Asymptotic Existence of Combinatorial Designs

Alan C.H. Ling, Department of Computer Science University of Vermont

Overview of the research

- Combinatorial design theory including pairwise balanced designs, group divisible designs, triple systems.
- Coding theory, sequence designs and connection to design theory.
- Applications of design theory to computer science, engineering and computational biology.

Graph Designs

- G be a finite undirected simple graph.
- A *G*-block (or simply block) on a set X is an embedding $G \hookrightarrow X$.
- A *G*-decomposition of a multigraph H is a collection of *G*-blocks on X = V(H) whose edge sets partition E(H).
- A *G*-decomposition of λK_v (the multigraph with v vertices and λ edges between every pair of vertices) is also known as a *G*-design of order v and index λ , or $GD(v, G, \lambda)$.
- When G is the complete graph K_k , this is denoted a BIBD (v, k, λ) .

Resolvable G-designs

- A set of *G*-blocks on *X* whose vertex sets partition *X* is called a *resolution class*.
- A *G*-decomposition is said to be *resolvable* if its collection of blocks can be partitioned into resolution classes.
- A resolvable G-decomposition of λK_v is called a resolvable G-design, or RGD (v, G, λ) . When G is the complete graph K_k , this is denoted RBD (v, k, λ) .

A specific example

- G is a graph on 3 vertices $\{a, b, c\}$ with edges $\{\{a, b\}, \{a, c\}, \{b, c\}\}.$
- $X = \{0, 1, 2, \dots, 8\}$, and the decomposition is
- $\{0, 1, 2\}, \{3, 4, 5\}, \{6, 7, 8\},\$
- $\{0,3,6\},\{1,4,7\},\{2,5,8\},\$
- $\{0,4,8\},\{1,5,6\},\{2,3,7\},$ and
- $\{0, 5, 7\}, \{1, 3, 8\}, \{2, 4, 6\}.$

Examples

- $\mathsf{RBD}(v,2,1)$ are one-factorizations of the complete graph K_v .
- BIBD(v, 3, 1) are known as Steiner triple systems.
- RBD(v, 3, 1) are better known as *Kirkman triple systems*.
- these objects exists "whenever possible".
- the set of integers v for which there exists a $\text{RGD}(v, G, \lambda)$ is presently unknown for virtually all other graphs G and $\lambda \in \mathbb{Z}^+$.

Asymptotic Existence Results

- (Wilson) Given fixed integers $k \ge 2$ and $\lambda \ge 1$, there exists v_0 such that $BIBD(v, k, \lambda)$ exist for all $v \ge v_0$ that satisfy the necessary conditons $\lambda(v-1) \equiv 0 \pmod{k-1}$ and $\lambda v(v-1) \equiv 0 \pmod{k(k-1)}$.
- (Ray-Chaudhuri and Wilson) Given a fixed integer $k \ge 2$, there exists v_0 such that RD(v, k, 1)-designs exist for all integers $v \ge v_0$ that satisfy the necessary conditions $v - 1 \equiv 0$ (mod k - 1) and $v \equiv 0 \pmod{k}$.

Asymptotic Existence Results

• (Lu) Given fixed integers $k \ge 2$ and $\lambda \ge 1$, there exists v_0 such that $RD(v, k, \lambda)$ exist for all integers $v \ge v_0$ that satisfy the necessary conditions $\lambda(v-1) \equiv 0 \pmod{k-1}$ and $v \equiv 0 \pmod{k}$.

Necessary Conditions for Graph designs

- G has n vertices, e edges, and degree sequence d_1, d_2, \ldots, d_n , so that $\sum_i d_i = 2e$.
- $D = \gcd\{d_1, \ldots, d_n\}$. By counting in two ways the number of edges of λK_v , and the degree of each vertex in λK_v

$$\lambda v(v-1) \equiv 0 \pmod{2e} \tag{1}$$

and
$$\lambda(v-1) \equiv 0 \pmod{D}$$
 (2)

Asymptotic Existence

- Wilson proved that the necessary condition is asymptoticly sufficient.
- Lamken and Wilson extended this further into "edge-colored" block designs.

More Necessary Conditions for RGD

- For a $\mathrm{GD}(v,G,\lambda)$ to have a resolution class
- $v \equiv 0 \pmod{n}$.
- every point of X appears in the same number $r=\lambda n(v-1)/2e \text{ of blocks of the design.}$
- there is a (nonnegative) integer combination of degrees, say $\sum t_i d_i = \lambda(v-1)$ such that $\sum t_i = r$, the common number of blocks through any point.

Result for asymptotic RGDs.

