forcing and classes of dense sets speci�ed in
proof of Theorem

stgl2completeness
8.3.12 su¢ ce to actually prove it.

Exercise 8.3.14 Prove that if A is r.e. and C �T 00 is r.e. in A then there is a B �T A
such that B0 �T C. Indeed we may also make B <T A. Hint:

The next result says that every a 2 GL2 is RRE (relatively recursively enumerable),
i.e. there is a b < a such that a is r.e. in b and a bit more.

gl2rre Theorem 8.3.15 If a 2 GL2 then there is b < a such that a is r.e. in b and a is in
GL2(b), i.e. (a _ b0)0 < a00.

Proof. Let a 2 GL2. We�ll use a notion of forcing P with conditions p = hp0; p1; p2i,
pi 2 2<! such that

1. jp0j = jp1j, p0(dn) = A(n), p1(dn) = 1 � A(n) where dn is nth place where p0; p1
di¤er and

2. (8e < jp0 + p1j)(e 2 p0 � p1 , 9x(he; xi 2 p2))

As expected, our generic set G0 �G1 �G2 is given by V (p) = p0 � p1 � p2. The idea
here is that if we can force p0; p1 to di¤er at in�nitely many places while still making our
generic sequence recursive in A, the �rst clause in the de�nition of �P guarantees that
G0 � G1 �T A. The second clause works towards making G0 � G1 r.e. in G2 with the
intention being that deg(G2) = g2 is to be the b required by the theorem. Extension in
the notion of forcing is de�ned in the simplest way as q �P p , qi � pi but note that
this only applies to p and q in P and not all q with qi � pi are in P even if p 2 P. The
notion of forcing is clearly recursive in A.
We now de�ne the dense sets needed to satisfy the requirements of the Theorem. We

begin with D2n = fp : p0; p1 di¤er at at least n pointsg. These sets are clearly recursive
in A. We argue that these are dense by induction on n. Suppose D2n is dense. To
show that D2n+2 is dense, it su¢ ces, for any given p 2 D2n �D2n+2 to �nd a q �P p in
D2n+2. Let q0 = p0^A(n), q1 = p1^(1 � A(n)). Choose i 2 f0; 1g such that qi(jp0j) = 1.
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De�ne q2 � p2 by choosing x large and setting q2(h2jp0j+ i; xi) = 1 and q2(z) = 0 for all
z =2 dom(p2) and less than h2jp0j+ i; xi. Now q = hq0; q1; q2i satis�es the requirements to
be a condition in P . It obviously extends p and is in D2n+2.
For any generic recursive in A which meets all the D2n, G0 �G1 �T A and G0 �G1

is r.e. in G2.
We also want dense sets similar in �avor to those of the previous theorems to force

the jump of G2 to make (a _ g02)0 < a00. Let

D2n+1 = fp : �p2n (n) # or (8� � p2)

(��n(n) " or (9he; xi 2 �)((p0 � p1)(e) = 0) .

For p 2 P , membership in D2n+1 is a 00 question and so these sets are recursive in A_00.
We want to prove that they are dense. Suppose have a p 2 P so we want a q �P p
with q 2 D2n+1. We may suppose that �p2n (n) " and that the second clause fails for p
as otherwise we would already be done. Thus we have a � � p2 such that ��n(n) # but
:(9he; xi 2 �)((p0�p1)(e) = 0). We claim that there is a q �P p such that q2 � � and so
�q2n (n) # and q 2 D2n+1 as required. The only issue is that there may be some hj; yi 2 �
with j > jp0 � p1j. If so we must de�ne q0 and q1 accordingly, i.e. j 2 q0 � q1. So if j
is even, we want j

2
2 q0; if it is odd,

j�1
2
2 q1. We now de�ne q0; q1 at the appropriate

element ( j
2
or j�1

2
) to both be 1. Elsewhere we let both q0 and q1 be 0. Thus we have

not added any points at which q0 and q1 di¤er beyond those in p0; p1). Now we extend �
to q2 by adding he; yi for some large y if (q0 � q1)(e) = 1 and e � jp0 � p1j and wherever
not yet de�ned we let q2(z) = 0. Thus q 2 P and is the desired extension of p in D2n+1

as �q2n (n) = �
�
n(n) #.

We now let hpsi �T A be a generic sequence meeting every Dn as given by Theoremgl2genseq
8.3.9. We already have seen that G0 �G1 �T A and is r.e. in G2 �T A. If we can show
that (A � G02)

0 <T A00 then we will be done as this clearly implies that G2 <T A. We
�rst claim that G02 �T A _ 00. To see if n 2 G02, recursively in A _ 00 �nd an s such that
ps 2 D2n+1. Then we claim that n 2 G02 , �

ps;2
n (n) #. If �p2n (n) #, then we are done.

If not, then (8� � ps;2) (�
�
n(n) " or (9he; xi 2 �)((p0 � p1)(e) = 0)) and by de�nition of

membership and extension in P, �pt;2n (n) " for every pt;2 for t � s. Thus �G2n (n) " as
desired. AsG02 �T A_00, (A�G02) = A_00 and so as A =2 GL2, (A�G02)0 = (A_00)0 <T A00
as required.

Exercise 8.3.16 If A >T 0 is r.e. and C �T 00 is r.e. in A then there is a B �T A
such that B0 �T C. Indeed we may also make B <T A. Hint: ....build �s �nite extension
obey coding rule for columns for e � c(s) � s (enumerates C recursively in A) except
that can violate to force jump as above; search below mA(s + 1) for extensions forcing
jump for e � s that obey rule. Also search for extensions so �e giving di¤erent answers
and allow violations in columns > e when satisfy this requirement by choosing one that
gives answer other than A ??

We can now deduce a result that will play a major role in our de�nition of the Turing
jump in D and many related results.
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Theorem 8.3.17 If A 2 GL2 and S 2 �A3 then there is an embedding of an e¤ective
successor model (with the appropriate partial lattice structure) in the degrees below deg(A)
and an exact pair x;y for the ideal generated by the dn with n 2 S. (Remember that the
dn are the degrees representing n 2 N in the e¤ective successor model.

Proof. Given A 2 GL2 and S 2 �A3 Theorem
gl2rre
8.3.15 gives us a B < A such that A is r.e.

in B and A is GL2(B). Since A0 � A _ 00 and is r.e. in it, Theorem
gl2completeness
8.3.10 relativized to

B gives us a B̂ < A (with B �T B̂) such that B0 � A0 and so �B̂3 = �
A
3 , Moreover, A

is r.e. in B̂ because it was r.e. in B �T B̂. The result now follows from Theorem ?? to
embed an e¤ective successor model between B̂ and A and Theorems

resigma3ideal
8.2.12 to pick out

the ideal generated by the associated dn for n 2 S as the set fej9n(�B̂e 2 dn)g is itself
�B̂3 = �

A
3 as is then fej(9n 2 S)(�Ae 2 dn)g.

Below a H1 or GH1 degree?? Minimal degree in ?? others here??complementation??

Exercise 8.3.18 Prove that every degree has a GL2 degree below it.

Exercise 8.3.19 Prove that every degree has a GL1 degree above it.

Exercise 8.3.20 Prove that every recursive lattice L with 0 and 1 can be embedded in
D(�a) preserving 0 and 1 for any a 2 GL2.

Other results of this type? Lerman, Antonio?
History: most in Jockusch Posner 1978 at least for Cohen forcing.

8.4 Array Nonrecursive Degrees

The notion of array nonrecursiveness was originally introduced in the context of r.e.
degrees to capture certain types of arguments in which one needed multiple permissions
from (changes in) a given r.e. set to construct a desired set. (DJS I) It was phrased
in terms of the r.e. set meeting (intersecting) the elements of certain types of arrays
of uniformly given �nite sets. It was later (DJS II) generalized to all degrees with a
de�nition based on a domination property involving functions weak truth-table reducible
to 00 and shown to have many of the properties of GL2 degrees.

anrdeg De�nition 8.4.1 A degree a is ANR if for every function g �wtt 00 there is an f �T a
such that f is not dominated by g.

Exercise 8.4.2 If a 2 GL2 then a 2 ANR.

This notion is actually equivalent to two related ones, one seemingly weaker and the
other seemingly stronger. (DJS and CSh)
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anreq Proposition 8.4.3 The following are equivalent for a degree a:

1. a is ANR.

2. There is a function f �T a which is not dominated by the least modulus function
mK for 00.

3. For any A 2 a and g = �e(A� 00) such that there is a function r �T A bounding
the use from 00 in the computation of g at each x, there is a k �T A which is not
dominated by g.

Proof. That (1) implies (2) and (3) implies (1) are immediate from the de�nitions. We
prove that (2) implies (3).
Without loss of generality we may assume that f , g and r are increasing. We de�ne

the required k �T A as follows: To calculate k(n) compute, for each s > n in turn,
�e;fr(s)(A�00fr(s);n) (i.e. compute fr(s)many steps in the standard enumeration of 00 and
then, using this set as the second component of the oracle (and A for the �rst), compute
�e at n for fr(s) many steps) until the computation converges and then add 1 to get the
value of k(n). This procedure must converge as �e(A � 00;n) converges. Now, as mK

does not dominate f , there are in�nitely many n such that there is a j 2 [r(n); r(n+1))
with f(j) > mK(j). For such n we have fr(n + 1) > f(j) > mK(j) � mKr(n). Thus
00fr(s) � r(n) = 00 � r(n) for every s > n. So the computation of �e(A � 00;n) is,
step by step, the same as that of �e(A � 00fr(s);n) for each s > n as all the oracles
agree on the actual use of the true computation. So eventually we get an s > n such
that �e;fr(s)(f � 00fr(s);n) # and the output must be �e(A � 00;n). Thus, for these n,
k(n) = g(n) + 1 > g(n) as required.

lowanr Exercise 8.4.4 There is an a 2 ANR with a 2 L1. In fact, there is a Cohen 1-generic
A whose degree is ANR. Hint: use Proposition

anreq
8.4.3(2) and the principal function

??de�nition?? of A.

Exercises on f is ANR, relativizations and uniformity

That there are Cohen 1-generics below every a 2 ANR follows immediately from
the proof of Theorem

gl21gen
8.3.3 and Remark

cohenanr
8.3.4. This, as usual, gives one whole array of

corollaries. We now prove the analog for ANR of the stronger version given for GL2
degrees in Theorem

gl2genseq
8.3.9. This allows us to carry out almost all of the known forcing

constructions for GL2 degrees for ANR ones.

anrgenseq Theorem 8.4.5 If A is of ANR degree, P is an A-recursive notion of forcing, C = hDni
a sequence of sets dense in P (including the ones fpj jV (p)j > lg for each l) with a
density function d(x; y) = 	(A� 00;x; y) such that the use from 00 in the computation of
	(A� 00;x; y) is bounded by a function r̂ �T A, then there is a C-generic sequence hpsi
recursive in A. Indeed, 8n9s(ps+1 = d(ps; n)).
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Proof. Without loss of generality we may assume that r̂(x; y) is increasing in both x
and y. Next note that the nondecreasing function mK r̂(s; s) satis�es the hypotheses of
Proposition

anreq
8.4.3(3), i.e. it is computable from A � 00 and its 00 use is bounded by a

function (r̂(s; s)) recursive in A. Finally note that the maximum of the running times
of 	(A � 00;x; y) for x; y � s is also is such a function. (We run 	 on each input and
then output the sum of the number of steps needed to converge.) Finally, we let r be the
maximum of these three functions so it too is of the desired form. By Proposition

anreq
8.4.3,

we now have an increasing function g �T A not dominated by r. We use g to construct
the desired generic sequence ps by recursion.
We begin with p1 = 1. At step s + 1 we have (by induction) a nested sequence

hpiji � si with pi � s. We calculate 00g(s+1) and see if there are any changes on the use
from 00 in a computation based on which some Dm was previous declared satis�ed. If so,
we now declare it unsatis�ed. Suppose n is the least m < s+ 1 such that Dm is not now
declared satis�ed. (There must be one as we declare at most onem to be satis�ed at every
stage and none at stage 1.) We compute 	g(s+1)(A � 00g(s+1); ps; n). If the computation
does not converge or gives an output q such that q > s+ 1 or q �P ps we end the stage
and set ps+1 = ps. Otherwise, we end the stage, declare Dn to be satis�ed on the basis
of this computation of the output q and set ps+1 = q. Of course, hpsi �T A.
We now verify thathpsi is C-generic and indeed 8n9s(ps+1 = d(ps; n)). Clearly if

we ever declare Dn to be satis�ed (and de�ne ps+1 accordingly) and it never becomes
unsatis�ed again then ps+1 = d(ps; n). Moreover, if we ever declare Dn to be satis�ed
(and de�ne ps+1 accordingly) and it remains satis�ed at a point of the construction at
which we have enumerated 00 correctly up to r(ps; n), then by de�nition ps+1 = d(ps; n)
and Dn is never declared unsatis�ed again. We now show that this happens.
Suppose all Dm for m < n have been declared satis�ed by s0 and are never declared

unsatis�ed again. Let s+1 � s0 be least such that g(s+1) � r(s+1). If Dn was declared
satis�ed at some t+ 1 � s on the basis of some computation of 	g(t+1)(A� 00g(t+1); pt; n)
and there is no change in 00 on the use of this computation by stage g(s + 1) then the
computation is correct, pt+1 = 	(A� 00; pt; n) 2 Dn and Dn is never declared unsatis�ed
again. (The point here is that by our choice of s, g(s+1) > mKr(s+1; s+1) � mKr(pt; n)
and so 00g(s) � r(pt; n) = 00 � r(pt; n).) Otherwise, Dn is unsatis�ed at s and the least
such. By construction we compute 	g(s+1)(A � 00g(s+1); ps; n). The de�nition of r along
with our choice of g and s guarantee that this computation converges and is correct and
so unless d(ps; n) > s + 1 we declare Dn satis�ed, set ps+1 = d(ps; n) and Dn is never
declared unsatis�ed again. If d(ps; n) > s + 1, we set ps+1 = ps and, as Dn remains
unsatis�ed and the computations already found do not change, we continue to do this
until we reach a stage v + 1 � d(ps; n) at which point pv = ps and we set pv+1 = d(pv; n)
declare Dn satis�ed and it is never unsatis�ed again.

Exercise 8.4.6 Prove that every recursive lattice L with 0 and 1 can be embedded in
D(�a) preserving 0 and 1 for any a 2 ANR. (DJS)

Exercise 8.4.7 Prove that every a 2 ANR has the cupping property.
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jump inversion others Exercises??
Our goal now is to characterize the ANR degrees as those degrees a such that every

b � a is RRE. We begin with the analog of Theorem
gl2rre
8.3.15 which provides one half of

the equivalence.

anrrre Theorem 8.4.8 If a 2 ANR then a is RRE.

Proof. We use an A-recursive notion of forcing P with conditions p = hp0; p1; p2i,
pi 2 2<! such that

1. jp0j = jp1j, p0(dn) = A(n � 1), p1(dn) = 1 � A(n � 1) where dn is nth place where
p0; p1 di¤er and

2. (8e < jp0 � p1j)(e 2 p0 � p1 , 9x(he; xi 2 p2)).

Extension in this notion of forcing is de�ned simply by q �P p , qi � pi but note that
this applies only to p and q in P . Membership in P and �P are clearly recursive in A.
Our plan is to de�ne a class C of dense sets Dn with a density function d(p; n)

recursive in A � 00 with 00 use recursively bounded. Theorem
anrgenseq
8.4.5 then supplies a C-

generic sequence hpsi �T A from which we can de�ne the required G �T A in which a is
r.e. If ps = hps;0; ps;1; ps;2i we let Gi = [fps;ijs 2 Ng for i = 0; 1; 2 so Gi �T A. Then, if
we can force G0 and G1 to di¤er at in�nitely many places, G0 �G1 �T A. On the other
hand, the de�nition of the notion of forcing obviously makes G0 �G1 r.e. in G2. Thus a
will be r.e. in g =deg(G2). We will have other requirements that make g < a as well.
We begin with the dense sets that provide the di¤erences we need:

D2n = fp 2 P : p0; p1 di¤er at at least n pointsg:

We de�ne the required function d(r; 2n) by recursion on n. Given r and n+1, we suppose
we have calculated d(r; 2n) = p = hp0; p1; p2i 2 D2n with p �P r. If p =2 D2n+2, we need
to compute a q = hq0; q1; q2i 2 D2n+2 with q �P p. Let q0 = p0^A(n), q1 = p1^(1�A(n)).
Choose i 2 f0; 1g such that qi(jp0j) = 1. De�ne q2 � p2 by choosing x large and setting
q2(h2jp0j+ i; xi) = 1 and q2(z) = 0 for all z =2 dom(p2) and less than h2jp0j+ i; xi. Now
q = hq0; q1; q2i satis�es the requirements to be a condition in P . It obviously extends p
and is in D2n+2. This computation is clearly recursive in A.
We must now add dense sets to guarantee that A �T G2:

D2n+1 = fp 2 P : 9x(�p2n (x) #6= A(x)) or 8(�0; �1 � p2)[9x(��0n (x) #6= ��1n (x)) #)
(9i 2 f0; 1g)(9 he; xi)(e < jp0 � p1j & �i(he; xi) = 1 6= (p0 � p1)(e)]g:

Of course, the �rst alternative guarantees that �G2n 6= A while the second that �G2n , if
total, is recursive. The point here is that if some ps in our generic sequence satis�es the
second clause then, we can, for any z, calculate �G2n (z) by �nding any � � ps;2 such that
��n(z) # and taking its value as �G2n (z). There is such a � � G2 as �G2n is assumed to
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be total and G2 � ps;2. If there were some other � � ps;2 with ��n(z) #6= ��n(z) # then,
by our choice of s and the de�nition of D2n+1, there is no he; xi with e < jp0 � p1j such
that �(he; xi) = 1 6= (p0 � p1)(e). Thus we could form a condition q �P ps with q2 = �
by extending p0 and p1 by setting q1(w) = q2(w) = 1 (for w � jp0j) if either h2w; vi
or h2w + 1; vi is in � for any v. In this way no new di¤erences between q0 and q1 (not
already in p0 and p1) occur and the de�nition of being a condition is satis�ed. Thus q is
a condition extending ps;2 with �q2n (z) #6= A(z) contradicting our choice of s.
We compute the required density function d(q; 2n+1) as follows. Given q we ask one

question of 00 determined recursively in q: Are there extensions �0; �1 of q2 that would
show that q does not satisfy the second disjunct in the de�nition of D2n+1. If not, let
d(q; 2n+1) = q which is already in D2n+1. If so, we �nd the �rst such pair (appearing in
a recursive search) and ask A which �i gives an answer di¤erent from A(x). We now need
a condition r = d(q; 2n+ 1) extending q with third coordinate r2 extending �i. For each
he; xi with e � jq1� q2j) and �i(he; xi) = 1 we de�ne rj(z) = 1 for both j 2 f0; 1g for the
z that makes (r0� r1)(e) = 1 and otherwise we let rj(u) = 0 for all other u less than the
largest element put into either r0 or r1 by the previous procedure. We now extend �i to
the desired r2 by putting in hk; yi for a large y for all those k � jq1j put into r0 � r1 for
which there is no hk; wi in �i. Otherwise we extend �i by 0 up to the largest element put
in by this procedure. It is clear that this produces a condition r as required. (No points
of di¤erence between r0 and r1 are created that were not already present in q.)
We now apply Theorem

anrgenseq
8.4.5 to get a C-generic sequence hpsi �T A. As promised,

we let Gi = [fps;ijs 2 Ng for i = 0; 1; 2 and, as described above, A �T G0 � G1 which
is r.e. in G2. In addition, the conditions in D2n+1 guarantee (as above) that �G2n 6= A as
well.

