Asymptotic Existence of Combinatorial Designs

Alan C.H. Ling, Department of Computer Science University of Vermont

Overview of the research

- Combinatorial design theory including pairwise balanced designs, group divisible designs, triple systems.
- Coding theory, sequence designs and connection to design theory.
- Applications of design theory to computer science, engineering and computational biology.

Graph Designs

- G be a finite undirected simple graph.
- A G-block (or simply block) on a set X is an embedding $G \hookrightarrow X$.
- A G-decomposition of a multigraph H is a collection of G-blocks on $X=V(H)$ whose edge sets partition $E(H)$.
- A G-decomposition of λK_{v} (the multigraph with v vertices and λ edges between every pair of vertices) is also known as a G-design of order v and index λ, or $\operatorname{GD}(v, G, \lambda)$.
- When G is the complete graph K_{k}, this is denoted a $\operatorname{BIBD}(v, k, \lambda)$.

Resolvable G-designs

- A set of G-blocks on X whose vertex sets partition X is called a resolution class.
- A G-decomposition is said to be resolvable if its collection of blocks can be partitioned into resolution classes.
- A resolvable G-decomposition of λK_{v} is called a resolvable G-design, or $\operatorname{RGD}(v, G, \lambda)$. When G is the complete graph K_{k}, this is denoted $\operatorname{RBD}(v, k, \lambda)$.

A specific example

- G is a graph on 3 vertices $\{a, b, c\}$ with edges $\{\{a, b\},\{a, c\},\{b, c\}\}$.
- $X=\{0,1,2, \ldots, 8\}$, and the decomposition is
- $\{0,1,2\},\{3,4,5\},\{6,7,8\}$,
- $\{0,3,6\},\{1,4,7\},\{2,5,8\}$,
- $\{0,4,8\},\{1,5,6\},\{2,3,7\}$, and
- $\{0,5,7\},\{1,3,8\},\{2,4,6\}$.

Examples

- $\operatorname{RBD}(v, 2,1)$ are one-factorizations of the complete graph K_{v}.
- $\operatorname{BIBD}(v, 3,1)$ are known as Steiner triple systems.
- $\operatorname{RBD}(v, 3,1)$ are better known as Kirkman triple systems.
- these objects exists "whenever possible".
- the set of integers v for which there exists a $\operatorname{RGD}(v, G, \lambda)$ is presently unknown for virtually all other graphs G and $\lambda \in \mathbb{Z}^{+}$.

Asymptotic Existence Results

- (Wilson) Given fixed integers $k \geq 2$ and $\lambda \geq 1$, there exists v_{0} such that $\operatorname{BIBD}(v, k, \lambda)$ exist for all $v \geq v_{0}$ that satisfy the necessary conditons $\lambda(v-1) \equiv 0 \quad(\bmod k-1)$ and $\lambda v(v-1) \equiv 0 \quad(\bmod k(k-1))$.
- (Ray-Chaudhuri and Wilson) Given a fixed integer $k \geq 2$, there exists v_{0} such that $\mathrm{RD}(v, k, 1)$-designs exist for all integers $v \geq v_{0}$ that satisfy the necessary conditions $v-1 \equiv 0$ $(\bmod k-1)$ and $v \equiv 0 \quad(\bmod k)$.

Asymptotic Existence Results

- (Lu) Given fixed integers $k \geq 2$ and $\lambda \geq 1$, there exists v_{0} such that $\operatorname{RD}(v, k, \lambda)$ exist for all integers $v \geq v_{0}$ that satisfy the necessary conditions $\lambda(v-1) \equiv 0 \quad(\bmod k-1)$ and $v \equiv 0 \quad(\bmod k)$.

Necessary Conditions for Graph designs

- G has n vertices, e edges, and degree sequence $d_{1}, d_{2}, \ldots, d_{n}$, so that $\sum_{i} d_{i}=2 e$.
- $D=\operatorname{gcd}\left\{d_{1}, \ldots, d_{n}\right\}$. By counting in two ways the number of edges of λK_{v}, and the degree of each vertex in λK_{v}

$$
\begin{align*}
\lambda v(v-1) & \equiv 0 \quad(\bmod 2 e) \tag{1}\\
\text { and } \lambda(v-1) & \equiv 0 \quad(\bmod D) \tag{2}
\end{align*}
$$

Asymptotic Existence

- Wilson proved that the necessary condition is asymptoticly sufficient.
- Lamken and Wilson extended this further into "edge-colored" block designs.

More Necessary Conditions for RGD

- For a $\operatorname{GD}(v, G, \lambda)$ to have a resolution class
- $v \equiv 0 \quad(\bmod n)$.
- every point of X appears in the same number $r=\lambda n(v-1) / 2 e$ of blocks of the design.
- there is a (nonnegative) integer combination of degrees, say $\sum t_{i} d_{i}=\lambda(v-1)$ such that $\sum t_{i}=r$, the common number of blocks through any point.