Theorem 1 (Dukes and Ling) Let $\lambda \in \mathbb{Z}$, $\lambda \ge 0$. Suppose G is a simple graph with n vertices, e edges, and degrees d_i . Then there exists v_0 such that $RGD(v, G, \lambda)$ exist for all $v \ge v_0$ satisfying the necessary condition.

Group Divisible Designs

- Let v, k, λ be positive integers. A group divisible design (GDD) of order v is a triple $(X, \mathcal{G}, \mathcal{B})$, where
- X is a set of v elements,
- $\mathcal{G} = \{G_1, G_2, \dots, G_n\}$ is a set of subsets of X which partition X (called groups),
- \mathcal{B} is a family of subsets of X of size k,
- every pair of elements from X is in exactly λ blocks if they are form different groups, and zero blocks if they are in the same group.
- if all groups are of the same size m, such GDD is said to be of type m^n , and is denoted by (k, λ) -GDD of type m^n .

Asymptotic Results

- (Chang) Given fixed $k \ge 2, \lambda \ge 1$, and $m \ge 1$, there exists n_0 such that a (k, λ) -GDD of type m^n exists whenever $n \ge n_0$ and $\lambda m(n-1) \equiv 0 \pmod{k-1}$ and $\lambda m^2 n(n-1) \equiv 0$ $\pmod{k(k-1)}$.
- (Mohacsy) Let k and n be fixed integers satisfying $2 \le k \le n$. Then there exists m_0 such that (k, 1)-GDD of type m^n exists for all integers $m \ge m_0$ if the conditions $m(n-1) \equiv 0$ $(\mod k - 1)$ and $m^2n(n-1) \equiv 0 \pmod{k(k-1)}$ are satisfied.

A consequence

- Give fixed $2 \le k \le n$ and $m \ge 1$, there exists a (k, 1)-GDD of type m^n whenever $m(n-1) \equiv \pmod{k-1}$ and $m^2n(n-1) \equiv 0 \pmod{k(k-1)}$ except possibly for a finite number of pairs (m, n).
- Proof is by PBD closure of the set $\{n|$ there exists a (k, 1)-GDD of type $m^n\}$.

Liu's result on frames

- Liu proved an asymptotic result on k-frames (a special type of k-GDD of type m^n with an additional property.)
- (Conjecture) Given integers $k \ge 2$ and $m \ge 1$, there exists n_0 such that a (k, 1)-RGDD of type m^n exists for all integers $n \ge n_0$ that satisfy the necessary conditions $m(n-1) \equiv 0$ $(\mod k - 1)$ and $mn \equiv 0 \pmod{k}$.

Asymptotic result for RGDDs

• (Chan, Dukes, Lamken and Ling) Given fixed integers $m, \lambda \ge 1$ and $k \ge 2$, there exists an integer n_0 such that for $n \ge n_0$, there exists a resolvable (k, λ) -RGDD of type m^n if and only if $\lambda m(n-1) \equiv 0 \pmod{k-1}$ and $mn \equiv 0 \pmod{k}$.

Ideas

- Main challenge is that for many m, there is no known example of k-RGDD of type m^n for any n (Example, m = 2.)
- Our idea was to construct some examples, and then apply recursion.

Examples

- if there exists a RBD(v, k, 1), k-RGDD of type $(mn)^k$, k-GDD of type m^n with less than $\frac{v-1}{k-1}$ color classes, then there exists a k-RGDD of type m^{vn} .
- Inflate the RBD(v, k, 1) by the RTD(k, mn), leaving mn copies of the RBD(v, k, 1) unfilled. Fill in the groups by k-GDD of type m^n and combine the color classes on the rows, with the resolution classes on the RBDs.
- Use frames to get examples for many congruence classes, and then apply recursive constructions for the asymptotic results.

Extention to G-RGDD

- Two different ways to obtain examples for G-RGDD;
- Modify the above construction to use RGDs, and G-GDDs as input instead of RBDs and k-GDDs.
- An alternative way is to start with a RGD(v, G) design and a v-RGDD of type mⁿ. Fill in each block of size v with a RGD(v, G), one can obtain a G-RGDD of type mⁿ.
- Then some recursive constructions and tedious computation can be used to prove the final result.

Open Problems

- Is there a RGDD version of the result on the asymptotic existence of k-RGDD of type m^n for large n?
- Existence of k-RGDD of type m^n with finite number of possible exceptions?
- Existence of k-GDD of type $m^n u^1$ with finite number of possible exceptions? (The problem is still open even when k = 4!).

Jamison's Problem

- Suppose G is a path of length n.
- The existence problem for decomposing K_n into G is solved.
- Is there a decomposition in which no two copies of G has more than two vertices in common?