Exercise 8.4.9 Prove that every a 2 ANR has the cupping property. Hint? Indi¤erence
set, i.e. f : N!f0; 1; 2g approach??

characterization as all above are RRE reference notions and terminology about trees
from §

spectormin
9.2

??Exercises on Relativization via Proposition
mod
??:

anrreldef De�nition 8.4.10 A function f is ANR if it is not dominated by m. It is ANR relative
to h if h �T f and f is not dominated by mh. A degree a is ANR relative to b, ANR(b),
if there are f 2 a and h 2 b such that f is ANR relative to h, ANR(h).



Chapter 9

Minimal Degrees and Their Jumps

9.1 Introduction

We now return to extension of embeddings problem. We saw that as long as we do
not attempt to put a new degree in the extension below a given degree, then anything
consistent is possible (??Exercise

extemb
5.2.10). We now turn toward the issue of whether one

can put new degrees below given ones. The answer is strongly negative. In fact, strong
enough so that we can rule out all the extensions not constructed by ??Exercise

extemb
5.2.10

for �nite lattices P. Clearly embedding every �nite lattice P as an initial segment of D
su¢ ces as then if Q adds elements below any of P then there can be no extension to Q
of the embedding of P as an initial segment. We prove this and more in Chapter

initialseg
10.

This will su¢ ce to decide the truth of all two quanti�er sentences in D (Chapter
2qtth
10.4)

and also to show that the set of true three quanti�er sentences is not decidable (Chapter
3qtth
10.5.
We begin with the simplest case.

De�nition 9.1.1 A degree a > 0 is minimal if, for any b � a, b = 0 or b = a. A degree
is a is a minimal cover of c > a if for any b with c � b � a, b = c or b = a.

We cannot hope to construct a set of minimal degree by forcing with �nite conditions
like Cohen forcing as we have seen that generics for such forcings have every countable
partial order embedded below them. We move then from approximations (conditions)
that are clopen sets in Cantor space (all extensions of a � 2 2!) to ones that are prefect
subsets instead.

9.2 Perfect forcing and Spector minimal degreesspectormin

We represent perfect subsets of Cantor space, 2N (i.e. nonempty sets with every point a
limit point) by binary perfect (i.e. always branching) trees T (with no dead ends). The

81
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perfect subsets of Cantor space are then the paths [T ] through these trees. We present
such trees as functions T : 2<! ! 2<! with certain properties. ?? de�ne Cantor space
and relevant topology perfect trees etc. early on??

binfunctree De�nition 9.2.1 A binary function tree is a (possibly partial) function T : 2<! ! 2<!

such that

1. � � � ) T (�) � T (�) (for � 2 dom(T ), so, in particular, if T (�) # and � � �
then T (�) #) and

2. �j� ) T (�)jT (�) (for �; � 2 dom(T )).

De�nition 9.2.2 We say that a binary string � is on T if there is a � such that T (�) = � .
We say that � is on T above � if there is a � � � with T (�) = � .

lth Exercise 9.2.3 If T is a binary function tree then (for � 2 domT ), jT (�)j � j�j.

Exercise 9.2.4 If T is a binary tree in the sense of De�nition
tree
4.2.1 then [T ] is perfect

if and only if there is a binary function tree S such that [S] = [T ]. If T is recursive (as
a subset of 2<!) then we may take S to be so as well.

De�nition 9.2.5 We de�ne an order �S on the binary function trees by S �S T ,
8�(S(�) #) 9�(S(�) = T (�)), in which case we say that S is a subtree of T . In this
chapter all trees will be partial recursive binary function trees (unless otherwise speci�ed)
and we will just call them trees. In this section they will also be total unless otherwise
speci�ed.

Exercise 9.2.6 If S and T are trees then [S] � [T ] if and only if 8�9�(S(�) � T (�).

Our forcing conditions, in this section, will be these trees. The order relation S �S T
is then equivalent to 8�9�(S(�) = T (�).
The function V required in the de�nition of a notion of forcing is given by V (T ) = T (;)

but the notion of extension makes it clear that the only possible generic sets G extending
the condition T are the G 2 [T ]. This notion S of forcing with perfect recursive binary
function trees is often called Spector forcing. Its analog in set theory is often called Sacks
forcing or perfect forcing. Note that this notion of forcing is only recursive in 000. The
crucial point here is that it takes 000 to determine if �e is total. Once we know it is total,
00 su¢ ces to determine if it is a binary function tree as this is then a �01 property. If S; T
are conditions in S then 00 can also determine if S �S T as this too is a �01 property.
The point here is that if there is any � such that T (�) = S(�) then it must be of length
at most jS(�)j by Exercise

lth
9.2.3

The requirements for a set G to be of minimal degree are as follows:

� Ne: G 6= �e and
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� Me: If �Ge is total then either �
G
e is recursive or G �T �Ge .

The Ne requirements are very easy to meet.

spdiag Lemma 9.2.7 For each e the set of conditions fT jT 
 :(�e = G)g is dense in S. In
fact the smaller set De = fT j:(�e = T (;)(x))g is already dense in S.

Proof. Given any tree T and �e, note that :(T (i) = �e) for i at least one of 0 or 1
as T (0)jT (1). Thus we may take as the desired extension S of T the subtree such that
S(�) = T (i^�), i.e. it starts with T (i) for the appropriate i and then continues on as
does T .
We formalize the operation that provides a witness to the density required in Lemma

spdiag
9.2.7:

De�nition 9.2.8 For any partial tree T and � 2 2<!, the full subtree of T above �,
Fu(T; �) or sometimes simply T�, is the tree S de�ned by S(�) = T (�^�).

Proposition 9.2.9 If T is (partial) recursive then so is T� and an index for it can be
found uniformly recursively in one for T .

Proof. Immediate.

Proposition 9.2.10 There are density functions for the De of Lemma
spdiag
9.2.7 which are

uniformly recursive in 00 on the set of (recursive binary function) trees.

Proof. Given any T , �nd an x such that T (�^0)(x) 6= T (�^1)(x). Then ask 00 if �e(x) #.
If so compute its value. In any case take i 2 f0; 1g such that :(T (�^i)(x) = �e(x)) and
take Fu(T; �^i) as the desired extension.
We must now see how to satisfy the minimality requirements Me. We have seen

several times how to make sure that �Ge is recursive. To do this we want a be in a
situation in which there are no extensions of the current approximation that e-split.

nosplits Lemma 9.2.11 If T is a partial tree such that there are no � and � such that T (�)jeT (�),
G 2 [T ] and �Ge is total then �Ge is recursive.

Proof. As usual, to compute �Ge (x) we search for any � such that �
T (�)
e (x) #. Since

�Ge (x) # there is an initial segment 
 of G such that �
e (x) #= �Ge (x). As G 2 [T ] there
is a � such that 
 � T (�) � G and so � is a string as desired. We then note that, for
any such �, �T (�)e (x) = �

T (�)
e (x) = �Ge (x) as otherwise T (�)jeT (�).

We must now argue that if we cannot extend a given T to one with no e-splits on it
as above, then we can guarantee that, if total, �Ge �T G. To this end, we de�ne another
operation on trees that proceeds by searching for e-splits.
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esplittree De�nition 9.2.12 The e-splitting subtree, Sp(T; e) = S, of a partial recursive tree T
is de�ned by recursion. S(;) = T (;). If S(�) = T (�) then we search for � 0; � 1 � � such
that the T (� i) e-split. We let � 0 and � 1 be the �rst such pair found in a standard search
and set S(�^i) = T (� i). A partial recursive tree S is an e-splitting tree if, for every �,
if one of S(�^0), S(�^1) is convergent then both are and they form an e-split.

esplits Proposition 9.2.13 Sp(T; e) is a partial recursive subtree of T with an index given
uniformly recursively in one for T . If Sp(T; e) is not total then there is a � such that
there are no e-splits on T above � for some � . Indeed, if Sp(T; e)(�̂) # but Sp(T; e)(�̂^0) "
and T (�) = Sp(T; e)(�̂), then there are no e-splits on T above � . Moreover, for any �,
Sp(T; e)(�^0) #, Sp(T; e)(�^1) # and so Sp(T; e) is an e-splitting tree.

Proof. The assertions about the uniformity of the procedure of forming the e-splitting
subtree and the equiconvergence of Sp(T;E)(�^i) for i 2 f0; 1g are immediate from the
de�nition. As for the rest, if S(;) " then T (;) " and we are done trivially. Otherwise, let
� be such that Sp(T; e)(�) #= T (�) for some � but Sp(T; e)(�^i) " for some (equivalently
both) i 2 f0; 1g. If there were an e-splititng on T above � then we would have S(�^i) #
for both i 2 f0; 1g by de�nition.
Thus to satisfy the minimality requirement Me, it su¢ ces to prove that if T� has

e-splits for every � (and so we cannot use Lemma
nosplits
9.2.11 to force �Ge to be recursive if

total) then Sp(T; e) forces G �T �Ge if the latter is total.

complemma Lemma 9.2.14 (Computation Lemma) If S is a partial recursive e-splitting tree,
G 2 [S] and �Ge is total then G �T �Ge .

Proof. We compute an ascending sequence 
n of initial segments of G (and so G itself)
from �Ge by recursion. We begin with 
0 = S(;) which is an initial segment of G since
G 2 [S]. Suppose we have 
n = S(�n) � G. As G 2 [S], one of S(�n^0) and S(�n^1) is
also an initial segment of G. Thus S(�n^0) and S(�n^1) are both convergent and e-split.
We may then recursively �nd an x on which �S(�n^0)e (x) #6= �S(�n^1)e (x) #. Exactly one
of these two agrees with �Ge (x). We choose that i 2 f0; 1g and set �n+1 = S(�n^i).
We have thus proven the density of conditions needed to satisfy the minimality re-

quirements.

nosplitsoresplit Lemma 9.2.15 The sets Ce = fT j either there are no e-splits on T or T is an e-
splititng treeg are dense in S. Moreover, there are density functions for these sets which
are uniformly recursive in 0

00
on the set of (recursive binary function) trees.

Proof. By the above Lemmas, either there is a � such that Fu(T; �) has no e-splits
or SP (T; e) is a total tree and so the Ce are dense. As the two options are �02 and �

0
2

properties, respectively, 000 can decide which option to take and, if the �rst is chosen then
even 00 can �nd a suitable � as there being no e-splits on T� is a �01 property. If the
second is chosen then the index is given recursively.
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spmindeg Theorem 9.2.16 There is a minimal degree g � 000.

Proof. Take any generic sequence hTni meeting all the De and Ce. The associated
generic set G = [Tn(;) is of minimal degree. By the above results on the complexity of
the density functions we may take the sequence and so G to be recursive in 000.
One naturally asks at this point if we can do better in terms of the complexity of

the minimal degree we construct. The most obvious question is whether we can produce
one below 00. It seems clear that we cannot use Spector forcing for this as the notion of
forcing (indeed even the set of conditions) is of degree 000. Given the work that we have
already done, however, one would try to use partial recursive trees instead. The basic
lemmas that we have already proven (

nosplits
9.2.11 and

complemma
9.2.14) still work. The problem is that

once we hit a partial tree, there may be no further extensions. We construct a sequence
of trees that satisfy all the requirements and construct a minimal degree below 00 in the
next section. The crucial new facet of the construction is that we use partial trees but
when we discover we have reached a terminal point we backtrack and revise the previous
trees in our sequence. A priority argument is then needed to show that the sequence
stabilizes and so we satisfy each requirement.
Another improvement that we can deal with in the setting of Spector forcing is saying

something about the double jump of G. In particular, we can show that G00 �T 000. As
we have often seen, we can either introduce new dense sets (requirements) that directly
control the double jump or cleverly argue that we have already done so. We present a
direct proof an leave the indirect one as an exercise. The idea here is that G00 �T TotG =
fej�Ge is totalg and so we want conditions that decide if e 2 TotG. The route is similar
to that taken to splitting trees. The �rst alternative is that we have a tree T and an x
such that �T (�)e (x) " for every �. Obviously in this situation we have forced that �Ge (x) "
and so it is not total. The second alternative is to produce a tree T such that �Ge (x) #
for every x and every G 2 [T ]. The analog of the Sp(T; e) is Tot(T; e):

totdef De�nition 9.2.17 If T is a (partial) tree then S = Tot(T; e) is de�ned by recursion
beginning with S(;) = T (;). If we have S(�) = T (�) then search for a � � � such
that �T (�)e (j�j) #. If there is one we let � be the �rst found in a standard search and set
S(�^i) = T (�^i) for i 2 f0; 1g.

Proposition 9.2.18 An index for Tot(T; e) can be found uniformly recursively in one
for T . If Tot(T; e) is not total then there is a � and an x such that �T (�)e (x) " for every
� � �.

Proof. This is immediate from the de�nition of Tot(T; e).

totdense Proposition 9.2.19 The sets Be = fT j9x8�(�T (�)e (x) ") or (8�)(8x < j�j)(�T (�)e (x) #
)g are dense in S and uniformly recursive in 000 and so have density functions uniformly
recursive in 000.
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Proof. To see that the Be are dense consider any T . If Tot(T; e) is a total function we
have the desired extension. If not, then there is a � and an x such that �T (�)e (x) " for
every � � �. So T� is then the desired extension. That the Be are uniformly recursive in
000 is immediate from their de�nition.

Proposition 9.2.20 If G is a generic de�ned from a sequence hTni �T 000 meeting all
the Be then G00 �T 000.

Proof. To decide if e 2 TotG �T G00, �nd an s such that Ts 2 Be and see which clause
of the de�nition of Be is satis�ed by T .

mintot Theorem 9.2.21 There is a minimal degree g with g00 = 000.

Proof. Add the dense sets Be to those Ce and De considered before. There is a generic
sequence recursive in 000 meeting all these sets and the generic G associated with it has
all the desried properties.
Of course, as might be naively expected, functions of minimal degree cannot have

any strong domination properties. For example, none can be GL2 by Theorem
ngl2genseq
??. Even

more striking is the fact that there is a single function of degree 00 that dominates every
function of minimal degree. This follows from the proof of Theorem

ngl2genseq
??. In particular,

by Proposition
anreq
8.4.3 and Theorem

anrgenseq
8.4.5 mK , the least modulus function for 00 is such a

function. For the minimal degrees we have constructed so far, we can say even more.

Exercise 9.2.22 Show that the minimal degree constructed in Theorem
mintot
9.2.21 is 0-

dominated, i.e. every function recursive in G is dominated by a recursive function.

Exercise 9.2.23 Show that the G constructed in Theorem
mintot
9.2.21 has minimal tt and

wtt degree. (Hint: Recall Exercise
0domtt
8.1.2.)

Exercise 9.2.24 Show that the minimal degree constructed in Theorem
spmindeg
9.2.16 has double

jump 000. Hint: show that meeting the dense sets Ce guarantees that the sequence meets
the Be as well.

posnerl Exercise 9.2.25 (Posner�s Lemma) Show that meeting the dense sets Ce also guar-
antees that a generic sequence meets the De as well. Hint: Consider an n such that, for
every � and z, ��n(z) = 0 if :(9x < j�j)(�(x) 6= �e;j�j(x) #) and ��n(z) = �(z) otherwise.

Exercise 9.2.26 Show that for every d > 0 there is a minimal degree g �T d0_000 such
that g �T d. ??Improvement in Exercise ??

treeofmin Exercise 9.2.27 There are continuum many minimal degrees. Indeed, there is a binary
function tree T �T 000 such that every G 2 [T ] is of minimal degree. Hint: Use conditions
(T; n) where T is a (recursive binary function) tree, n 2 N and extension is de�ned by
(S;m) � (T; n) if S �S T , m � n and S(�) = T (�) for every � of length � n.
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Exercise 9.2.28 Show that in the previous exercise we may also guarantee that G00 �T
G _ 000 for every G 2 [T ].

Exercise 9.2.29 Show that for every c � 000 there is a minimal degree g with g00 =
c = g _ 000.

De�nition 9.2.30 A binary tree T is pointed if every A 2 [T ] computes T . It is uni-
formly pointed if there is an e such that �Ae = T for every A 2 [T ].

Exercise 9.2.31 Relativize Theorem
spmindeg
9.2.16 to an arbitrary degree c to prove that every

degree c has a minimal cover, i.e. a g > c such that the open interval (c;g) is empty.
Hint: One can proceed as usual by adding a C 2 c into all oracle computations or one
can use uniformly pointed trees recursive in C. In this case, just use binary function
trees recursive in C which are subtrees of the tree T de�ned by T (�)(2n) = C(n) and
T (�)(2n+ 1) = �(n).

Exercise 9.2.32 All of the other results of this section now relativize.

Exercise 9.2.33 Prove that every strictly ascending sequence of degrees has a minimal
upper bound g. Hint: If the given sequence is cn, use uniformly pointed trees of degree
cn for some n.

Exercise 9.2.34 Show that the g of the previous exercise can be constructed so that
g00 � �c00n.

Exercise 9.2.35 Show that one can also get two least upper bounds g0 and g1 for the
cn of the previous exercise with (g0 _ g1)00 � �c00n. Note that these gi form an exact pair
for the ideal generated by the cn.

Exercise 9.2.36 Thus if in the previous two exercises cn = 0(n) then one gets a minimal
upper bound g for the 0(n) such that g00 = 0(!) and indeed two such (which then form an
exact pair for the arithmetic degrees) with (g0 � g1)00 = 0(!).

Exercise 9.2.37 Prove that there is a tree T such that each path on T is a minimal
upper bound for the ascending sequence cn.