Result for asymptotic RGDs.

Theorem 1 (Dukes and Ling) Let $\lambda \in \mathbb{Z}, \lambda \geq 0$. Suppose G is a simple graph with n vertices, e edges, and degrees d_{i}. Then there exists v_{0} such that $\operatorname{RGD}(v, G, \lambda)$ exist for all $v \geq v_{0}$ satisfying the necessary condition.

Group Divisible Designs

- Let v, k, λ be positive integers. A group divisible design (GDD) of order v is a triple $(X, \mathcal{G}, \mathcal{B})$, where
- X is a set of v elements,
- $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is a set of subsets of X which partition X (called groups),
- \mathcal{B} is a family of subsets of X of size k,
- every pair of elements from X is in exactly λ blocks if they are form different groups, and zero blocks if they are in the same group.
- if all groups are of the same size m, such GDD is said to be of type m^{n}, and is denoted by (k, λ)-GDD of type m^{n}.

Asymptotic Results

- (Chang) Given fixed $k \geq 2, \lambda \geq 1$, and $m \geq 1$, there exists n_{0} such that a (k, λ)-GDD of type m^{n} exists whenever $n \geq n_{0}$ and $\lambda m(n-1) \equiv 0 \quad(\bmod k-1)$ and $\lambda m^{2} n(n-1) \equiv 0$ $(\bmod k(k-1))$.
- (Mohacsy) Let k and n be fixed integers satisfying $2 \leq k \leq n$. Then there exists m_{0} such that ($k, 1$)-GDD of type m^{n} exists for all integers $m \geq m_{0}$ if the conditions $m(n-1) \equiv 0$ $(\bmod k-1)$ and $m^{2} n(n-1) \equiv 0 \quad(\bmod k(k-1))$ are satisfied.

A consequence

- Give fixed $2 \leq k \leq n$ and $m \geq 1$, there exists a ($k, 1$)-GDD of type m^{n} whenever $m(n-1) \equiv(\bmod k-1)$ and $m^{2} n(n-1) \equiv 0 \quad(\bmod k(k-1))$ except possibly for a finite number of pairs (m, n).
- Proof is by PBD closure of the set $\{n \mid$ there exists a $(k, 1)$-GDD of type $\left.m^{n}\right\}$.

Liu's result on frames

- Liu proved an asymptotic result on k-frames (a special type of k-GDD of type m^{n} with an additional property.)
- (Conjecture) Given integers $k \geq 2$ and $m \geq 1$, there exists n_{0} such that a ($k, 1$)-RGDD of type m^{n} exists for all integers $n \geq n_{0}$ that satisfy the necessary conditions $m(n-1) \equiv 0$ $(\bmod k-1)$ and $m n \equiv 0 \quad(\bmod k)$.

Asymptotic result for RGDDs

- (Chan, Dukes, Lamken and Ling) Given fixed integers $m, \lambda \geq 1$ and $k \geq 2$, there exists an integer n_{0} such that for $n \geq n_{0}$, there exists a resolvable (k, λ)-RGDD of type m^{n} if and only if $\lambda m(n-1) \equiv 0 \quad(\bmod k-1)$ and $m n \equiv 0 \quad(\bmod k)$.

Ideas

- Main challenge is that for many m, there is no known example of k-RGDD of type m^{n} for any n (Example, $m=2$.)
- Our idea was to construct some examples, and then apply recursion.

Examples

- if there exists a $\operatorname{RBD}(v, k, 1), k$-RGDD of type $(m n)^{k}, k$-GDD of type m^{n} with less than $\frac{v-1}{k-1}$ color classes, then there exists a k-RGDD of type $m^{v n}$.
- Inflate the $\operatorname{RBD}(v, k, 1)$ by the $\operatorname{RTD}(k, m n)$, leaving $m n$ copies of the $\operatorname{RBD}(v, k, 1)$ unfilled. Fill in the groups by k-GDD of type m^{n} and combine the color classes on the rows, with the resolution classes on the RBDs.
- Use frames to get examples for many congruence classes, and then apply recursive constructions for the asymptotic results.

Extention to G-RGDD

- Two different ways to obtain examples for G-RGDD;
- Modify the above construction to use RGDs, and G-GDDs as input instead of RBDs and k-GDDs.
- An alternative way is to start with a $\operatorname{RGD}(v, G)$ design and a v-RGDD of type m^{n}. Fill in each block of size v with a $\operatorname{RGD}(v, G)$, one can obtain a G-RGDD of type m^{n}.
- Then some recursive constructions and tedious computation can be used to prove the final result.

Open Problems

- Is there a RGDD version of the result on the asymptotic existence of k-RGDD of type m^{n} for large n ?
- Existence of k-RGDD of type m^{n} with finite number of possible exceptions?
- Existence of k-GDD of type $m^{n} u^{1}$ with finite number of possible exceptions? (The problem is still open even when $k=4!$).

