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Even and odd Latin Squares

Consider a latin square on symbols 1, 2, . . . , n. Every row
defines a permutation in Sn, every column as well, and every
symbol defines a permutationmatrix, hence a permutation.
The row (column, symbol) sign of the square is the product of
the signs of the row (column, symbol) permutations.
Here is a first exercise: the product of the three signs is

(−1)(n
2).

It is customary to call a latin square even if the product of the
row and the column signs is +1, and odd otherwise. In this
talk we prefer to use the symbol sign to distinguish even and
odd latin squares.
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The Alon-Tarsi Conjecture

In 1992 Alon and Tarsi conjectured the following:
If n is even then the number of even and odd latin squares is
different.

For odd n the two numbers are trivially the same for there is
an easy bijection, between the sets, for instance interchanging
two rows. A stronger version of the conjecture says that for
squares with constant main diagonal the number of even ones
is different from the number of odd ones.
The following is known about this problem: The (stronger)
conjecture is true for n = p − 1 (Glynn, 2010), n = p (Drisko,
1998), and n = p + 1 (Drisko, 1997).
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A ridiculous plan

Consider an n × n matrix X , whose entries are n2 variables xij .
Now det(X )n is a polynomial of degree n2, and the coefficient
of

∏
ij xij is precisely the difference of the number of even and

the number of odd latin squares. So it suffices to show that
this coefficient is nonzero.

This I tried five or so years ago in all possible ways, but I
didn’t succeed.
If only I had read the literature for once!
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Glynn’s Lemma, from 1998

Here is Glynn’s identity:
Let p be a prime, and X an m ×m matrix with entries from
GF (p). Then modulo p:

det p(X ) = det(X )p−1.

Here det p(X ) := (−1)m
∑ xe

e!
, where xe = xe11

11 xe12
12 · · · xemm

mm

and e! = e11!e12! · · · emm!, and the sum is over all matrices e
with nonnegative integer entries and with row and column
sums equal to p − 1.

The easy proof: Show that det(X ) det p(X ) = det(X )p.
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Immediate consequence: Alon-Tarsi for n = p − 1

For some reason it took David Glynn 12 years to realize that
his lemma proves Alon-Tarsi for n = p − 1.

His lemma gives that the coefficient of
∏

ij xij in det(X )p−1 is
1 modulo p, so nonzero.
Recall that this coefficient is the difference between the
number of even and odd latin squares.
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Next consequence: Gen. Alon-Tarsi for n = p

If n is odd, then we look at latin squares with constant
diagonal. In this case we look at the coefficient of

∏
i 6=j xij in

det(X )n−1 for our n × n matrix X = (xij) (say with zero
diagonal, so xii = 0).

Glynn’s lemma tells us again that this coefficient is 1 mod p.
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Carrying on: n = p + 1.

The case n = p + 1 is a little bit more involved.

Ingredients: The number of even derangements of an n-set
minus the number of odd ones is (−1)n−1(n − 1) (the
determinant of J − I ).
Slight disadvantage, for n = p + 1 this number is zero mod p,
so we restrict to derangements sending 1 to 2 say and get
(−1)n−1.
Now take again our n × n matrix X , with zero diagonal, and
also x12 = 0 and look at the coefficient of a square free
monomial

∏
xij in det(X )p−1.
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n = p + 1, continued

Glynn’s lemma gives that this is one, where the matrix e has
row and column sums p − 1 and zero diagonal, and hence
additional zeros on a derangement matrix for a derangement
sending 1 tot 2. So for every derangement the contribution to
the number of even minus the number of odd squares is simply
the sign of the derangement.
Since the number of even derangements minus the number of
odd derangements is (−1)p = −1, the same is true for latin
squares (mod p).
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Thank you David Glynn!
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