De�nition 9.2.38 A tree T is a delayed e-splitting tree if for every n there is an m > n
such that the strings T (�) for j�j = m are pairwise e-splititng.

Exercise 9.2.39 Prove the computation lemma for delayed e-splitting trees.

Exercise 9.2.40 Uniform trees; strongly uniform = 1-trees. one every path of minimal
degree, F : N ! f0; 1; 2g. minimal degrees generate D minimal m-degree Perhaps write
out??

Exercise 9.2.41 other applications??
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9.3 Partial trees and Sacks minimal degreessacksmin

Sacksmin Theorem 9.3.1 (Sacks) There is a minimal degree below 00.

Our plan is to use partial recursive binary trees in a construction recursive in 00. We
have already seen (Lemmas

nosplits
9.2.11,

complemma
9.2.14,

nosplitsoresplit
9.2.15 and Proposition

esplits
9.2.13 that we can

handle both the diagonalization and minimality requirements by using subtrees of the
form Fu(T; �) and Sp(T; e) even if they are partial as long as we do not run into a
node with no convergent extensions on the trees we are using. Now 00 can recognize this
situation when it occurs. Thus the problem is what to do when we arrive at a node with
no extensions on a tree. Of course, we must change the tree we intend our set to be on
but we must do so in a way that eventually stabilizes so that, for each requirement, we
remain, from some point onward, on some partial tree that satis�es the requirement.
Proof. At stage s, we will have already speci�ed an initial segment �s of the set A
of minimal degree that we are building and a sequence (of indices for) nested partial
recursive trees T0;s �S T1;s �S � � � �S Tks;s with �s on each of them (i.e. there are �i;s
such that Ti;s(�i;s) = �s). In fact, we will have �s = Tk;s(;). T0;0 is the identity function
on binary strings. (Indeed, as will become clear, T0;s is the identity function for every s.)
Each Ti+1;s will be either Sp(Fu(Ti;s; j); i) for some j 2 f0; 1gor Fu(Ti;s; �) for some �
and will be devoted to satisfying the minimality requirement for �i with the choice of j
devoted to satisfying the diagonalization requirements.
We now �nd the least i � ks such that Ti;s(�i;s^0) ". Let ks+1 = i if one such exists,

and let ks+1 = ks + 1 otherwise. Note that this can be done recursively in 00 as we have
indices for each Ti;s as a partial recursive function.

� In the �rst case, we know that Ti;s(�i;s^0) " while Ti�1;s(�i�1;s^0) #. Note that
in this case Ti obviously cannot be of the form Fu(Ti�1; �) and so (by the rules
of the construction which we are maintaining by induction) must be of the form
Sp(Fu(Ti;s; j); i). Thus by Proposition

esplits
9.2.13 there are no extensions of �s on Ti�1

which i-split. We now let Tks+1 = Fu(Ti�1;s; �i�1:s^0) (with the intention that we
will satisfy the minimality requirement for �i by being on a tree with no i-splits).

� In the second case, we let Tks+1;s+1 = Sp(Fu(Tks;s; j); ks) where we choose j so that
�ks 6= Tks+1;s+1(;) ( to be speci�c, say we choose j = 1 if 9x(Tks;s(1) 6= �ks(x) #)
and j = 0 otherwise) and with the hope that we will remain on this tree and so
satisfy the minimality requirement for �ks by being on a ks-splitting tree.

� In either case, we let Ti;s+1 = Ti;s for i < ks+1 and �s+1 = Tks+1;s+1(;). The trees
Ti are, of course, not de�ned at s+ 1 for i > ks+1.

We now claim that the Ti;s stabilize, i.e. there is a tree Ti = lims!1 Ti;s and all the
requirements are satis�ed. Note that if Ti;s reaches its limit by stage t then ks > i for
s > t. Suppose, by induction, that Ti;s �rst reaches its limit Ti at stage s. At s+1 we set
Ti+1;s+1 = Sp(Fu(Ti;s; j); i) (for some j) and we satisfy the diagonalization requirement
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for �i. If we never change Ti+1;t at a t > s then Ti+1 = Sp(Fu(Ti;s; j); i)) and we satisfy
the minimality requirement for �i by Lemma

complemma
9.2.14. If there is a stage after s at which we

�rst change Ti+1, i.e. Ti+1;t 6= Ti+1;t+1 it must be because we are in the �rst case at stage
t and we set kt+1 = i+1 and Ti+1;t+1 = Fu(Ti; �i;t^0) because Sp(Fu(Ti;t; j); i))(�i+1;t^0)
is divergent. In this case, we can never change Ti+1 again. (No smaller one ever changes
by our choice of s and it can never be chosen as the least point of divergence as long as
it is a full subtree of the previous tree.) Moreover, �v remains on Ti on which there are
no i-splits above �t (Proposition

esplits
9.2.13). Thus we satisfy the minimality requirement for

�i by Lemma
nosplits
9.2.11.

Note that, in contrast to the Spector minimal degrees, no set recursive in 00 (and so
even those of minimal degree) is 0-dominated by Theorem

delta2dom
8.2.3. In ?? we will actually

need to know a bit more about the set A of minimal degree that we have just constructed.

Corollary 9.3.2 The set A of minimal degree constructed above is actually �wtt 00.

Proof. To see that A �wtt 00 we need a recursive function f such that f(n) bounds use
from 00 needed to compute A(n). An abstract view of the above construction is that at
each stage s we have a number ks � s+ 1 and a sequence of indices for partial trees Ti;s
for i � ks. (Note that �s = Tks;s(;).) We then ask for each i � ks if Ti;s(�i;s^0) # where
this question is equivalent to the one that asks if 9�(Ti;s(�) = Tks;s(;) & Ti;s(�^0) #).
Each possible set of answers to these questions determines 0 < ks+1 � ks+1 � s+1 and
the indices for the Ti;s+1 for i � ks+1 except when they say that ks+1 = ks + 1. In this
case, we need to ask one more question of 00: is there an x such that Tks;s(1) 6= �ks(x) #?
Thus we can recursively lay out all possible routes of the construction as a tree which at
level s is (at most) s+ 1 branching along with the (at most s+ 1 many) questions of 00

needed to determine at each node of the tree at level s what stage s+1 of the construction
would be if the given node corresponds to the actual stage s of the construction. Now to
compute A(n) note that we extend �s at every stage of the construction so we only need
a recursive bound on the questions asked in any possible run of the construction for n
many stages. As the indices for all the possible Ti;s are uniformly computable from the
various assumed answers at the previous stages, it is clear that there is a recursive bound
on the questions that are needed in all possible runs of the construction for n many steps.

Exercise 9.3.3 Theorem
Sacksmin
9.3.1 and the Corollary above relativize to arbitrary degrees c

to give a minimal cover g of c with g �wttc0.

Exercise 9.3.4 ??Show that for every d > 0 there is a minimal degree g �T d _ 00 such
that g �T d. Hint my construction in L p. 192?? only for d < 00??otherwise below d0??

0�treeofmin Exercise 9.3.5 Construct a tree T �T 00 such that every path on T is of minimal degree.

Cone avoiding?? join ?? Complementation??
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9.4 Minimal degrees below degrees in H1 and GH1

We want to prove that if h 2 GH1 then there is a minimal degree a < h. The proof builds
on the construction of a Sacks minimal degree with highness giving us an approximation
to but is unusual in that it relies on the recursion theorem to make the approximations
work.

Remark: Not below every H2 Lerman [??]).

Question 9.4.1 If A >T 0 is r.e. then there is a minimal degree below A [??]. Can one
construct such a degree with the techniques presented in this chapter and the previous one
or some variation of them?

cone avoiding, join, complementation results?

9.5 Jumps of minimal degrees

At the end of §
spectormin
9.2 we analyzed the possible double jumps of Spector minimal degrees. In

this section we want to investigate the possible single jumps of arbitrary minimal degrees.
Note �rst that every minimal degree is GL2 because every GL2 degree has a 1-generic
degree below it by Theorem

gl21gen
8.3.3. We will see that there are minimal degrees in both

GL1 and GL2 � GL1. Finally, we will completely characterize the jumps of minimal
degrees by giving a new proof due to Lempp, J. Miller S. Ng and L. Yu of Cooper�s jump
inversion theorem that every c � 00 is the jump of a minimal degree. The situation below
00 is more complicated. While there are both L1 and L2�L1 minimal degrees, not every
degree c which is r.e. in and low over 00 is the jump of a minimal degree below 00 (refs??
Shore noninversion theorem, Cooper).

9.5.1 Narrow trees and GL1 minimal degrees

To produce a minimal degree not inGL1 we must combine a diagonalization of A0 against
�e(A� 00). The key idea here are the narrow subtrees N(T ).

De�nition 9.5.1 The narrow subtree N(T ) of a total tree T is de�ned by recursion.
N(T )(;) = T (;). If N(T )(�) = T (�) then N(T )(�^i) = T (�^0^i).

Proposition 9.5.2 If T is recursive so is N(T ) and an index for it can be found uni-
formly recursively in one for T . Of course, as with any recursive tree the question of
whether A 2 [N(T )] is �01 in A and the index for N(T ) and so uniformly recursive in
A0, i.e. there is a recursive f such that (8A)(A 2 [N(T )] , f(n) 2 A0) where n is any
index for N(T ).
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Our plan is to use narrow subtrees to diagonalize. Intuitively we stay on some N(T )
with index i until we see that ��s�0

0
e (f(i)) #= 1. At that point we will make A go o¤

N(T ) and so guarantee that A0 6= �A�00e . Formally we prove that diagonalization is dense.

nardense Lemma 9.5.3 The sets Fe = fT j(8G 2 [T ]):(�A�00e = A0)g are dense in the Spector
notion of forcing and there is a density function which is uniformly recursive in 00 on
(the indices for) recursive trees..

Proof. Let n be an index for T and consider N(T ) = S. If there is a � such that
�
S(�)�00
e (f(n)) #= 1 then the desired extension T̂ of T is Fu(T; �^1) where T (�) = S(�).
The point here is that no A 2 [T̂ ] is on S = N(T ) while �A�0

0
e (f(n)) #= 1 for every

A 2 T̂ and so �A�0
0

e 6= A0. On the other hand, if there is no such � then N(T ) is the
desired extension of T as f(n) 2 A0 for every A 2 [N(T )] while :(�A�00e (f(n)) = 1) for
every A 2 [N(T )] by our case assumption. It is clear that �nding the desired extension
of T is recursive in 000.

Theorem 9.5.4 There is a minimal degree g � 000 with g =2 GL1. We may also guar-
antee that g00 = 000.

Proof. Simply add the dense sets Fe to the ones De and Ce in the proof of Theoremspmindeg
9.2.16 to be met in the construction of G. To guarantee that g00 = 000 add in the dense
Be of Proposition

totdense
9.2.19.

Exercise 9.5.5 Modify the proof of Theorem
sacksmin
9.3 to construct an A �T 00 of minimal

degree with degree not in L1. Hint: intersperse stages at which one puts Ti+1;s+1 = N(Ti;s)
and then stays in this tree until ��se (f(n) #= 1 where e and n are as in Lemma

nardense
9.5.3 for

Ti;s.

9.5.2 Cooper�s jump inversion theorem

We want to prove that every degree c � 00 is the jump of a minimal degree. To do this
we modify the de�nition of the e-splitting subtree in an attempt to force the jump when
we can.

ejumpspl De�nition 9.5.6 The e-jump splitting subtree of T , JSp(T; e) = S is de�ned by
recursion. S(;) = T (;) which is labeled !. Suppose S (�) = T (�) is de�ned and is labeled
some m � !. We search simultaneously for � 0; � 1 � � such that T (� 0)jeT (� 1) and for a
� � � and an n < m such that �T (�)n (n) # but �T (�)n (n) ". If we �rst (in some canonical
search order) �nd an e-split then we let S(�^i) = T (� i) and label them both !. If we �rst
�nd a � and n as described we let S(�^0) = T (�) and label it n. S(�^1) is unde�ned in
this case. (Of course, if neither search terminates, S(�^i) " for both i = 0; 1.)

Proposition 9.5.7 If T is (partial) recursive then so is JSp(T; e) and an index for it
can be found uniformly recursively in one for T .
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noisol Lemma 9.5.8 If JSp(T; e) = S, then there are no isolated paths on S, i.e. if A 2 [S]
then there are in�nitely many � such that S(�) � A and S(�^i) # for i = 0; 1.

Proof. This is immediate from the fact that whenever S(�) # but not both of S(�^i) are
de�ned then only S(�^0) is de�ned and its label is in N and remains strictly decreasing
until we reach a �^0t such that both S(�^0t^0) and S(�^0t^1) are de�ned and their labels
are !. Thus we can continue to extend only one side (necessarily the 0 one) as we follow
A on S only �nitely often.

jcomplemma Lemma 9.5.9 If S = JSp(T; e), G 2 [S] and �Ge is total then G �T �Ge .

Proof. As for the basic Computation Lemma
complemma
9.2.14, we compute an ascending sequence


n of initial segments of G (and so G itself) from �Ge by recursion. We also compute
�n and �n such that T (�n) = S(�n) = 
n and its label mn on S. We begin with

0 = T (;) = S(;) which is an initial segment of G since G 2 [S]. Suppose we have

n = S(�n) = T (�n) � G and mn. As G 2 [S], one of S(�n^0) and S(�n^1) is also an
initial segment of G. We follow the procedure given in the de�nition of JSp(T; e)(�n^i).
If we �rst �nd an e-split then both S(�n^i) are convergent. As they e-split we can decide
which one is an initial segment of G using �Ge as in the basic Computation Lemma and
continue our recursion. If instead, we �rst �nd a new convergence for �T (�)n̂ (n̂) for n̂ < n,
only S(�n^0) is de�ned and it is then the next initial segment 
n+1 of G as required. Of
course, �n+1 = �n^0. This also supplies us with the next �n+1 and mn+1 = n̂.

lowmin Theorem 9.5.10 There is an A of minimal degree with A0 �T 00.

Proof. The construction is similar to that for Theorem
Sacksmin
9.3.1 except that we use e-jump

splitting subtrees instead of e-splitting subtrees and we have to be a bit more careful
about how we go o¤ the partial trees.
At stage s, we will have an already speci�ed initial segment �s of A and a sequence

(of indices for) nested partial recursive trees T0;s �S T1;s �S � � � �S Tks;s with �s on each
of them, indeed with �s = Tk;s(;). T0;s is the identity function for every s. Each Ti+1;s
will be either JSp(Fu(Ti;s; �); i) for some � or Fu(Ti;s; �) for some �.
We begin our search for ks+1 with Tks;s. We ask if Tks;s(1) #. If it is, so is Tks;s(0).

We then set Tks+1 = JSP (Fu(Tks ; j); ks) where we choose j so that �ks(x) 6= Tks;s(j)(x)
for some x and set ks+1 = ks + 1. If Tks;s(1) " we ask if Tks;s(0) #. If so we repeat
our procedure with Tks replaced by Fu(Tks;0). By Lemma

noisol
9.5.8 this process eventually

terminates either with an m such that Tks(0
m^1) #= Fu(Tks ; 0

m)(1) # and so a de�nition
of ks+1 = ks + 1 and Tks+1 = JSP (Fu(Tks ; 0

m^j); ks) or an m such that Tks(0
m) #

but Tks(0
m+1) " (m could be 0 and we take 00 = ;). In the later case, we move to

Tks�1 beginning with the �1 such that Tks�1(�1) = Tks(0
m) and asking if Tks�1(�1^1) #.

Continuing in this way we eventually reach l and m such that Tl;s(�^0m^j) # for some
� and each j 2 f0; 1g as T0;s is always the identity function and so de�ned at �^1 for
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every �. We now let ks+1 = l + 1 and Tks+1 = Fu(Tl;s; �^0
m+1). We conclude the stage

by setting �s+1 = Tks+1(;). Note that we extend �s at every stage and A = [�s �T 00.
It is clear that the construction and so A is recursive in 00. We must now verify that

the Ti;s stabilize to trees Ti, all the requirements to make A of minimal degree and that
A0 �T 00. We argue much as in the proof of Theorem

Sacksmin
9.3.1 for the �rst two claims:

Note again that if Ti;s reaches its limit by stage t then ks > i for s > t. Suppose,
by induction, that Ti;s �rst reaches its limit Ti at stage s. At s + 1 we set Ti+1;s+1 =
JSP (Fu(Tis ; 0

m^j); i) for some m and j as the only other possibilities change Ti. This
action satis�es the diagonalization requirement for �i. If we never change Ti+1;t at a
t > s then Ti+1 = JSP (Fu(Ti; 0

m^j); i)) and we satisfy the minimality requirement
for �i by Lemma

jcomplemma
9.5.9. If there is a �rst stage after s at which we change Ti+1, i.e.

Ti+1;t 6= Ti+1;t+1, then it must be that we reached a situation with Tl;t(�^0m̂^|̂) # for
some � and both |̂ 2 f0; 1g with l the �rst such we �nd in our search starting with kt and
moving downward and m̂ the least such for l. As we now rede�ne Tl+1 it must be that
l = i by our induction hypothesis. As t is the �rst stage after s at which we change Ti+1,
Ti+1;t = JSP (Fu(Ti;s; 0

m^j); i). As we did not end our search for this l with l+1 = i+1, if
Tl;t(�) = Ti+1;t(�) then Ti+1;t(�^0) ". By the de�nition of Ti+1;t = JSP (Fu(Ti;s; 0

m^j); i)
this means that there are no i-splits on Ti;s = Ti above �. As A 2 [Fu(Ti; �)] we satisfy
the minimality requirement for �i by Lemma

nosplits
9.2.11. Once Ti+1 is a full subtree of Ti (as

it is at t + 1), it can never be changed again as that would change some Tk for k � i
contrary to our choice of s < t.
To compute A0 from 00 �nd a stage of the construction s at which we end the con-

struction with l � ks and Tl;s(�^0m^j) # for j 2 f0; 1g and we let ks+1 = l + 1 and
Tl+1;s+1 = Fu(Tl;s; �^0

m+1). In this case we have Tl+1;s(�^0) " where Tl+1;s(�) = Tl;s(�).
If n is the label of Tl+1;s(�), this means that there is no extension � of Tl+1;s(�) on
Tl;s such that �

�
n̂(n̂) # but �

Tl+1;s(�)

n̂ (n̂) " for n̂ < n. We now claim that, for n̂ < n,
n̂ 2 A , �

Tl+1;s(�)

n̂ (n̂) #. As long as �t stays on Tl;s for t > s (as it is now) the claim
is obvious. The only way �t can leave Tl;s for the �rst time after s at t is for the same
situation to occur with l1 < l. In this case, the associated label must be n1 � n (as no
new convergences below n can occur as long as we remain on Tl;s). In this case, no new
convergences below n1 can occur as long as we remain on Tl1;t. This process must halt
and so we eventually stay on some tree Tl̂;t̂ on which there are no new convergences below
some n̂ � n. To see that our original search in this procedure must �nd such stages s with
arbitrarily large n, �x an r and start with a stage u by which 8e � r(�Ae (e) #, ��ue (e) #).
Now consider a v > u for which �v is the empty function. When we reach the �rst stage
w at which kw = v + 1 for the �rst time after Ti has reached its limit for i � v we set
Tv+1;w+1 = JSP (Fu(Tv;w; 0

m^j); v)) for some m and j. This tree has Tv+1;w+1(�^1) " for
every � and so we would act as described above and for an n � r.