Jamison's Problem

- Suppose G is a path of length n.
- The existence problem for decomposing K_{n} into G is solved.
- Is there a decomposition in which no two copies of G has more than two vertices in common?

Super Simple Designs

- a $\operatorname{BIBD}(v, k, \lambda)$ is super-simple if any two blocks has at most two points in common.
- It has been used to construct specific small perfect hash families and related objects.
- It is not known if the existence of super-simple $\operatorname{BIBD}(v, k, \lambda)$ is asymptoticly sufficient.
- The set is PBD-closed.

Construct Examples

- Wilson's Theory on the choice function over finite field to construct block/graph designs.
- It does not guarantee that any two blocks intersect in at most two points.
- Need to distribute the cosets to each block in such a way that any two blocks share at most one coset.
- Apply recursive constructions to get to other congurence classes.

q-qary Constant-Weight Codes

- X and R are sets, X finite R^{X} denotes the set of vectors of length $|X|$, where each component of a vector $u \in R^{X}$ has value in R and is indexed by an element of X, that is, $\mathbf{u}=\left(\mathbf{u}_{\mathbf{x}}\right)_{\mathbf{x} \in \mathbf{X}}$.
- A q-ary code of length n is a set $\mathcal{C} \subset Z_{q}^{X}$, for some X of size n. The elements of \mathcal{C} are called codewords.
- The support of a vector $u \in Z_{q}^{X}$ is the set $\left\{x \in X: u_{x} \neq 0\right\}$.
- The weight of $u \in Z_{q}^{X}$ is defined as $\|u\|=|\operatorname{supp}(\mathrm{u})|$.
- The distance induced by this norm is called the Hamming distance so that $d_{H}(u, v)=\|u-v\|$, for $u, v \in Z_{q}^{X}$.
- A code C is said to have distance d if the distance of any distinct two codes is at least d.
- A code is said to be have constant weight w if every codeword in C has weight w.
- Given q and $|X|$, what is the largest size of C ?

$$
A_{q}(n, 2 w-3, w)
$$

- Johnson Bound and an earlier result by (Chee et. al.) implies any upper bound of the order of $n^{2} q^{2}$.
- If the support of the codes is super-simple, then it implies that the distance between any two codewords is at least $2 w-3$.
- In particular, if we can construct w-GDD of type $(q-1)^{n}$ in which the "support" of the GDD is super simple, the codewords derived from the GDD would construct an optimal code.
- this can be done via a generalization of the super-simple property of the edge-colored block designs.

Balanced sampling designs avoding contiguous units

- Consider a finite ordered population of v identifiable units, labeled as $0,1,2, \ldots, v-1$.
- Let A_{i} denote a quantitative characteristic A for unit i.
- A_{i} are unknown, but they can observed for any unit.
- Observation of a sample of k units at a time can be used to obtain an estimate the popular total.
- In some applications, contiguous units of the v units are less likely to appear together than units that are further apart.
- Hedayat, Rao and Stufken justify this idea in terms of the variance of the Horvitz-Thompson estimator.

Balanced sample designs avoiding contiguous units

- A $\operatorname{BSEC}(v, k, \lambda)$, is a block design with the properties that
- each block is a set of k different units,
- any two contiguous units do not appear simultaneously in any of the blocks,
- any two noncontiguous units appear simultaneously in the same number of λ blocks.

Result on BSECs

- (Hedayat, Rao and Stufken) For $k \geq 3$, if a $\operatorname{BSEC}(v, k, \lambda)$ exists, then $v \geq 3 k$; for $k=3,4$ a $\operatorname{BSEC}(v, k, \lambda)$ exists for some λ if $v \geq 3 k$.
- (Colbourn et. al.) provided a solution for $k=3,4$.
- (Dukes et. al). provided a solution for all k and for some λ.
- Fixing k and λ, is it true that such designs exist for large enough v ?

Idea

- This problem is equivalent to decomposing a complete graph, K_{v} minus a Hamiltonian cycle into K_{k}.
- Examples are possible to obtain by recursive construction due to the existence of k-GDD of type 3^{n} as the leave is a 2 -regular graph.
- Using product constructions to make the 3-cycles to "stitch" together to become a Hamiltonian cycle.
- It involves an extension of a type of design called Holey GDDs.

Hamilton-Waterloo problem: the case of Hamiltonian cycle and 3

- Decompose K_{v} into r Hamiltonian cycle and resolvable classes of K_{3}.
- The hardest case turns out be be 1 Hamiltonian cycle!
- Dinitz et. al. solves this for all but a few possible exceptions.
- Is it possible to otain such a decomposition for large v for a fix k ?

Polygon designs

- In BSEC, we cover λ copies of all pairs of K_{v} except when they are adjacent.
- What if we only cover pairs that are at least distance d apart?
- It becomes polygon designs!
- The problem is open even for $k=3$!
- Dukes et. al. provides a solution for large λ.
- Can an asymptotic existence result be established?
- This is not equivalent to Hamilton-Waterloo problem!