Super Simple Designs

- a $\mathsf{BIBD}(v,k,\lambda)$ is super-simple if any two blocks has at most two points in common.
- It has been used to construct specific small perfect hash families and related objects.
- It is not known if the existence of super-simple $\mathsf{BIBD}(v,k,\lambda)$ is asymptoticly sufficient.
- The set is PBD-closed.

Construct Examples

- Wilson's Theory on the choice function over finite field to construct block/graph designs.
- It does not guarantee that any two blocks intersect in at most two points.
- Need to distribute the cosets to each block in such a way that any two blocks share at most one coset.
- Apply recursive constructions to get to other congurance classes.

q-qary Constant-Weight Codes

- X and R are sets, X finite R^X denotes the set of vectors of length |X|, where each component of a vector $u \in R^X$ has value in R and is indexed by an element of X, that is, $\mathbf{u} = (\mathbf{u}_x)_{x \in \mathbf{X}}$.
- A *q*-ary code of length *n* is a set $\mathcal{C} \subset Z_q^X$, for some *X* of size *n*. The elements of \mathcal{C} are called codewords.
- The support of a vector $u \in Z_q^X$ is the set $\{x \in X : u_x \neq 0\}$.
- The weight of $u \in Z_q^X$ is defined as ||u|| = |supp(u)|.
- The distance induced by this norm is called the Hamming distance so that $d_H(u, v) = ||u v||$, for $u, v \in Z_q^X$.
- A code *C* is said to have distance *d* if the distance of any distinct two codes is at least *d*.

- A code is said to be have constant weight w if every codeword in C has weight w.
- Given q and |X|, what is the largest size of C?

 $A_q(n, 2w - 3, w)$

- Johnson Bound and an earlier result by (Chee et. al.) implies any upper bound of the order of n^2q^2 .
- If the support of the codes is super-simple, then it implies that the distance between any two codewords is at least 2w 3.
- In particular, if we can construct w-GDD of type $(q-1)^n$ in which the "support" of the GDD is super simple, the codewords derived from the GDD would construct an optimal code.
- this can be done via a generalization of the super-simple property of the edge-colored block designs.

Balanced sampling designs avoding contiguous units

- Consider a finite ordered population of v identifiable units, labeled as $0, 1, 2, \ldots, v 1$.
- Let A_i denote a quantitative characteristic A for unit i.
- A_i are unknown, but they can observed for any unit.
- Observation of a sample of k units at a time can be used to obtain an estimate the popular total.
- In some applications, contiguous units of the v units are less likely to appear together than units that are further apart.
- Hedayat, Rao and Stufken justify this idea in terms of the variance of the Horvitz-Thompson estimator.

Balanced sample designs avoiding contiguous units

- A $\mathsf{BSEC}(v,k,\lambda)$, is a block design with the properties that
- each block is a set of k different units,
- any two contiguous units do not appear simultaneously in any of the blocks,
- any two noncontiguous units appear simultaneously in the same number of λ blocks.

Result on BSECs

- (Hedayat, Rao and Stufken) For $k \ge 3$, if a BSEC (v, k, λ) exists, then $v \ge 3k$; for k = 3, 4 a BSEC (v, k, λ) exists for some λ if $v \ge 3k$.
- (Colbourn et. al.) provided a solution for k = 3, 4.
- (Dukes et. al). provided a solution for all k and for some λ .
- Fixing k and λ , is it true that such designs exist for large enough v?

Idea

- This problem is equivalent to decomposing a complete graph, K_v minus a Hamiltonian cycle into K_k .
- Examples are possible to obtain by recursive construction due to the existence of k-GDD of type 3ⁿ as the leave is a 2-regular graph.
- Using product constructions to make the 3-cycles to "stitch" together to become a Hamiltonian cycle.
- It involves an extension of a type of design called Holey GDDs.

Hamilton-Waterloo problem: the case of Hamiltonian cycle and 3

- Decompose K_v into r Hamiltonian cycle and resolvable classes of K_3 .
- The hardest case turns out be be 1 Hamiltonian cycle!
- Dinitz et. al. solves this for all but a few possible exceptions.
- Is it possible to otain such a decomposition for large v for a fix k?

Polygon designs

- In BSEC, we cover λ copies of all pairs of K_v except when they are adjacent.
- What if we only cover pairs that are at least distance d apart?
- It becomes polygon designs!
- The problem is open even for k = 3!
- Dukes et. al. provides a solution for large λ .
- Can an asymptotic existence result be established?
- This is not equivalent to Hamilton-Waterloo problem!