Theorem 9.5.11 There is a binary function tree T �T 00 such that every A 2 [T ] is of
minimal degree and, moreover, A0 �T A _ 00.
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Proof. We de�ne T by recursion beginning with T (;) = ;. Along each path in T we are
using the construction of Theorem

lowmin
9.5.10 with the change that when we would have chosen

one j 2 f0; 1g and set Tks+1 = Fu(S; j) for some S we follow both possibilities and de�ne
the next branching in T as the result of the two choices of j in the original construction.
Thus at any node � when we have T (�) de�ned we have an associated run of the above
construction during which we have chosen j = �(m) at the mth instance where we had
to choose a j in the construction. To de�ne T (�^i) we now continue the construction
as in the previous theorem until we reach the next stage s at which we must choose a j
and set Tks+1 = JSp(Fu(Tks;s; j); ks). We now let T (�^j) = JSp(Fu(Tks;s; j); ks)(;) for
j 2 f0; 1g and associate the version of the above construction in which we choose j with
T (�^j).

Corollary 9.5.12 (Cooper�s Jump Inversion Theorem) For every c � 00 there is
a minimal degree a such that a0 = c = a _ 00.

Proof. Take C 2 c and let A = [T (C � n).

remark not all degrees REA in 00 and low over it are jumps of minimal degrees below
00 references.
Theorem

lowmin
9.5.10 originally by Yates showed minimal below every nonrecursive r.e.

degree and was already known (Theorem ??) that there are low nonrecursive r.e. degrees.
Then ...

9.6 The minimal degrees generate D
Our goal in this section is to prove that the minimal degrees generate D under join and
meet. More speci�cally we will prove that for every a there are minimal degreesm0, m1,
m2 andm3 such that a = ( m0_m1)^ (m2_ m3). Our forcing conditions in this section
will all be recursive binary trees but we need a yet more restricted notion of tree. We
begin with uniform trees (which will play a crucial role in the next chapter) and strongly
uniform trees or 1-trees.

1treedef De�nition 9.6.1 A binary tree T is uniform if for every n there are �n:0; �n;1 2 2<! such
that T (�^i) = T (�)^�n;i for every � of length n. T is strongly uniform if, in addition, for
every n, �n:0 and �n;1 are adjacent, i.e. there is exactly one j such that �n:0(j) 6= �n;1(j).
Strongly uniform trees are also called 1-trees.

In this section all trees will be recursive 1-trees and they will be the conditions in
our basic notion of forcing P with the usual notion of subtree as the extension relation.
As Fu(T; �) is clearly a 1-tree for any 1-tree T , the diagonalization requirements De of
Lemma

spdiag
9.2.7 are still dense so we can meet those conditions as usual. Lemma

nopslits
?? applies

to any binary tree and so if our generic �lter includes a tree with no e-splits then again,
if �Ge is total it is recursive. The computation lemma (

complemma
9.2.14) also applies quite generally
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and so if the sets Ce of Lemma
nosplitsoresplit
9.2.15 are dense then any generic for forcing with 1-trees

will also be of minimal degree. Thus we must show that if the 1-tree T has no extensions
without e-splits then it has an extension which is e-splitting. It is actually helpful in this
setting to �rst provide the analog of Tot(T; e) that forces totality and proves the density
of the Be of Lemma

totdense
9.2.19.

1totdense Lemma 9.6.2 The sets Be = fT j9x8�(�T (�)e (x) ") or (8�)(8x < j�j)(�T (�)e (x) #)g are
dense in P.

Proof. Given a 1-tree T we de�ne a partial recursive function S = Tot1(T; e) by recursion
beginning as usual with S(;) = T (;). Let f�iji < 2ng list all the strings of length n and
assume that S(�i) = T (� i) has been de�ned for all i < 2n. To de�ne S for all � of
length n+1, we search �rst for a �0 such that �

T (�0^�0)
e (n) #. Then we recursively search

for �i such that �
T (�0^�0^:::^�i)
e (n) #. If we eventually �nd �i for all i < 2n, then we let

� = �0^ : : : ^�2n�1 and set S(�i^j) = T (� i^�^j) for j 2 f0; 1g. As T is a 1-tree it is easy
to see that, if total, so is Tot1(T; e) and it satis�es the second clause of Be. If it is not
total then there is some n, � i and � such that T (� i^�) " for every � � �. In this case,
Fu(T; � i^�) satis�es the �rst clause of Be with x = n.
We can now prove the remaining lemma that shows that all (su¢ ciently) generic G

for P are of minimal degree.

1nosplitsoresplit Lemma 9.6.3 The sets Ce = fT j 9x8�(�T (�)e (x) ") or there are no e-splits on T or T
is an e-splititng 1-treeg are dense in P.

Proof. By Lemma
1totdense
9.6.2, we may assume that the second clause of Be is satis�ed by T ,

i.e. (8�)(8x < j�j)(�T (�)e (x) #. We may also assume that there is no extension of T that
satis�es the second clause of Ce so we can �nd e-splits on any R � T . We now wish
to de�ne an e-splitting 1-tree Sp1(T; e) = S � T . We begin with converting arbitrary
e-splits into ones that are adjacent and then de�ning two new operations on 1-trees.

Claim 9.6.4 For any R � T there are adjacent � and � such that R(�)jeR(�) and so,
in particular, for any � there are �; � � � which are adjacent such that R(�)jeR(�).

Proof. By our second assumption on T there are � and � such that R(�)jeR(�). Without
loss of generality we may take j�j = j�j > n where R(�) and R(�) e-split at n. Consider
then the sequence h�iji � ki of adjacent binary strings of length n such that �0 = � and
�k = �. By our �rst assumption on T � R, �R(�i)e (n) # for every i � k. As the �rst and
last of these have di¤erent values there must be an i such that �R(�i)e (n) # 6= �R(�i+1)e (n) #.
Our desired adjacent e-split is then given by � = �i and � = �i+1.

De�nition 9.6.5 For any tree R and � 2 2<! we de�ne R� (the transfer tree of R over
�) for j�j � jR(;)j as the tree such that, for every � 2 2, R�(�) is the string gotten from
R(�) by replacing its initial segment of length j�j by �. For R � T we de�ne a new type of
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subtree S = Sp0(R; e). We begin by using the above Claim to construct sequences �0i and
�1i for i 2 N with �0i and �1i adjacent such that �rst, R(�00)jeR(�10) and then, in general,
R(�00^ � � � ^�0i ^�0i+1)jeR(�00^ � � � ^�0i ^�1i+1). We now de�ne S by recursion with S(;) =
R(;) and S(�) = R(��

�(i)
i ) (where we use summation notation � for concatenation and

the number of terms concatenated is j�j).

Remark 9.6.6 Note that as R is a 1-tree and the �0i and �
1
i are adjacent, S is also a

1-tree and, of course, S � R. Moreover, S(�)jeS(�) for any � 6= � as the strings extend
some e-split R(�00)jeR(�10) or R(�00^ � � � ^�0i ^�0i+1)jeR(�00^ � � � ^�0i ^�1i+1) for i � 0.

Proof continued. We now de�ne our e-splitting 1-tree Sp1(T; e) = S � T by recursion
beginning with S(;) = T (;). Let f�iji < 2ng list all the strings of length n and assume
that S(�i) = T (� i) has been de�ned for all i < 2n. We let R0 = Sp0(T�0 ; e) and for
0 < i < 2n we let Ri = Sp0(R

T (� i)
i�1 ; e) and R = R2n�1. We now let S(�i^j) = RT (� i)(j).

The veri�cations that this de�nes the next level of an e-splitting 1-tree contained in T
are straightforward. By the de�nition of Sp0, jR(;)j = jRi(;)j = jT (� i)j for every i < 2n
and R(0) and R(1) are adjacent. By the de�nition of the transfer trees, RT (� i)(0) and
RT (� i)(1) are adjacent extensions of T (� i) = S(�i) and the extensions are given by the
same pair of strings for each i as R is a 1-tree. Moreover, since R � Ri for every i < 2n,
each RT (� i)(j) is a node on Ri = Sp0(R

� i
i�1; e) (where R�1 = T ) and so by the Remark

above, they form an e-splitting.
This completes the de�nition of level n+1 of S and so, by recursion of S = Sp1(T; e)

which is an e-splitting 1-tree extending T as required to establish the density of the Ce.

We have now shown the forcing with 1-trees produces a minimal degree.

1treemin Proposition 9.6.7 Any generic meeting the dense sets Be, Ce and De for forcing with
1-trees is of minimal degree.

Exercise 9.6.8 Show that there are generics G as in Proposition
1treemin
9.6.7 with G �T 000

and indeed with G00 �T 000.

Exercise 9.6.9 Show that the genric sets of Proposition
1treemin
9.6.7 are of minimal m-degree.

We next want a tree of such minimal degrees, i.e. a 1-tree T such that every path is
of minimal degree. We move to a tree of trees as we did in Exercise

treeofmin
9.2.27.

1treeofmin Theorem 9.6.10 If we force with the notion of forcing P1t with conditions (T; n) where
T is a 1-tree, n 2 N and extension is de�ned by (S;m) �Pt (T; n) if S �S T , m � n and
S(�) = T (�) for every � of length � n and V ((T; n)) is the �nite binary 1-tree given by
restricting T to strings of length n, then any su¢ ciently generic G is a 1-tree such that
every path on G is of minimal degree.
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Proof. It is clear that G is a 1-tree from the fact that V (P ) is a 1-tree for every condition
P and that if Q �P1 P then V (Q) � V (P ) as 1-trees. To prove the theorem it su¢ ces, by
the last Proposition, to show that for each of the dense sets Be, Ce and De any condition
(T; n) there is a condition (R; n) �P1 (T; n) such that for each � of length n, RR(�) is in
the desired dense set. List the strings of length n as �i, i < 2n. Begin with S0 = TT (�0).
By the relevant Lemma above (

1totdense
9.6.2,

1noesplitoreplit
?? and

spdiag
9.2.7) we can re�ne S0 to a 1-tree S1 which

is in the dense set. We can then consider ST (�1)1 and re�ne it to S2 which is also in the
dense set. We continue in this way to de�ne Si for i < 2n by re�ning S

T (�i)
i to get an Si+1

in the dense set. At the end we have S = S2n such that ST (�i) is in the dense set for each
i < 2n. We now de�ne R by R(�) = T (�) for j�j � n and for � � �i R(�) = ST (�i)(�). It
is clear that (R; n) �P1 (T; n) and for each � of length n, RR(�) is in the desired dense set.
Let G be a generic 1-tree meeting all these dense sets. Now any M 2 [G] is P-generic
for the previous notion of forcing with 1-trees to the extent required by Proposition

1treemin
9.6.7

and so is of minimal degree by that Proposition.

Exercise 9.6.11 Show that there are generics G as in Theorem
1treeofmin
9.6.10 with G �T 000

and indeed with G00 �T 000.

Exercise 9.6.12 For each n � 3, Show that there are sets A of minimal degrees which
are �0n but not �

0
n. Hint: take a path in the G of Theorem

1treeofmin
9.6.10 which follows a path

C 2 �0n ��0
n, i.e. A = [fG(C � k)jk 2 Ng. (For n = 2, the result can be proven using,

among other things, Exercise
0�treeofmin
9.3.5.)??

Finally, we use Pt to prove our main theorem for this section.

mingen Theorem 9.6.13 For every degree a there are minimal degrees m0, m1, m2 and m3

such that a = ( m0 _m1) ^ (m2_ m3).

Proof. For any 1-tree G and set C, we let dn be the unique x such that G(�^0)(x) 6=
G(�^1)(x) for any � of length n and GC be the path through G such that GC(dn) = C(n).
(As G is a 1-tree the x as required to de�ne dn is unique for each � and the same for all of
them.) These notions apply to �nite 1-trees as G and �nite binary strings as C with the
obvious comment that there may only be �nitely many dn involved. If G is su¢ ciently
generic for P1t as required for Theorem

1treeofmin
9.6.10, and A is any set then it is clear that

A �T GA _G �A as n 2 A if and only if GA(x) = 1 where x is the nth place at which GA
and G �A di¤er (it is actually dn). Thus we have two minimal degrees which join above a.
Our plan now is to take G0 and G1 two mutually su¢ ciently generic 1-trees for P1t where
the notion su¢ ciently generic now depends on A and assures that (GA0 _G

�A
0 )^(GA1 _G

�A
1 ).

Formally we consider the notion of forcing P2t whose conditions consist of pairs (P:Q)
with each of P and Q a condition in P1t. The ordering is given by (P̂ :Q̂) �P2t (P:Q)
if P̂ �P1t P and Q̂ �P1t Q. In addition to the dense sets de�ned by requiring that
each coordinate get into the dense sets from Theorem

1treeofmin
9.6.10 we have one more family

of dense sets for the new meet requirement. For (T; n) = P 2 P1t we let Pn be the
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�nite 1-tree given by restricting T to strings of length at most n. The argument is by

now familiar. We let Ae = f(P:Q)j9x(�(P
A
n _P

�A
n )

e (x) #6= �(Q
A
n_Q

�A
n )

e (x) #) or (8(P̂ :Q̂) �P2t
(P:Q))(:9x(�(P

A
n _P

�A
n )

e (x) #6= �(Q
A
n_Q

�A
n )

e (x) #))g. Now if our generic meets Ae in condition
((P; n); (Q;m)) and the �rst clause holds then clearly �(G

A
0 _G

�A
0 )

e (x) #6= �(G
A
1 _G

�A
1 )

e (x) # as,
by the de�nition of extension in P2t, PAn _P

�A
n and Q

A
n _Q

�A
n are initial segments of G

A
0 _G

�A
0

and GA1 _G
�A
1 , respectively. On the other hand, if the second clause holds and �

(GA0 _G
�A
0 )

e

and �(G
A
1 _G

�A
1 )

e are total and equal, then we claim they are recursive in A. To compute

�
(GA0 _G

�A
0 )

e (x) �nd any �nite extension Rm of Pn to a 1-tree of height m that is a subtree

of P and such that �(R
A
n_R

�A
n )

e (x) #. This Rm then extends to a full 1-tree R such that

(R; n) �P1t (P; n). There must be one as Pn � G0 and the computation of �
(GA0 _G

�A
0 )

e (x)
only requires �nitely many levels of G0 � P . If this were not the correct answer then,
as for P and G0, there would be a �nite extension Sk of Qn contained in Q which gives

the same answer as �(G
A
1 _G

�A
1 )

e (x) #. Again this Sk can be extended to an S such that
(S; n) �P1t (Q; n). Then ((R; n); (S; n)) �P2t (P;Q) but satis�es the �rst clause of Ae for
the desired contradiction.

Exercise 9.6.14 Show that the minimal degrees in GL1 generate D.



Chapter 10

Lattice Initial Segments of Dinitialseg

Known results, history. Plan and goals here. Include all �nite lattices and all countable
distributive ones two of the major steps in previous process. new proof based on ...
su¢ cient for all Applications. do two quanti�er theory decidable and three undecidable.
First present the proof for recursive lattices which su¢ ces for all our applications.

Then indicate how to extend argument to cover all sublattices of any recursive lattice
and so, for example, all distributive lattices.

10.1 Lattice Tables, trees and the notion of forcing

Our plan is to use lattice tables like those of
latrep
6.3.4 to provide the basics of our embeddings

of lattices as initial segments of D. For simple embeddings in §
latembsec
6.3 we used a Cohen

like forcing with conditions that were �nite sequences of elements of our representation.
In light of our move to trees in §

spectormin
9.2 to construct minimal degrees, it should not be

surprising that we now move to conditions that are trees built on lattice tables �, i.e.
maps T : �<! ! �<! to provide the appropriate notions of forcing. The generic G
that is built will then, as in §

latembsec
6.3, be an in�nite sequence of elements from �. As a

�rst approximation, the embedding will be given as before. For x 2 L, x 7�! Gx where
Gx(n) = G(n)(x): (Recall that the elements of� are maps from L toN.) Order, nonorder,
join and meet are handled much as in §

latembsec
6.3. The key idea for making the embedding onto

an initial segment will again be a type of e-splitting tree. While we want to deal with
in�nite lattices, a crucial component of the computation lemma for e-splitting trees (even
in the minimal degree case) is that the trees are �nitely branching. As long as they are
�nitely branching, one has a hope of determining the path taken by using �Ge to choose
among the e-splits. Thus we approximate our table by �nite subsets �i and consider trees
T that at level i branch according to the elements of �i. We will also have an associated
decomposition of our given lattice L = [Li. Now if one ignores the meet operation and
the required interpolants it is easy to get a �nite lattice table for a �nite lattice. We call
these upper semilattice (usl) tables. We postpone the meet interpolants for Li to �i+1.
While this is not strictly necessary, it makes the construction of the tables much easier.

99
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Moreover, we need a new type of interpolant to make the embeddings constructed be
onto initial segments of D and we do not know if these could be incorporated as well into
a �nite lattice table for Li.
These new interpolants are called homogeneity interpolants. The idea here is that if

we intend to force �Ge �T Gx for some x 2 L then using Gx we cannot distinguish among
all the nodes � in the tree at a given level n as many will have the same �x (be congruent
modulo x). This suggests that we will want our trees to have some kind of homogeneity
guaranteeing that what happens above one such � is congruent to what happens above
any other � �x �. Of course, we need this property for every x 2 L.
With the above as a brief motivation, we now formally de�ne the lattice tables that

we use and the associated trees.

uslrepdef De�nition 10.1.1 Let � be a set of maps from an usl L with least element 0 and greatest
element 1 into N. For �; � 2 � and x 2 L, we write � �x � (� is congruent to � modulo
x) if �(x) = �(x). We write � �x;y � to indicate that � is congruent to � modulo both x
and y. Such a � is an usl table for L if it contains the function that is 0 on every input
(which we, by an abuse of notation, denote by 0) and for every �; � 2 � and x; y; z 2 L
the following properties hold:

1. �(0) = 0.

2. (Di¤erentiation) If x � y then there are 
; � 2 � such that 
 �y � but 
 6�x �.

3. (Order) If x � y and � �y � then � �x �.

4. (Join) If x _ y = z and � �x;y � then � �z �.

restriction Notation 10.1.2 If � is an usl representation for L and L̂ � L then we denote the
restriction of � to L̂ by � � L̂ = f� � L̂j� 2 �g. We also say that � is an extension of
� � L̂. Note that as all our (upper or lower semi)lattices contain 1, the order property
guarantees that if � � L̂ = � � L̂ then � = �. Thus when we extend an usl representation
�̂ for L̂ to one � for L (as in the constructions for Proposition

extend
10.3.4 we can use the

same � 2 �̂ to denote its unique extension in �.

homo De�nition 10.1.3 If �0 and � are usl representations for L0 and L, respectively, L̂ �
L0 � L and f : �0 ! �, then f is an L̂-homomorphism if, for all �; � 2 �0 and x 2 L̂,
� �x � ) f(�) �x f(�).

Theorem 10.1.4 (see Theorem
repthm
10.3.1) If L is a countable lattice, then there is an

usl table � for L along with a nested sequence of �nite sublower semilattices, slsls, Li
starting with L0 = f0; 1g with union L and a nested sequence of �nite subsets �i with
union � with both sequences recursive in L with the following properties:

1. For each i; �i � Li is an usl table for Li.
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2. There are meet interpolants for �i in �i+1, i.e. if � �z �, x^ y = z (with �; � 2 �i
and x; y; z 2 Li) then there are 
0; 
1; 
2 2 �i+1 such that � �x 
0 �y 
1 �x 
2 �y
�.

3. For every sublowersemilattice L̂ of Li, L̂ �lsl Li; there are homogeneity interpolants
for �i with respect to L̂ in �i+1, i.e. for every �0; �1; �0; �1 2 �i such that 8w 2
L̂(�0 �w �1 ! �0 �w �1), there are 
0; 
1 2 �i+1 and L̂-homomorphisms f; g; h :
�i ! �i+1 such that f : �0; �1 7! �0; 
1, g : �0; �1 7! 
0; 
1 and h : �0; �1 7! 
0; �1,
i.e. f(�0) = �0, f(�1) = 
1 etc.

We prove this theorem in §
lattablesec
10.3. Our goal in this and the next section is to prove that

we have initial segment embeddings for all recursive lattices.

reclatticeiso Theorem 10.1.5 Every recursive lattice L is isomorphic to an initial segment of D.

For the rest of this section and all of the next we �x a recursive lattice L and a
sequence hLi;�ii for it as speci�ed in Theorem

repthm
10.3.1. We now move on to the de�nition

of the trees that will be the conditions in our forcing relation.

latticetree De�nition 10.1.6 A tree T (for the sequence hLi;�ii), which we call simply a tree in
this chapter ,is a recursive function such that for some k 2 ! its domain is the empty

string ; and all strings in the Cartesian product
n=mQ
n=0

�k+n for each m 2 !. We denote

this number k by k(T ). For each � 2 domT , T (�) 2
n=qQ
n=0

�n for some q � j�j � 1.
Moreover, T has the following properties for all �; � 2 domT :

1. (Order) � � � ) T (�) � T (�).

2. (Nonorder) �j� ) T (�)jT (�). In fact, we speci�cally require that, for every � 2
n=mQ
n=0

�k+n and � 2 �k+m+1, T (�^�) � T (�)^�.

3. (Uniformity) For every �xed length l there is, for each � 2 �k+l, a string �l;� so
that, for a given l, all the �l;� are of the same length independently of � and if
j�j = l then T (�^�) = T (�)^�l;�. Note that by the nonorder property (2), for �xed
l and � 6= �, �l;� 6= �l;�, in fact, by our speci�c requirement, �l;�(0) = �.

Thus our trees T have branchings of width j�k(T )+nj at level n and satisfy order and
nonorder properties as for Spector forcing. In addition, they enjoy a strong uniformity
property that will play a crucial role in our veri�cations.

subtree De�nition 10.1.7 We say that a tree S is a subtree of a tree T , S � T , if k(S) � k(T )
and (8� 2 domS)(9� 2 domT )[S(�) = T (�)].
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We note three useful facts that illuminate the structure of subtrees. The �rst says
that the branchings on S follow those on T .

Lemma 10.1.8 If S is a subtree of T then
1. S(�) = T (�)! (8� 2 �k(S)+j�j)(S(�^�) � T (�^�)
2. 8l9�l;�8�; �(j�j = l & S(�) = T (�) ! S(�^�) = T (�^�l;�) for � 2 �k(S)+l and
3. [S] � [T ].

Proof. The �rst fact follows immediately from our speci�c implementation of the
nonorder property for trees (De�nition

latticetree
10.1.6(2)). The second follows from the uni-

formity requirements (3) of De�nition
latticetree
10.1.6 for S and T as well as property (2). the last

is immediate from the de�nition.
Transitivity of the subtree relation should be clear but an even stronger claim is

proven in Proposition
trans
10.1.11. We mention some speci�c operations on trees that we will

need later.

fulldef De�nition 10.1.9 If T is a tree and � 2 domT then Fu(T; �) or T� is de�ned by
T�(�) = T (�^�). Clearly, k(T�) = k(T ) + j�j and T� � T . Note that for � 2 domT
and � 2 domT�, (T�)� = T�^� . For a string � 2

n=qQ
n=0

�n with q � jT (;)j � 1, we let

T � (the transfer tree of T over �) be the tree such that, for every � 2 domT , T �(�)
is the string gotten from T (�) by replacing its initial segment of length q + 1 (which is
contained in T (;)) by �. We write T �� for (T�)�. Finally, if T is a tree with k(T ) = k
and � 2 domT then we let T �� = T� � domT . Clearly, k(T �� ) = k(T ) and T �� � T . Note
that for � 2 domT and � 2 domT �� , (T �� )�� = T ��^� .

A crucial notion for our constructions is that of preserving the congruences of speci�ed
slsls of our given lattice L.

prescong De�nition 10.1.10 If L̂ is a �nite slsl of L we say that a subtree S of T preserves the
congruences of L̂, S �L̂ T , if L̂ � Lk(T ) and, whenever x 2 L̂, S(�) = T (�), � �x �,
S(�^�) = T (�^�) and S(�^�) = T (�^�), then � �x �. Here � and � are members of the
appropriate �i and � and � are sequences (necessarily of the same length m) of elements
from the appropriate �j�s. We say that such sequences � and � are congruent modulo x,
� �x �, if �(j) �x �(j) for each j < m.

trans Proposition 10.1.11 If R �L1 S �L2 T and then R �L1\L2 T .

Proof. To see that R � T note �rst that k(R) � k(S) � k(T ). Next suppose that
� 2 domR and � 2 �k(R)+j�j. As R � S we have a � such that R(�) = S(�) and
R(�^�) � S(�^�). As S � T we have a � such that S(�) = T (�) and S(�^�) � T (�^�).
Thus R(�) = T (�) and R(�^�) � T (�^�) as required. As for the preservation of L1 \L2
congruences, suppose R(�) = S(�) = T (�), x 2 L1\L2, �0; �1 2 �k(R)+j�j and �0 �x �1.
Let R(�^�i) = S(�^�i) = T (�^�i). As x 2 L1 and R �L1 S, �0 �x �1. As x 2 L2 and
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S �L2 T it then follows by induction on the (by uniformity, necessarily common) length
of �i that �0 �x �1 as required.
The details of this induction follow. Write �i = �0i ^ � � � ^�si where S(�^�i(0) � � � ^�i(t)) =

T (�^�0i ^
���^�ti). Then inductively �0(j) �x �1(j) gives �

j
0 �x �

j
1. For j = 0 this follows

directly from De�nition
prescong
10.1.10. For the inductive step, consider, without loss of gener-

ality, the case j = 1. We have S(�^�0(0)^�0(1)) = T (�^�00^�
1
0) and S(�^�1(0)^�1(1)) =

T (�^�01^�
1
1). Consider S(�^�0(0)^�1(1)) = T (�^�00^�) for some �. By the uniformity

clause (3) of De�nition
latticetree
10.1.6, there is a � such that S(�^�0(0)^�1(1)) = S(�^�0(0))^�

and S(�^�1(0)^�1(1)) = S(�^�1(0))^�. Thus T (�^�
0
0^�) = T (�^�00)^� and T (�^�

0
1^�

1
1) =

T (�^�01)^�. Again, by the uniformity clause and the uniqueness of the �l;� there (iterated
j�j times), � = �11. Finally, by De�nition

prescong
10.1.10 again, � �x �10 as �1(1) �x �0(1) and

so �11 �x �10 as required.
We now present the notion of forcing for constructing our embedding of L as an initial

segment of D.

defforcing De�nition 10.1.12 The forcing conditions P our notion of forcing P are trees T (for
hLi;�ii). We say T1 �P T0;if T1 �K(T0) T0 where, as often, we denote Lk(T ) by K(T ).
We let V (T ) = T (;). The top element of P consists of the identity tree Id (which has
k(Id) = 0).

fulllem Lemma 10.1.13 If T is a tree, � 2 domT and L̂ � Lk(T ), then T� �L̂ T . If �; � 2
domT are of the same length and S �P T� then ST (�) �P T� . We also have that
T
T (�)
� = T� .

Proof. The �rst assertions follow directly from the de�nitions. The last two follow from
the uniformity assumption on our trees.
It is easy to see that sets Cn = fP j jV (P )j > n & k(P ) > ng are dense. Just extend

to some P�. We assume that any generic �lter G we consider meets these sets. It then
determines a generic function G 2

1Q
n=0

�n , i.e. a function on ! with G(n) 2 �n. On
this basis we could naively try to de�ne our embedding of K into D as we did in §

latembsec
6.3:

For x 2 K � L we let Gx : ! ! ! be de�ned by Gx(n) = G(n)(x). The desired image
of x would then be deg(Gx). Now the order and join properties of usl representations
guarantee that this embedding preserves order and join (on all of L even). If x � y then
by the order property we can (recursively in the table h�ii) calculate Gx(m) from Gy(m)
by �nding any � 2 �m with �(y) = Gy(m) and declaring that Gx(m) = �(x). (Such an
� exists since G(m) is one.) Similarly if x _ y = z then, by the join property, we can
calculate Gz(m) from Gx(m) and Gy(m) by �nding any � 2 �m such that �(x) = Gx(m)
and �(y) = Gy(m) and declaring that Gz(m) = �(z). (Again G(m) is such an �.)
Were congruences modulo x always preserved for every x, we could directly carry

out the diagonalization and other requirements as well for this de�nition of Gx. In
actuality, however, not all congruences are preserved as we re�ne to various subtrees in
our construction. Thus we must modify the de�nition of the images in D and provide
nice representations of the degree corresponding to x.
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De�nition 10.1.14 If G is a generic �lter meeting the dense sets Cn, G the correspond-
ing generic element of

1Q
n=0

�n, P 2 G and x 2 K(P ) then GP is the sequence h�njn 2 !i

where P (h�njn < mi) � G for every m. (Thus h�ni is the path that G follows in the
domain of P . In particular, G = GId. It is obvious from the de�nitions that G is a path
on (i.e. in the range of) Q for every Q 2 G.) We de�ne GPx (n) as �n(x).

The crucial point is that the degree of GPx does not depend on P once x 2 K(P ).

Lemma 10.1.15 If x 2 K(P ); K(Q) for P;Q in a generic G, then GPx�TGQx .

Proof. As there is an R �P P;Q in G by the compatibility of all conditions in a generic
�lter, it su¢ ces to consider the case that Q �P P . Let GP = h�ni and GQ = h�ni.
By the de�nition of subtree there is for each n an m(n) such that Q(h�sjs < ni) =
P (h�sjs < m(n)i) and we can compute the function m recursively in the trees. (By the
uniformity of the trees, there is, for each n, a unique m(n) such that jQ(�)j = jP (�)j for
every � of length n and every � of length m(n).) Moreover, by our de�nition of subtree,
�n = �m(n). Thus GQx (n) = �n(x) = �m(n)(x) = GPx (m(n)) and so G

Q
x �h GPx . The other

direction depends on the congruence preservations for x implied by Q �K(P ) P .
Suppose that we have, by recursion, determined GPx (i) = �i(x) for i � m(n).

The next step followed by G in Q is �n+1 = �m(n)+1. It corresponds to the sequence
h�ijm(n) + 1 � i < m(n+ 1)i. The de�nition of�K(P ) implies that h�i(x)jm(n) + 1 � i < m(n+ 1)i
is uniquely determined by �n+1(x) to continue the recursion.
Thus given a generic G we can de�ne a map from L into D by sending x 2 L to

deg(GPx ) for any P 2 G with x 2 K(P ). Our proof plans above as in §
latembsec
6.3 for the

preservation of order and join now work here as well simply by applying them to GP on
P (in place of G on Id) for any P 2 G with x; y; z 2 K(P ). Thus we only need to verify
the preservation of nonorder and that our map is onto an initial segment of D. (Note
that meet is preserved once we know that the mapping is an order isomorphism of the
lattice L onto an initial segment of D as meet is de�nable from order. Of course, this
argument would apply to join as well but no new work is needed to note that join is
preserved. It is also worth commenting that we use the join structure in the usl tables as
well as the meet interpolants in the proof that the embedding is onto an initial segment
of D.)

10.2 Initial segment conditions

To assure that our embedding preserves nonorder we want to show, for any x � y in K,
condition P with x; y 2 K(P ) and �e, that there is a Q �P P such that for any G 2 [Q]
�
GPy
e 6= GPx and a Q �P P and x 2 K(Q) such that for any G 2 [Q] for which �Ge is
total, �Ge �T GQx . These two results would then �nish the proof of our theorem. We
begin with the analog of total subtrees of De�nition

totdef
9.2.17 and the corresponding dense

sets that make our task simpler.
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totldef De�nition 10.2.1 Let T be a condition in P. If for every � 2 domT and every x there
is a � � � such that �T (�)e (x) # then we de�ne a subtree S = Totl(T; e) with the same
domain by recursion on the length of � 2 domT . We begin with S(;) = T (;). Suppose
for every �i 2 domT of length n there is a � i such that we have de�ned S(�i) = T (� i)
for i < m. We now list the � such that we must de�ne S(�i^�) to get the next level of
S as h�jjj < si. We proceed to de�ne �l for each l = hi; ji with i < m and j < s. (For
convenience we assume these are the l < r = m � s.) For l = 0 = h0; 0i we search for the
�rst � � such that �T (�0^�0^�)e (j�j) #. One exists by our assumption. We then set � = �0.
If we have de�ned �l for l � q and �q = �0^ : : : ^�q then we let �q+1 where q + 1 = ĥ{; |̂i
be the �rst � such that �

T (� {̂^�|̂^�q^�)
e (j�j) #. We now let � be the concatenation of the �l

for l < r and set S(�i^�j) = T (� i^�j^�).

De�nition 10.2.2 If T is a tree and (8�)(8x < j�j)(�T (�)e (x) #, we say that T is e-total
and we denote �T (�)e (n) for n < j�j by qT (n; �).

Lemma 10.2.3 If T and Totl(T ) = S is de�ned then S �P T and S is e-total.

Proof. The second claim is immediate from the de�nition of Totl(T ). As for the �rst,
it is immediate that domS = domT and that, since T is a tree, that S is a subtree of T .
As the de�nition of S has S(�i^�j) = T (� i^�j^�) for a single � over all the nodes �i^�j
of level n+ 1, it is also clear that S preserves all the congruences of K(T ).

totl Lemma 10.2.4 The sets Be = fP j9x8�(�P (�)e (x) ") or P is e-totalg are dense in P.

Proof. Suppose we are given P and e. If there is an x and a � such that �P (�)e (x) "
for every � � �, then clearly P� (or P �� ) satis�es the �rst clause in the de�nition of Be.
Otherwise, Totl(P; e) satis�es the second clause by the last Lemma.

diag Proposition 10.2.5 (Diagonalization) For any x � y in L, e 2 N and condition P
with x; y 2 K(P ), there is an Q � P such that 8G 2 [Q], if �Ge is total then �

GPy
e 6= GPx .

Proof. There is clearly an j such that �
GPy
e = �Gj . By Lemma

totl
10.2.4 we may assume

that P is j-total. We then choose any �0; �1 2 �k(P ) such that �0 �y �1 but �0 6�x �1.
Such �0 and �1 exist by the di¤erentiation property of usl tables. Let �i = (�i)

j�j; i.e.
the concatenation of j�j many copies of �i for i 2 f0; 1g. Consider then the conditions
P�i and any Gi 2 [P�i ]. Of course, (Gi)Px (j�j) = �i(x) while �

P�i (;)
i (j�j) # for i = 0; 1 by

Lemma
totl
10.2.4. As the �i, for i = 0; 1, are congruent modulo y and y 2 K(P ), the initial

segments of GPy that P�i(;) determine are equal. Thus the �
P�i (;)
i (j�j) = �

GPy
e (j�j) are

convergent and equal. So for one i 2 f0; 1g, �P�i (;)i (j�j) 6= �i(x). For that i, P�i is the Q
required in the Lemma.
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We turn now to the requirement that the image of K under our embedding form an
initial segment of D. This argument is somewhat more complicated than those above
and uses both the meet and homogeneity interpolants.
We begin with the notion of an e-splitting appropriate to our trees and a lemma about

such splittings.

defsplit De�nition 10.2.6 Given a �e and an e-total tree Q. we say that � and � with j�j = j� j
are an e-splitting or e-split on Q (modulo w) if (� �w � and) there is an n < j�j such that
qT (n; �) 6= qT (n; �). If R � Q;R(�) = Q(�); R(�) = Q(�) and � and � e-split (modulo
w) on Q then we also say that � and � e-split on R (modulo w).

meetsplit Lemma 10.2.7 Given an e-total condition Q, there is a � 2 domQ such that the set
Sp(�) = fw 2 K(Q)j there are no �; � that e-split on Q�� modulo wg is maximal. More-
over, this maximal set is closed under meet and so has a least element z.

Proof. Let k = k(Q) and K̂ = K(Q). As K̂ is �nite there is clearly a � such that Sp(�) is
maximal. Note that then Sp(�) = Sp(�) for any � � � with �n� 2 domQ�� as Q�� �K̂ Q��.
Consider any x; y 2 Sp(�) with x ^ y = w. As K̂ �lsl L, w 2 K̂. To show that Sp(�)
is closed under meet it su¢ ces (by the maximality of Sp(�)) to show that there is no e-
splitting on Q��^0 modulo w. Remember that, by de�nition, k = k(Q��^0) = k(Q��) = k(Q).
Suppose there were such a split �� and ��, each of length m. By our de�nition of Q��^0,

��; �� 2
n=mQ
n=0

�k+n . In Q�� at the corresponding levels, however, there are branchings for

all elements of �k+n+1. (That is there are, for example, successors of Q��(0^� � n + 1)
for every element of �k+n+1 while in Q��(� � n + 1) there are ones only for the elements
of �k+n.) Thus, by the existence of meet interpolants for �k+n in �k+n+1, there are

�
0; �
1; �
2 2
n=mQ
n=0

�k+n+1 such that for each j � m, the �
i(j) for i 2 f0; 1; 2g are meet

interpolants for ��(j) and ��(j), i.e. �� �x �
0 �y �
1 �x �
2 �y ��. As �� and �� form a
e-splitting on Q��^0 so do one of the successive pairs such as 0^�
0, 0^�
1 on Q

�
�. But then

0^�
0 and 0^�
1 would be an e-split on Q
�
� congruent modulo y for a contradiction. (The

situations for the other pairs are the same but perhaps with x in place of y.)
We now build the analog of the e-splitting subtrees of De�nition

esplittree
9.2.12.

splittree Proposition 10.2.8 Given an e-total Q with k(Q) = k and K(Q) = K̂ with � and z
as in Lemma

meetsplit
10.2.7, there is a condition S � Q�� with k(S) = k such that any �; � 2

domS(= domQ) with � 6�z � e-split on S. (Of course, by the choice of � and z there are
no e-splits on Q�� which are congruent modulo z.) Such a tree S is called a z� e-splitting
tree.

Proof. We de�ne S(�) (with k(S) = k) by induction on j�j beginning, of course, with
S(;) = Q��(;). Suppose we have de�ned S(�) = Q��(��) for all � of length n. We
must de�ne S(�^�) for all such � and appropriate � as extensions Q��(��^�) of Q

�
�(��^�)
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obeying all the congruences in K̂, i.e. if x 2 K̂ and � �x � then ��^� �x ��^�. We

list the � of length n + 1 as �i^�i for i < m = j
j=nQ
j=0

�k+jj and de�ne by induction on

r < l = m(m+1)=2 (the number of pairs fi; jg with i; j < m) strings �i;r simultaneously
for all i < m. At the end of our induction we will set ��i^�i = ��i^�i^�i;0^ : : : ^�i;l�1.
For this to succeed it su¢ ces to maintain uniformity and guarantee, for every i; j < m
and w 2 K̂, that �i �w �j ) �i;r �w �j;r for every r < l and that if �i 6�z �j then
��i^�i^�i;0^ : : : ^�i;r and ��j^�j^�j;0^ : : : ^�j;r e-split on Q

�
� where r < l is (the code for)

fi; jg.

By induction on r < l we suppose we have ��i^�i;0^ : : : ^�i;r�1 = �i for all i < m and
that fp; qg is pair number r. If �p �z �q there is no requirement to satisfy and we let
�i;r = ; for every i. Otherwise, let w be the largest y 2 Lk+n such that �p �y �q. (To
see that there is a largest such y, �rst note that Lk+n is a lattice as it is a �nite lsl. As
�k+n is an usl table for Lk+n, if �p �u;v �q for u; v 2 Lk+n then �p �t �q where t is
the least element of Lk+n above both u and v (their join from the viewpoint of Lk+n).
Thus, there is a largest y as desired.) Of course, z � w. By our choice of z there are

�; � 2
t=cQ
t=0

�k+t such that �p extended by � and � form an e-splitting congruent modulo w

on Q��. (We can �nd such a split on Q
�
�p by the de�nition of � and z and our assumption

on w. It translates into such � and � .) Consider �q^� . It must form an e-splitting on Q��
with one of �p^� and �p^� by the basic properties of Q. If it splits with the latter string
then we can set �i;r+1 = � and clearly ful�ll the requirements for this pair fp; qg both
for congruence modulo w (as all new extensions are identical) and e-splitting. Of course,
uniformity is maintained as the �i;r+1 are the same for all i. Thus we assume that �p^�
and �q^� e-split on Q��. We now use our homogeneity interpolants.

We know that w is the largest y 2 Ln+k such that �p �y �q and that � �w � .
Thus for any x 2 K̂ � Lk+n if �p �x �q then x � w and so � �x � . By Theoremrepthm
10.3.1(3) we can now �nd homogeneity interpolants 
0(s); 
1(s) in �k+s+1 and associated
K̂-homomorphisms fs; gs; hs : �k+s ! �k+s+1 such that fs : �p; �q 7! �(s); 
1(s), gs :
�p; �q 7! 
0(s); 
1(s) and hs : �p; �q 7! 
0(s); �(s) for each s < j�j = j� j. (We let
�0 = �p, �1 = �q, �0 = �(s), �1 = �(s), L̂ = K̂ and i = k + s in the Theorem.) Note
that the branchings in Q�� are at some levels up from the corresponding ones in Q��p
or Q��q on which we chose � and � . Thus these homogeneity interpolants are available
within the branchings in Q��. As �p^� and �q^� e-split on Q

�
� one of the pairs �p^�; �q^�
1;

�p^�
0; �q^�
1 and �p^�
0; �q^� must also e-split onQ
�
�. Suppose, for the sake of de�niteness,

it is the second pair �p^�
0; �q^�
1. In this case, we let �i;r+1(s) = gs(�i) for every i
and s. Note that uniformity is maintained as �i;r+1(s) depends only on �i. We use fs
or hs in place of gs if the e-splitting pairs are �p^�; �q^�
1 or �p^�
0; �q^� , respectively.
By the homomorphism properties of the interpolants these extensions preserve all the
congruences in K̂ between any �i and �j as required to complete the induction and our
construction of an e-splitting tree .
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We now conclude the proof that our embedding maps onto an initial segment of D.
by showing that for G 2 [S] with S a z � e-splitting tree, �Ge �T GSz . The proof is
analogous to that of the Computation Lemma (

complemma
9.2.14).

comp Lemma 10.2.9 If S is a z � e-splitting tree and G 2 [S] then �Ge �T GSz .

Proof. We �rst show that �Ge �T GSz . Consider any n. Using GSz we can �nd all the
� 2 domS of length n such that �(l) = GSz (l) for every l � n. All of these � are congruent
modulo z and so all S� force the same value for �Ge at n. As S(�) is an initial segment of
G for one of these �, this value must be �Ge (n). We next argue that G

S
z �T �Ge . Consider

all �; � 2 domS of length n. If � 6�z � then S� and S� force di¤erent values for �Ge
at some l < n. Thus using �Ge � n we can �nd the unique congruence class modulo z
consisting of those � such that S(�) is not ruled out as a possible initial segment of G.
For one � in this class, S(�) is an initial segment of G and as all the � in this class are
congruent modulo z, they all determine the same values of GSz � n which must then be
the correct value.
We have now completed the proof that any generic �lter G (deciding all sentences and

meeting the dense sets provided by Lemma
totl
10.2.4 and Propositions

diag
10.2.5 and

splittree
10.2.8)

provides an embedding of L onto an initial segment of D that sends x to deg(GPx ) (for
any P 2 G with x 2 K(P )). This establishes Theorem

reclatticeiso
10.1.5 given our lattice table

theorem whose proof we provide in §
lattablesec
10.3. We now indicate how to modify Theorem

reclatiso
??

so as to apply to any sublattice K of a recursive lattice.

subreclatticeiso Theorem 10.2.10 If K is a sublattice of a recursive lattice L then K is isomorphic to
an initial segment of D.

Proof. The changes needed to the proof of Theorem
reclatticeiso
10.1.5 are mostly notational. The

forcing conditions are now pairs hT; K̂i where T is a tree (for hLi;�ii) and K̂ is a �nite
slsl of K \ Lk(T ). We say that hT1;K1i �P hT0;K0i if T1 �K0 T0 and K1 � K0. We
let V (hT; K̂i) = T (;). If P = hT; K̂i is a condition we let K(P ) = K̂, Tr(P ) = T and
k(P ) = k(T ). In following much of the original proof, one should often simply replace
a condition P by Tr(P ) when K(P ) is �xed. Along these lines, for example, we use
P�, P �� , P

� and P �� to stand for hTr(P )�; K(P )i, hTr(P )��; K(P )i, hTr(P )� ; K(P )i and
hTr(P )��; K(P )i, respectively. The top element of P consists of the identity tree Id
(which has k(Id) = 0) and the slsl L0 = f0; 1g.
The basic dense sets Cn that we assume are met by any generic are now extended to

include, for each x 2 K the sets fP jx 2 K(P )g. to see that these are dense, consider any
Q 2 P and x 2 K. Let K0 be the slsl of K generated by K(Q) and x and let i � k(Q)
be such that K0 � Li. De�ne S with k(S) = i by S(�) = Tr(Q)(0i�k(Q)^�). Clearly,
hS;K0i �P Q and is in the required set.
The de�nition of the embedding, now from K, into D is the same as before noting

that K(P ) is now the second coordinate of P rather than simply Lk(P ). The operations
on trees and proofs used to verify the diagonalization (for x; y 2 K) and initial segment
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properties (with �Ge = GPz for z 2 K(Q) � K) are now essentially the same. Just keep in
mind that they are applied to Tr(P ) and K(P ) does not change.
This version of the theorem provides initial segment embeddings for many nonrecur-

sive lattices. As an example we have the following corollary.

Corollary 10.2.11 Every countable distributive lattice is isomorphic to an initial seg-
ment of D.

Proof. There is a recursive universal countable distributive lattice. In fact, every count-
able distributive lattice can be embedded into the atomless Boolean algebra.??

Exercise 10.2.12 Prove that the embedding of our recursive lattice L can be taken to
be into D(�000) and, indeed that the generic G constructed has double jump 000. For
embeddings of a sublattice K of L determine where the embedding lies and what can be
said about G00.

Exercise 10.2.13 Prove that the embedding of our recursive lattice L is onto an initial
segment of both the tt and wtt degrees. (Hint: recall Exercise

0domtt
8.1.2.)

Exercise 10.2.14 Theorem
reclatticeiso
10.1.5 relativizes to any degree a and so every countable

lattice L (with 0 and 1) is isomorphic to a segment of D, i.e. to [a;b] = fxja � x � bg
for some b where a is the degree of L. Indeed, we may take b00 = a00.

10.3 Constructing lattice tableslattablesec

repthm Theorem 10.3.1 If L is a countable lattice then there is an usl table � of L along with
a nested sequence of �nite slsls Li starting with L0 = f0; 1g with union L and a nested
sequence of �nite subsets �i with union � with both sequences recursive in L with the
following properties:

1. For each i; �i � Li is an usl table of Li.

2. There are meet interpolants for �i in �i+1, i.e. if � �z �, x^y = z (in �i and Li,
respectively) then there are 
0; 
1; 
2 2 �i+1 such that � �x 
0 �y 
1 �x 
2 �y �.

3. For every L̂ �lsl Li there are homogeneity interpolants for �i with respect to L̂ in
�i+1, i.e. for every �0; �1; �0; �1 2 �i such that 8w 2 L̂(�0 �w �1 ! �0 �w �1),
there are 
0; 
1 2 �i+1 and L̂-homomorphisms f; g; h : �i ! �i+1 such that f :
�0; �1 7! �0; 
1, g : �0; �1 7! 
0; 
1 and h : �0; �1 7! 
0; �1.

Proof. We �rst de�ne the sequence Li of slsls of L beginning with L0 which consists
of the 0 and 1 of L. We let the other elements of L be xn for n � 1 and Ln be
the (necessarily �nite) slsl of L generated by f0; 1; x1; : : : ; xng. As for �, we choose a
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countable set �i and stipulate that � = f�iji 2 !g. We begin de�ning the (values of)
the �i by setting �0(x) = 0 for all x 2 L and �(0) = 0 for all � 2 �. We will now
de�ne �n and the values of � 2 �n (other than �0) on the elements of Ln (other than
0) by recursion. For �0 we choose a new element � of � and let �0 = f�0; �g and set
�(1) = 1. Given �n and the values for its elements on Ln we wish to enlarge �n to �n+1
and de�ne the values of �(x) for � 2 �n+1 and x 2 Ln+1 so that the requirements of
the Theorem are satis�ed. To do this we prove a number of general extension theorems
for usl representations in the Propositions below that show that we can make simple
extensions to satisfy any particular meet or homogeneity requirement and also extend
usl representations from smaller to larger slsls of L. To be more speci�c, we �rst apply
Proposition

meetinterp
10.3.5 successively for each choice of x ^ y = z in Ln and �; � 2 �n with

� �z � choosing new elements of � to form �0n extending �n and de�ning them on Ln
so that �0n � Ln is an usl table for Ln containing �n and the required meet interpolants
for every such x; y; z; � and �. We then apply Proposition

hominterp
10.3.6 successively for each

L̂ �lsl Ln and each �0; �1; �0; �1 2 �n such that 8w 2 L̂(�0 �w �1 ! �0 �w �1) to get
larger subset �00n of � which we also de�ne on Ln so as to have an usl table �00n � Ln
for Ln that has the required homogeneity interpolants and L̂-homomorphisms from �n
into �00n for every such �0; �1; �0; �1 2 �n. Finally, we apply Proposition

extend
10.3.4 to de�ne

the elements of �00n on Ln+1 and further enlarge it to our desired �nite �n+1 � � with
all its new elements also de�ned on Ln+1 so as to have an usl table of Ln+1 with all the
properties required by the Theorem. It is now immediate from the de�nitions that the
union � of the �n is an usl table of L.

Notation 10.3.2 If a �nite L̂ is a slsl of L, L̂ �lsl L, and x 2 L then we let x̂ denote
the least element of L̂ above x. The desired element of L̂ exists because L̂ is a slsl of L
and so the in�mum (in L̂ or, equivalently, in L) of fu 2 L̂jx � ug is in L̂ and is the
desired x̂. As L̂ is �nite it is also a lattice but join in L̂ may not agree with that in L.
We denote them by _L̂ and _L respectively when it is necessary to make this distinction.

basichat Lemma 10.3.3 With the notation as above, x̂ = x for x 2 L̂ and so it is an idempotent
operation. If x � y are in L then x̂ � ŷ. If x _L y = z are in L then ẑ = x̂ _L̂ ŷ.

Proof. The �rst two assertions follow immediately from the de�nition of x̂. The third is
only slightly less immediate: x; y � x _L y = z and so by the second assertion, x̂; ŷ � ẑ
and so x̂ _L̂ ŷ � ẑ. For the other direction, note that as x � x̂, y � ŷ, we have that
z = x _L y � x̂ _L ŷ � x̂ _L̂ ŷ 2 L̂ and so ẑ � x̂ _L̂ ŷ.

extend Proposition 10.3.4 If � is a �nite usl table for L̂ �lsl L (�nite) then there are exten-
sions for each � 2 � to maps with domain L and �nitely many further functions � with
domain L such that adding them on to our extensions of the � 2 � provides an usl table
�0 of L with � � �0 � L̂. Moreover, these extensions can be found uniformly recursively
in the given data (�, L̂ and L).
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Proof. For � 2 � and x 2 L set �(x) = �(x̂). We �rst check that we have maintained
the order and join properties required of an usl representation. If x � y are in L, �; � 2 �
and � �y � then by de�nition � �ŷ � and so � �x̂ � as x̂ � ŷ by Lemma

basichat
10.3.3 and ��s

being an usl table of L̂. Thus, by de�nition, � �x � as required.
Next, if x _L y = z are in L and � �x;y � we wish to show that � �z �. Again by

de�nition � �x̂;ŷ �. By Lemma
basichat
10.3.3, x̂ _L̂ ŷ = ẑ, so by � being an usl table for L̂,

� �ẑ � and so by de�nition, � �z �.
All that remains is to show that we can add on new maps with domain L that provide

witnesses for the di¤erentiation property for elements of L�L̂ while preserving the order
and join properties. This is a standard construction. For each pair x � y (in L but
not both in L̂) in turn we add on new elements �x;y and �x;y with all new and distinct
values at each z 2 L except that they agree on all z � x (and at 0, of course, have value
0). These new elements obviously provide the witnesses required for the di¤erentiation
property for an usl representation. It is easy to see that they also cause no damage to the
order or join properties. There are no new nontrivial instances of congruences between
them and the old ones in � (extended to L). Among the new elements the only instances
to consider are ones between �x;y and �x;y for the same pair x; y and for lattice elements
z less than or equal to x. As �x;y �z �x;y for all z � x, the order and join properties are
immediate.

meetinterp Proposition 10.3.5 If �; � 2 �, an usl table for a �nite lattice L, � �z � and x^y = z
in L then there are 
0; 
1; 
2 such that � �x 
0 �y 
1 �x 
2 �y � and �[ f
0; 
1; 
2g is
still an usl table for L. Moreover, these extensions can be found uniformly recursively in
the given data.

Proof. If x � y, there is nothing to be proved. Otherwise, the interpolants can be
de�ned by letting 
0(w) be �(w) for w � x and new values for w � x; 
1(w) = 
0(w) for
w � y and new values otherwise; and 
2(w) = �(w) for w � y, 
2(w) = 
1(w) if w � x
but w � y and new otherwise.

hominterp Proposition 10.3.6 If L̂ �lsl L, a �nite lattice, and � is an usl table for L with
�0; �1; �0; �1 2 � such that 8w 2 L̂(�0 �w �1 ! �0 �w �1), then there is an usl
table ~� � � for L with 
0; 
1 2 ~� and L̂ homomorphisms f; g; h : � ! ~� such that
f : �0; �1 7! �0; 
1, g : �0; �1 7! 
0; 
1 and h : �0; �1 7! 
0; �1. Moreover, these
extensions can be found uniformly recursively in the given data.

Proof. For each � 2 � and x 2 L we set f(�)(x) = �0(x) if � �x̂ �0 and otherwise we
let it be a new number that depends only on �(x̂), e.g. �(x̂)�. Note that which case of
the de�nition applies for f(�)(x) depends only on �(x̂) and it can be an �old�value (i.e.
one of some � 2 �) only in the �rst case. Thus, for �; � 2 �,

(a) � �x̂ � , f(�) �x f(�) and (b) f(�) �x � ) � �x̂ �0 ) f(�) �x �0. (10.1) 1
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Let �1 = �[ f [�]. We claim that �1 is an usl table for L and f is an L̂-homomorphism
from � into �1. That f is an L̂-homomorphism is immediate from the �rst clause in
(
1
10.1) and the fact (Lemma

basichat
10.3.3) that x̂ = x for x 2 L̂. We next check that �1 satis�es

the properties required of an usl representation. Of course, f(�)(0) = 0 by de�nition for
every � and di¤erentiation is automatic as it extends �.
First, to check the order property for �1 we consider any x � y in L. As � is already

an usl table for L, it su¢ ces to consider two cases for the pair of elements of �1 which are
given as congruent modulo y and show that in these two cases they are also congruent
modulo x. The two cases are that (a) both are in f [�] and that (b) one is in f [�] and
the other in �. Thus it su¢ ces to consider any �; � 2 �, assume that (a) f(�) �y f(�)
or (b) f(�) �y � and prove that (a) f(�) �x f(�) and (b) f(�) �x �, respectively. For
(a), we have by (

1
10.1) that � �ŷ � and so by the order property for �, � �x̂ �. Thus

f(�) �x f(�) by de�nition as required. As for (b), (
1
10.1) tells us here that � �ŷ �0 and

� �y f(�) �y �0 (and therefore � �x �0). Now by Lemma
basichat
10.3.3 � �x̂ �0 so f(�) �x �0

and so f(�) �x � as required.
Next we verify the join property for x _ y = z in L and two elements of �1 (not

both in �) in the same two cases. For (a) we have that f(�) �x;y f(�) and so as above
� �x̂;ŷ �. Now by the join property in � and Lemma

basichat
10.3.3, � �ẑ � and so f(�) �z f(�)

as required. For (b) using (
1
10.1b) and Lemma

basichat
10.3.3 again we have that f(�) �x;y � )

� �x̂;ŷ �0 ) � �ẑ �0 ) f(�) �z �0 while it also tells us that � �x;y f(�) �x;y �0 as
required. Note that clearly f(�0) = �0. We let 
1 = f(�1) and so have the �rst function
and (partial) extension of � required in the Proposition.
We now de�ne h on �1 as we did f on � using �1 and �1 in place of �0 and �0,

respectively: h(�)(x) = �1(x) if � �x̂ �1 and otherwise we let it be a new number that
depends only on �(x̂), e.g. �(x̂)��. Let �2 = �1 [ h[�1]. As above, �2 is an usl table
for L and h is an L̂-homomorphism from �1 (and so �) into �2 taking �1 to �1. We let

0 = h(�0) and so have the third function and (partial) extension of � required in the
Proposition. As above in (

1
10.1), we have for any �; � 2 �1 and x 2 L,

(a) � �x̂ � , h(�) �x h(�) and (b) h(�) �x � ) � �x̂ �1 ) h(�) �x �1. (10.2) 2

Applying the second clause to 
0 = h(�0) and �rst to any � 2 �1 and then, in particular
to 
1 we have

(a) 
0 �x � ) �0 �x̂ �1 ) f(�1) = 
1 �x �0 and (b) 
0 �x 
1 , �0 �x̂ �1. (10.3) 3

To see the right to left direction of the second clause, note that �0 �x̂ �1 implies that

0 �x �1 and 
1 �x �0 by the de�nitions of h and f , respectively, while it also implies
that �0 �x̂ �1 by the basic assumption of the Proposition. Thus, as � is an usl table of
L and x � x̂, �0 �x �1 and 
0 �x 
1.
Finally, we de�ne g on � 2 �2 by setting g(�)(x) = 
0(x) if � �x̂ �0. If � 6�x̂ �0 but

� �x̂ �1 then g(�)(x) = 
1(x). Otherwise, we let g(�)(x) be a new number that depends
only on �(x̂), e.g. �(x̂)���. Note that if � �x̂ �1 then we always have g(�) �x 
1 as if
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� �x̂ �0 as well then, by (
3
10.3b), 
0 �x 
1. Thus g(�0) = 
0 and g(�1) = 
1 as required.

It is also obvious that g is an L̂-homomorphism of �2 (and so �) into �3 = �2 [ g[�2]
as by de�nition and Lemma

basichat
10.3.3, � �x̂ � ) g(�) �x̂ g(�) for any x 2 L. Indeed, for

any �; � 2 �2 and x 2 L

� �x̂ � , g(�) �x g(�). (10.4) 4

To see the right to left direction here, note that if either of g(�) or g(�) is new for g
at x (i.e. of the form �(ŷ)���) then clearly both are. In this case, � �x̂ � by de�nition.
Otherwise, either they are both congruent to �0 or both to �1 and so congruent to each
other mod x̂. The point here is that if one is congruent to �0 and the other to �1 but
not �0 at x̂ then by de�nition 
0 �x 
1 and so by (

3
10.3b), �0 �x̂ �1 for a contradiction.

Thus we only need to verify that �3 is an usl table of L. We consider any �; � 2 �2
and divide the veri�cations into cases (a) and (b) as before with the former considering
g(�) and g(�) and the latter g(�) and �. These cases may then be further subdivided.

We begin with the order property and so x � y in L.
(a) If g(�) �y g(�) then, by (

4
10.4), � �ŷ � and so � �x̂ � as x̂ � ŷ (Lemma

basichat
10.3.3)

and �2 is an usl table of L. Thus, again by (
4
10.4) g(�) �x g(�) as required.

(b) If g(�) �y � then by de�nition they are congruent modulo y to 
i (for some
i 2 f0; 1g) and � is congruent to �i at ŷ. Thus � �x̂ �i as x̂ � ŷ and �2 is an usl table
so g(�) �x 
i by de�nition. Similarly, as x � y, � �x 
i as well.
Now for the join property for x _ y = z in L.
(a) If g(�) �x;y g(�) then, as above, � �x̂;ŷ �. As x̂_ ŷ = ẑ by Lemma

basichat
10.3.3 and �2

is an usl representation, � �ẑ � and so by (
4
10.4) g(�) �z g(�) as required.

(b) If g(�) �x;y � then again � �x̂ �i and � �ŷ �j for some i; j 2 f0; 1g and
g(�) �x � �x 
i while g(�) �y � �y 
j. If i = j then � �x̂;ŷ �i and so � �ẑ �i and
g(�) �z 
i �z � as required.
On the other hand, suppose, without loss of generality, that (�) � �x̂ �0 and so

� �x g(�) �x̂;x 
0 = h(�0) while �0 6�ŷ � �ŷ �1 and so � �y g(�) �ŷ;y 
1 = f(�1). If
� 2 �1 then by (

4
10.4a) �0 �x̂ �1 and so � �x̂ �1. As our assumption is that � �ŷ �1

we have (by the join property in �2) that � �ẑ �1 and so g(�) �z 
1. As �0 �x̂ �1
(
3
10.3b) tells us that 
0 �x 
1. Our assumptions then say that � �x;y 
1 and so � �z 
1
as required. Thus we may assume that � = h(�) for some � 2 �1.
We now have h(�) = � �x g(�) �x 
0 = h(�0) 2 �1 and so by (

2
10.2a) applied to

h(�) �x h(�0) with � for � and �0 for � we see that � �x̂ �0. We also have h(�) = � �y
g(�) �ŷ;y 
1 = f(�1). Applying (

2
10.2b) to h(�) �y 
1 with � for � and 
1 2 �1 for �, we

see that � �ŷ �1and h(�) �y �1 and so �1 �y 
1 = f(�1). Now applying (
1
10.1b) with �1

for � and �1 2 � for �, we have that �1 �ŷ �0. As this contradicts (�), we are done.
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10.4 Decidability of two quanti�er theory2qtth

10.5 Undecidability of three quanti�er theory.3qtth

Also two quanti�er with _ and ^.?
Other results establishing borderlines in other languages e.g. with jump? If so in

di¤erent chapter/section?
comments on what known below 00



Chapter 11

�01 Classes

11.1 Binary trees

We now return to the basic our basic notion of a tree as a downward closed subset of !<!.
In this context we use T� to denote the subtree of T consisting of all strings � compatible
with �: T� = f�j� � � or � � �g. Recall that the sets of paths in such trees are the
closed sets in Baire space !!. In this chapter we will be primarily concerned with in�nite
binary trees, i.e. the in�nite downward closed subsets T of 2<!. We endow each binary
tree with a left to right partial order as well as the order of extension. It is speci�ed by
the lexicographic order on strings so � is to the left of � , � <L � if �(n) < �(n) for the
least n such that �(n) 6= �(n) if there is one. (This order extends in the obvious way to
one of 2! which we also call the left to right or lexicographic order.) The sets of paths
[T ] = fA 2 2! : 8n(A � n 2 T )g through these trees are precisely the nonempty closed
subsets of Cantor space, 2!.

Exercise 11.1.1 For any binary tree T , [T ] is a closed set in Cantor space.

??Prove??
To see that every closed subset of 2! is of the form [T ] for some tree T , consider

the open sets in 2!. They are all unions of basic (cl)open sets of the form [�] = ff 2
2!j� � fg for � 2 2<!. So given any closed set C its complement �C is a union of such
neighborhoods. Let T = f�j[�] " �Cg = f�j[�] \ C 6= ;g. It is clear that T is downward
closed. If f 2 C and � � f then clearly � 2 T and so f 2 [T ]. On the other hand if
f 2 [T ] and � � f then � 2 T and so the closed set [�] \ C 6= ;. As Cantor space is
compact \f[�] \ Cj� � fg is nonempty and only f can be in it so f 2 C as required.
Note that, by König�s lemma (Lemma

KL
4.2.4), C is nonempty if and only if T is in�nite.

??Move this material to Trees section and recall here??
In this chapter we want to investigate the recursive versions of these two notions.

De�nition 11.1.2 A class C � 2! is e¤ectively closed if it is of the form [T ] for a
recursive binary tree T .

115
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We can also characterize the e¤ectively closed sets in terms of the complexity of their
de�nition. We use the same notation based on the arithmetic hierarchy for classes of
sets or functions as we did for individual sets and functions.??say more now or before
Go back and check de�nitions for �An especially �0 and how interpret for � in place of A
...bounded quanti�ers??

De�nition 11.1.3 A class C � 2! of sets is �0n (�0n) if there is a �0n (�0n) formula '(X)
with one free set variable X such that C = fAjN �'(A)g. Similarly for classes F � !!

of functions and formulas with one free function variable.

The primary connection with trees is the following Proposition.

pi01trees Proposition 11.1.4 The �01 classes of sets are precisely the sets of paths through recur-
sive binary trees. Again, the nonempty classes correspond to the in�nite recursive binary
trees. Moreover, there is a recursive procedure that takes an index for a �01 formula to
one for a recursive tree T such that [T ] is the corresponding �01 class.

Proof. If T is a recursive binary tree then [T ] = fA 2 2! : 8n(A � n 2 T )g is clearly
a �01 class. If T is in�nite, [T ] is nonempty by König�s lemma while if T is �nite [T ] is
clearly empty. For the other direction consider any �01 class P = fA : 8xR(A; x)g for
a �A0 relation R. Let T = f� 2 2<!j:(9x < j�j):R(�; x)g where we understand that
we are thinking of � as representing an initial segment of A: Formally we replace t 2 A
by �(t) = 1 and declare the formula R(�; x) false if some term t > j�j occurs in it as
described in ??. It is then immediate that P = [T ] and that an index for T as recursive
function is given uniformly in the index for R as a �A0 formula. If P is nonempty, T has
an in�nite path and so is itself in�nite. Otherwise, T is �nite.

Exercise 11.1.5 The �01 classes of functions are precisely the sets of paths through re-
cursive trees (on !<!).

We can now index the �01 classes (of sets) by either the indices of the �
0
1 formulas or

of the trees derived from them as in the proof of Proposition
pi01trees
11.1.4 as partial recursive

functions which are actually total. A natural question then is how hard is to tell if a
recursive tree is in�nite or a �01 class is nonempty. It might seem at �rst that these
properties are �02 and so only recursive in 0

00. If we know that the tree is recursive as we
do for the trees derived uniformly from �01 classes, however, then the question is actually
uniformly (on indices) recursive in 00. This observation depends on the compactness of
Cantor space and plays a crucial role in almost every argument in the rest of this chapter.

fin0� Lemma 11.1.6 If T is a recursive binary tree (say with index i so T = �i) then T being
�nite is a �01 property (of i). Thus we can decide if T is �nite or in�nite recursively in
00. Indeed, T is �nite if and only if there is an n such that � =2 T for every � of length n.
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Proof. Clearly, T is �nite if and only if there is an n such that � =2 T for every � of
length n. Clearly this is a �01 property for any recursive binary tree and the associated
�01 formula is given uniformly in a recursive index for T .
While deciding if a given recursive binary tree is in�nite or a �01 class nonempty

requires 00, we can actually make a recursive list of the nonempty �01 classes and so one
of corresponding in�nite recursive binary trees (up to the set of paths on T ).

recindpi01 Exercise 11.1.7 There is a uniformly recursive list of the nonempty �01 classes in the
sense that there is a recursive set Q such that, for each e 2 Q, �e is (the characteristic
function of) an in�nite binary tree Te and for every nonempty �01 class C there is an e
such that C = [�e] = [Te]. Hint: For each e consider the r.e. set We viewing its elements
as binary strings �. We now form a recursive tree Te by putting in the empty string at
stage 0 and then at stage s > 0 exactly those strings � of length s with no � � � in We;s

unless there are none (equivalently [f[�]j� 2 We;sg = 2!), in which case we declare all
immediate successors of strings in Te of length s � 1 to be in Te as well. Note that Te
is uniformly recursive. For one direction prove that each Te is in�nite (and so [Te] is a
nonempty �01 class). For the other direction, if C is a nonempty �01 class then the set
f�j[�] \ C = ;g is r.e. and so equal to some We. Now show that [Te] = C.

We now present some important �01 classes.

Example 11.1.8 DNR2 = ff 2 2! : f is DNRg. Recall that DNR means f(e) 6=
�e(e). In other words, 8e8s:(f(e) = �e;s(e)). Thus, DNR2 is a �01 class.

Example 11.1.9 Let H be any recursively axiomatizable consistent theory. The class
CH=ff 2 2! : f is a complete extension of Hg is a �01 class. By the assertion that f �is
a complete extension of H�we mean that we have a recursive coding (Gödel numbering)
'n of the sentences of H such that Tf = f'njf(n) = 1g is deductively closed, contains all
the axioms of H and is consistent in the sense that there is no ' such that f assigns 1
(true) to both ' and :'. The only point to make about this being a �01 class is perhaps the
requirement that Tf be deductively closed. This says that for all �nite sets � of sentences
and each sentence 'k and proof p, if p is a proof that � ` ' and f(n) = 1 for every
'n 2 � then f(k) = 1.

Example 11.1.10 If A;B are disjoint r.e. sets, then the class S(A;B) = fC : C �
A & C \ B = ;g of separating sets C (for the pair (A;B)) is a �01 class as is obvious
from its de�nition: S = fC : 8n(n 2 A! n 2 C & n 2 B ! n =2 C)g. Since A;B 2 �01
this is a �01 formula.

We can view a �01 class as the solution set to the problem of �nding an f that
satis�es the de�ning condition for the class. Equivalently, the problem is �nding a path f
through the corresponding tree T . For the above examples the problems are to construct
a DNR2 function, a complete consistent extension of H and a separating set for A



118 CHAPTER 11. �01 CLASSES

and B, respectively. If we choose our theory H and our disjoint r.e. sets A and B
correctly then the three problems and so the �01 classes (and the [T ] for the corresponding
trees) are equivalent in the sense that a solution to (path through) any one of them
computes a solution for (path in) each of the others. Suitable choices for H and (A;B)
are Peano arithmetic, PA, ??de�ne before?? and (V0; V1) where V0 = fe : �e(e) = 0g and
V1 = fe : �e(e) = 1g. For these choices, the problems are also universal in the sense that
a solution to any one of them computes a path through any in�nite recursive binary tree
and hence a solution to any problem speci�ed by a nonempty �01 class.

Theorem 11.1.11 If T is an in�nite recursive binary tree and f is a member of any of
the three �01 classes DNR2, CPA or S(V0; V1) described above then there is a path g 2 [T ]
with g �T f .

Proof. We �rst prove the theorem for S(V0; V1). Suppose T is an in�nite recursive
binary tree. We begin by de�ning disjoint r.e. sets A and B such that any f 2 S(A;B)
computes a path in T: We then show how to compute a path in (any) S(A;B) from one
in S(V0; V1).
We know that f�jT� is �niteg is r.e. so suppose it isWe. We letA0 = f�j9s(�^0 2 We;s

& �^1 2 We;sg (the � such that we �see�that T�^0 is �nite before we �see�that T�^1 is
�nite) and A1 = f�j9s(�^1 2 We;s & �^0 2 We;sg (the � such that we �see�that T�^1 is
�nite before we �see�that T�^0 is �nite). It is clear that A0 \A1 = ;. Let C 2 S(A0; A1)
and de�ne D a path in T by recursion. We begin with ; 2 D. If � 2 D then we put
�^C(�) into D. We now argue by induction that if � 2 D then T� is in�nite: If T� is
in�nite then at least one of T�^0 and T�^1 is in�nite. If both are in�nite there is nothing
to prove so suppose that T�^0 is �nite but T�^1 is in�nite. In this case, it is clear from the
de�nition that � 2 A0 and so C(�) = 1 and we put �^1 into D to verify the induction
hypothesis. In the other case, � 2 A1, C(�) = 0 and we put �^0 into D with T�^0 in�nite
as required.
Now we see how to compute a C 2 S(A0; A1) from anyD 2 S(V0; V1). By the s�m�n

theorem ?? there is a recursive functions h such that 8n(n 2 Ai , h(n) 2 Vi). We now
let C(n) = D(h(n). It is easy to see that C 2 S(A0; A1) as required. Thus S(V0; V1) is
universal in the desired sense.
We now only have to prove that we can compute a member of S(V0; V1) from any

DNR2 function f and from any complete extension P of PA. For the �rst, simply note
that if f 2 DNR2 then f 2 S(V0; V1): If e 2 V0 then �e(e) = 0 and so f(e) = 1 as
required. On the other hand, e 2 V1 then �e(e) = 1 and so f(e) = 0 as required.
Finally, suppose P is complete extension of PA. De�ne C(n) = 1 if P declares the

sentence 9s(n 2 V0;s & 8t < s(n =2 V1;s)) to be true and 0 otherwise. Note that if
n 2 V0 then there is a least s 2 N such that n 2 V0;s. This fact is then provable in PA
(computation is essentially a proof). Similarly, for each t < s, n =2 V1;t since n 2 V0
and so C(n) = 1 as required. On the other hand, if n 2 V1 then there is a least s 2 N
such that n 2 V1;s and for each t < s, n =2 V0;t since n 2 V1 and so PA proves that
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9s(n 2 V1;s & 8t < s(n =2 V0;s)). As P is a consistent extension of PA, it cannot then
prove that 9s(n 2 V0;s & 8t < s(n =2 V1;s)) and so C(n) = 0 as required.

Exercise 11.1.12 Show that the degree classes DNR2, CPA and S(V0;V1) consisting
of the degrees in each of the corresponding �01 classes are all the same.

As every DNR function is obviously nonrecursive (Proposition
dnrnotrec
3.0.5), none of these

three classes have recursive members. So in particular there are no recursive complete
extension of PA and there is no recursive separating set for (V0; V1).
Thinking of �01 classes as problems that ask for solutions, the natural question is

how complicated must solutions be or how simple can they be. In the (in some sense
uninteresting) case that there is only one path in T (or only �nitely many) we can say
everything about their degrees.

Proposition 11.1.13 If a recursive binary tree T has single path that path is recursive.
In fact, any isolated path ??de�ne?? on a recursive tree is recursive.

In general for arbitrary T one easy answer to the question is that there are always
solutions recursive in 00.

rec0� Exercise 11.1.14 Show that every nonempty �01 class has a member recursive in 0
0.

Hint: it is immediate for the separating classes.

It is not hard to say a bit more.

redegree Proposition 11.1.15 Every in�nite recursive binary tree T has a path of r.e. degree.
In fact, the leftmost path P in T has r.e. degree.

Proof.
We, in fact, can signi�cantly improve the result of Exercise

rec0�
11.1.14. The Low Basis

Theorem below (Theorem
lowb
11.1.18) gives the best answer with the notion of simplicity

of the desired solution measured by its jump class. It is called a basis theorem as we
say that a class C is a basis for a collection of problems (sets) if every problem (set) in
the collection has a solution (member) in C. Theorem

0�domb
11.1.19 gives another basis result

in terms of domination properties and Theorem
pi01coneav
11.1.21 one in terms of solutions not

computing given (nonrecursive) sets.
To prove each of these theorems we use the notion of forcing P whose conditions

are basically in�nite recursive binary trees T with usual notion of subtree as extension
(simply a subset). To make the de�nition of our required function V recursive, we
explicitly specify a stem � for each tree such that every � 2 T is compatible with �.
Thus our conditions p are pairs (T; �) with T an in�nite recursive binary tree and � 2 T
such that (8� 2 T )(� � � or � � �). We say that (T; �) �P (S; �) if T � S and � � �.
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Of course, V ((T; �)) = � . If p = (T; �) and � � � , we use p� to denote the condition
(T�; �).
The complexity of this notion of forcing depends on the representation or indexing

used for the in�nite recursive binary trees. While,at one end we could use the recursive
listing of Exercise

recindpi01
11.1.7, it would then be more di¢ cult to describe various operations

on trees that determine subtrees in the natural sense but do not obviously produce an
index of the type required. In this case we would also want to de�ne the subtree relation
T � S in terms of [T ] � [S] which would then be a �02 relation (Exercise

subtreepaths
11.1.16) and so

only recursive in 000.

subtreepaths Exercise 11.1.16 If e and i are indices for in�nite binary recursive trees T and S then
the relation [T ] � [S] is �02, and, in fact,it is �02 complete.

At the other end, we can simply use indices for recursive functions that de�ne in�nite
binary trees. While this set is only recursive in 000 (because it takes 000 to decide if an
index is one for a recursive tree), operations on trees become easy to implement on the
indices. On this set of indices, the standard subtree relation T � S is then �01 and so
recursive in 00. We adopt this representation of trees for our notion of forcing. In fact,
while the notion of forcing is then only 000-recursive, some of what we want to do can be
done recursively in 00 by analyzing the required density functions. As an example, we
have the following Lemma.

Lemma 11.1.17 There is a density function f for the class Vn = f(T; �)j j� j � ng of
dense sets in P which is recursive in 00.

Proof. Given p = (T; �) 2 P and n 2 N, Lemma
fin0�
11.1.6 tells us that we can �nd a

� 2 T (� � �) of length m � n such that T� is in�nite. Clearly p� = (T�; �) 2 P and
V (p�) � n.

lowb Theorem 11.1.18 (Low Basis Theorem, Jockusch and Soare) If T is a recursive
in�nite binary tree then it has a low path, i.e. there is a G 2 [T ] with G0 �T 00.
Equivalently, if C is a nonempty �01 class, then it has a low member. Moreover, we can
compute such a path uniformly recursively in 00 and the index for T or the class.

Proof. As usual we want to show that the sets of conditions deciding the jump (Dn =

fpj�V (p)n (n) # or (8q �P p)(�V (q)n (n) ")g) are dense and provide a density function f �T 00
that also tells us in which way f(p; n) is in Dn. By Lemma

meetdense
6.1.18 starting with condition

p0 = (T; ;) we can meet these sets as well as the Vn by a generic sequence recursive in 00
and so construct a G 2 [T ] with G0 �T 00 as required.
Given an p = (T; �) 2 P and an n, we cannot use our usual strategy of asking for a

� 2 T (� � �) such that ��n(n) # and then taking say p� as f(p; n) because T� may be
�nite. Instead we ask if T̂ = f� 2 T j��n(n) "g is in�nite. This question can be answered
by 00 by Lemma

fin0�
11.1.6. If so, we let f(p; n) = (T̂ ; �) and note that we have satis�ed
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the second clause of the de�nition of Dn as well as guaranteed that �Gn (n) " for every
G 2 [T̂ ] including, of course, the generic G we are constructing. If not, then clearly there
is a k � j� j such that ��n(n) # for every � 2 T of length k. T� must be in�nite for one
of these � as T is in�nite. Again by Lemma

fin0�
11.1.6, 00 can �nd such a � and we then

set f(p; n) = p�. In this case, it is clear that we have satis�ed the �rst clause of Dn and
�Gn (n) # for every G 2 [T�].
The assertion about members of the corresponding �01 classes as well as the uniformity

claim in the theorem are now immediate.
Note that we cannot make a similar improvement to Proposition

redegree
11.1.15. Any element

of DNR2, CPA or S(V0; V1) of r.e. degree has degree 00.??
We next give a di¤erent answer to how simple a path we can construct on an arbi-

trary in�nite recursive binary tree. Now the notion of simplicity is speci�ed in terms of
domination properties.

0�domb Theorem 11.1.19 (00-dominated Basis Theorem) If T is an in�nite recursive bi-
nary tree, then there is an G 2 [T ] such that every f �T G is dominated by some
recursive function.

Proof. We use the same notion of forcing with new dense sets. In place of the Dn

we have En = f(T; �)j(9x)(8� 2 T )(��n(x) " or (8x)(9k)(8� 2 T )j�j=k(�
�
n(x) #)g. To

see that the En are dense consider any condition p = (T; �). If there is an x such that
S = f� 2 T j��n(x) "g is in�nite then choose such an x and S. The desired extension of p
in En is then (S; �). Note that in this case, �Gn (x) " for any G 2 [S]. If there is no such
x, then, by Lemma

fin0�
11.1.6, p = (T; �) satis�es the second clause in En and is itself the

witness to density. Note that in this case �Gn is total for any generic G. Indeed, we can
now also de�ne a recursive function h which dominates �Ge for any G 2 [T ]: To compute
h(x) �nd a k such that (8� 2 T )j�j=k(�

�
n(x) #. This is a recursive procedure since by

our case assumption there is always such a k. Now set h(x) = maxf��n(x)j� 2 T and
j�j = kg+ 1. This function clearly dominates �Gn for any G 2 [T ].

Exercise 11.1.20 Show that we may �nd a G as in Theorem
0�domb
11.1.19 with G00 �T 000.

We next turn to �nding paths in trees which are simple in the sense that they do
not compute some given (nonrecursive) set C or, more generally, any of some countable
collection Ci of nonrecursive sets.

pi01coneav Theorem 11.1.21 (Cone Avoidance, Jockusch and Soare) If T is an in�nite re-
cursive binary tree and fCig is a sequence of nonrecursive sets, there is an A 2 [T ] such
that Ci �T A for all i.

Proof. We modify the proof of density of the En of Theorem
0�domb
11.1.19 to get En;m that

guarantee that �Gn 6= Cm. We let En;m = f(T; �)j(9x)(8� 2 T )(��n(x) " or (9x)(��n(x) #6=
Cm(x)) or (8x)(9k)(8�0; �1 2 T )j�0j=k=j�1j(�

�0
n (x) #= ��1n (x) #)g . Given any condition
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(T; �) we �rst extend it to q = (S; �) 2 En. If we satisfy the �rst clause of En we
satisfy the same clause in En;m. Otherwise, we satisfy the second clause of En. We
now ask if there are �0,�1 2 S with �i � � and an x such that the S�i are in�nite and
�
�0
n (x) #6= ��1n (x) #. If so, we choose i 2 f0; 1g such that ��in (x) 6= Cm(x) and take q�i as
our extension of q (and so of p) which gets into En;m by satisfying the second clause. If
not, we claim that q itself satis�es the third clause of En;m and that there is a recursive
function h such that �Gn = h for every G 2 [S]. As for q satisfying the third clause of
En;m, consider any x and note that it already satis�es the second clause of En. If there
were in�nitely many k such there are �0; �1 2 T of length k with ��0n (x) #6= ��1n (x) #
then we would have been in the previous case as there would then be in�nitely many
� 2 T with ��n(x) #6= Cm(x). Thus we may de�ne h(x) by �nding a k as in the third
clause of En;m and setting h(x) = ��n(x) for any � in S of length k. We then have that
�Gn = h for every G 2 [S]. As Cm is not recursive,�Gn 6= Cm for any G 2 [S] and so we
also satisfy the requirements of the theorem.

Exercise 11.1.22 Show that we may construct a G as required in Theorem
pi01coneav
11.1.21 such

that G �T 000 � (�iCi) and indeed uniformly.

Exercise 11.1.23 For one nonrecursive C instead of a countable set of Ci show that we
may construct a G as required in Theorem

pi01coneav
11.1.21 such that G �T 000 (but without the

uniformity). Hint: use the following exercise.

Exercise 11.1.24 Prove that for any in�nite recursive binary tree T there are G0; G1 2
[T ] such that any C �T G0; G1 is recursive. Moreover, we may �nd such Gi with G00i �T
000.

Exercise 11.1.25 Nonempty �01 classes such as DNR2 that have no recursive member
are called special �01 classes. Prove that any such class has 2

@0 many members.

Exercise 11.1.26 Strengthen some of previous theorems producing a path in T with
some property to producing 2@0 many if T is special.

11.2 Finitely branching trees

Also trees recursive in A (f). Relativizations.

Finitely branching trees, f -bounded, (recursively bounded) essentially the same as
binary (recursive) binary trees relativize results to f .
Given a recursive recursively bounded tree can get recursive binary tree which has

same paths up to degree by padding.
The sets of paths through in�nitely branching trees T � !<! correspond to closed

sets in Baire space. Even for recursive trees �nding paths is much more complicated in
this setting. Whether such trees even have paths is a �11 complete question. As for a
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basis theorem, one says that if there is a path then there is one recursive in the complete
�11 set O.??
Reference for low basis theorem: Jockusch, Soare �Degrees of Members of �01 Classes�

Paci�c J. Math 40(1972) 605-616
Pseudo jump operators: Jockusch, Shore � Pseudo jump operators I: the r.e. case�
Trans. Amer. Math. Soc. 275 (1983) 599-609; � Pseudo-jump operators II: Trans�nite
iterations, hierarchies, and minimal covers�JSL 49 (1984) 1205-1236
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Chapter 12

Pseudo-Jump Operators

De�nition 12.0.1 Pseudo-jump operators are de�ned for each index e: Je(A) = A �
WA
e . Such operators are called (1)-REA because the image is RE in A and above A. A 2-

REA operator iterates this once (given two indices): Je2(Je1(A)). The !-REA operators
are each given by a recursive function f such that Jf (A) = �n2!Jf�n(A). Jf�n(A) are
n-REA operators. Note that if f � n gives the index of usual jump operator (iterated n
times) then Jf (A) �T A(!).

Theorem 12.0.2 (Completeness Theorem) If J is an �-REA operator for � � !
and C � 0(�), then there is A such that J(A) �T C �T A _ 0(�).

Proof. For � = 1, J = Je(A) = A�WA
e . We will build a tree T1 � 00, one of whose paths

will be A. T1 � ID, will be de�ned by recursion according to the following intuition.

� if � is coded on nth level of tree then � 
 n 2 Je(A) or � 
 n =2 Je(A);

� labels on tree also code whether � forced membership or non-membership.

Therefore, we de�ne T1 : 2<! ! (2<! � 2<!), T1(�) = h�0; �1i such that

� � � =) T1(�)i � T1(�)i for i = 0; 1; and � j � =) T (�)0 j T (�)0:

T1(�) = h�; �i. If we have T1(�) = h�0; �1i, j�j = n then de�ne T1(� î) for i = 0; 1 by
asking if there is � � T (�)0 such that � 
 n 2 Je(A) a �1(A) question. If so, choose
�rst such � and let T1(� î) = h� î; �1 1̂). If there is no such extension, let T1(� î) =
h�0 î; �1 0̂i.
Fix any C � 00. Let A = [n�0(T1(C � n)) . By construction, Je(A) = [n�1(T1(C �

n)). We now verify that A is as required for the theorem. That is, we want to check that
Je(A) �T C �T A _ 00.

� The de�nition of T1 is recursive in 00, hence in C. Therefore, A �T C so A_00 �T C.
Likewise, Je(A) �T C.
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� We claim that C �T Je(A). Suppose we want to compute C(n). Let � = C � n
(inductively). Je(A) can compute T1(C � n) because Je(A)(m) gives the answer to
whether or not membership was forced at level m. Using these answers, the rest
of the construction is recursive. Given T1(C � n), the construction asks if there is
� � T1(C � n)0 such that � 
 n 2 Je(A). But, Je(A)(n) can answer this question
and so it knows which case the construction will be in. If the answer is yes, we can
recursively look for an extension � and then T1(C � (n)̂ i) = h� î; �1 îi so C(n) = i.
But, A can tell us which way we branched on tree after � and hence the value of i.
Since A �T Je(A), Je(A) can �nd i (which is C(n)). Thus, C �T Je(A).

� We will be done once we show that Je(A) �T A_ 00. This is very similar to above,
since we notice that 00 can answer the questions that Je(A) answered: e.g. is there
�nite extension which forces a �1 question.

For general �, we will build a sequence of trees T� � 0(�), � � � where T�(�) =
h�0; : : : ��i. Along the �rst coordinate, labels in the tree have to respect extension
and incomparability but along all the other coordinates we only worry about exten-
sion. Moreover, the trees are nested in the sense that if h�0; : : : ; ��i 2 T� and 
 < � then
h�0; : : : �
i 2 T
. We de�ne the length of a sequence as the length of its last element.
Think of nth coordinate as coding Jf�n(A). By induction on � < ! assume we have T�.
De�ne T�+1(�) = T�(�)̂ �. Then if we�ve de�ned T�+1(�) = T�(� )̂ � (j�j = j�j = m), we
want to de�ne T�+1(� î). Ask if there is �̂ � � such that (T�(�))� 
 m 2 Jf(�)(A). If so,
let T�+1(� î) = T�(�̂ î)̂ (�̂ 1). If not, let T�+1(� î) = T�(� î)̂ (�̂ 0).
Start this procedure at nodes � of length � in T� and before that, copy T� adding on

� as last coordinate. Then, can de�ne T! as limit of T� for � < ! and level n is �xed
from Tn onwards so limit exists.
Let C �T 0(�). De�ne A = [�0T�(C � n). Claim that Jf�m(A) = [n�mT�(C � n)

for each m < �, and that Jf (A) �T C � A _ 0(�). Note that if � < ! then f is a �nite
function and that we only build trees up to T�.
Proof: Showing that Jf�m(A) = [n�mT�(C � n) is straightforward by induction on

m. A � Jf(0)(A) knows if 0 2 Jf(0)(A) and so can �nd T1(0̂ i) (by looking for extension
on T0, the identity tree). Then A can determine which of 0 and 1 the path follows
because it is on the path and so gives us C(0). Note that C could also have �gure
out how construction went because it knows value of C(0). Moreover, 00 can also �gure
out construction because it knows if there is extension forcing the fact. What about
T2(1̂ i)? Construction asked for extension on T1 which decides whether 0 2 Jf(1)(A).
Jf(1)(A) can answer this. Also, 000 can answer this question because T1 �T 00 so this is
a 00(00) = 000 question. And, C knows the answer because if there is a second tree then
� � 2 and C � 000. If the answer is no then the branching in the second tree is the same
as the branching in the �rst tree. Since the second coordinate is the value of Je0, Je0
can trace along what the path does in T1 and thus �gure out which way the branching
goes. Then, it can calculate C(1). If the answer is yes, then branch is �rst place along
tree which makes it converge. But Je0 can do tracing through path by comparing second
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coordinate with true value until �nd extension which is long enough to converge. To
�gure out branching in second tree, Je0 must trace back branching of �rst tree. Thus,
C; 0� � A; Jf (A) can each simultaneously compute the sequence of trees.

Corollary 12.0.3 Every C �T 0(!) is minimal cover. That is, there is A < C such that
C is minimal with respect to A.

Proof. Relativizing the minimal degree argument from last time, for every A there is
minimal cover M of A such that M �wtt A0. The construction is uniform in A and the
bound on the use of A0 does not depend on A. Hence, there is an operator Ĵ(A) = �A

0
e

where the use of A0 is bounded by recursive function f . For any such operator Ĵ , there
is !-REA operator J such that Ĵ(A) �T J(A) for all A. Why? Because wtt reducibility
is !-r.e., Ĵ(A)(x) = lim

s!1
�Ae (x; s),�

A
e (x; 0) = 0, and the number of changes is bounded

by a recursive function:

jfs : �Ae (x; s) 6= �Ae (x; s+ 1)gj � f(x):

We de�ne the ith column of J(A) by

J(A)[i] = fhx; si : jft < s : �Ae (x; t) 6= �Ae (x; t+ 1)gj = f(x)� i & �Ae (x; s) 6= Ĵ(A)g

(Note that for i = f(x) the column is empty.) Therefore, J(A) �T (f � Ĵ(A)) so
J(A) �T Ĵ(A). Also,

x 2 Ĵ(A) () hf(x); x; 0i 2 J(A);
so Ĵ(A) �T J(A) and Ĵ(A) �T J(A). Moreover, J(A)[i+1] is RE in J(A)[i] so J(A) is an
!-REA operator because can take joins of columns. Hence J(A) is an !-REA operator
Turing equivalent to Ĵ(A).
We apply the completeness theorem to J and C to get A such that J(A) �T C.

Therefore, Ĵ(A) �T C and by assumption Ĵ(A) is a minimal cover of A.


