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Overview of the research

e Combinatorial design theory including pairwise balanced

designs, group divisible designs, triple systems.

e Coding theory, sequence designs and connection to design

theory.

e Applications of design theory to computer science, engineering

and computational biology.




Graph Designs

e (5 be afinite undirected simple graph.

e A (5-block (or simply block) on a set X is an embedding
G — X.

e A (5-decomposition of a multigraph H is a collection of

G-blocks on X = V(H) whose edge sets partition F/(H ).

e A (G-decomposition of AKX, (the multigraph with v vertices and
A edges between every pair of vertices) is also known as a
(G-design of order v and index A, or GD(v, G, \).

e When ( is the complete graph K, this is denoted a
BIBD(v, k, A).




Resolvable (G-designs

e A set of G-blocks on X whose vertex sets partition X is called

a resolution class.

e A (G-decomposition is said to be resolvable if its collection of

blocks can be partitioned into resolution classes.

e A resolvable (G-decomposition of A K, is called a resolvable
(G-design, or RGD(v, G, A). When G is the complete graph
K, this is denoted RBD(v, k, A).




A specific example

e (7 is a graph on 3 vertices {a, b, c} with edges

114, b}, {a, ¢}, 10, ¢}

e X ={0,1,2,...,8}, and the decomposition is

o {0,1,2},{3,4,5},{6,7,8),
e {0,3,6},{1,4,7},{2,5,8},
e {0,4,8},{1,5,6},{2,3,7}, and
e {0,5,7},{1,3,8},{2,4,6}.




Examples

° RBD(U, 2, 1) are one-factorizations of the complete graph K& ,.
e BIBD(v, 3, 1) are known as Steiner triple systems.

e RBD(v, 3, 1) are better known as Kirkman triple systems.

® these objects exists “whenever possible”.

the set of integers v for which there exists a RGD(v, G, \) is

presently unknown for virtually all other graphs G and \ € Z™.




Asymptotic Existence Results

e (Wilson) Given fixed integers £ > 2 and A > 1, there exists v
such that BIBD(v, k, \) exist for all v > vy that satisfy the

necessary conditons A(v — 1) =0 (mod k — 1) and
M(v—1)=0 (mod k(k —1)).

e (Ray-Chaudhuri and Wilson) Given a fixed integer £ > 2, there
exists vg such that RD(v, k, 1)-designs exist for all integers

v > vg that satisfy the necessary conditionsv — 1 = 0
(mod k —1)andv =0 (mod k).




Asymptotic Existence Results

e (Lu) Given fixed integers £ > 2 and A > 1, there exists vy
such that RD(v, k, \) exist for all integers v > v that satisfy

the necessary conditions A(v — 1) =0 (mod k£ — 1) and
v=0 (mod k).




Necessary Conditions for Graph designs

e (5 has n vertices, e edges, and degree sequence

di,ds,...,d, sothat) . d; = 2e.

o D =gcd{dy,...,d,}. By counting in two ways the number of
edges of AK,, and the degree of each vertex in AK,

(v —1)
and \(v — 1)

(mod 2e)
(mod D)

0
0




Asymptotic Existence

e Wilson proved that the necessary condition is asymptoticly

sufficient.

e Lamken and Wilson extended this further into “edge-colored”

block designs.




More Necessary Conditions for RGD
e Fora GD(v, G, \) to have a resolution class
e v=0 (modn).

e every point of X appears in the same number

r = An(v — 1)/2e of blocks of the design.

e there is a (nonnegative) integer combination of degrees, say
> tid; = AM(v — 1) such that Y _t; = r, the common number
of blocks through any point.




Result for asymptotic RGDs.

Theorem 1 (Dukes and Ling) Let A € Z, A > 0. Suppose G is a

simple graph with n vertices, e edges, and degrees d;. Then there
exists vy such that RGD(v, G, A) exist for all v > v satisfying the

necessary condition.




Group Divisible Designs
Let v, k, A be positive integers. A group divisible design (GDD)
of order v is a triple (X, G, B), where
X is a set of v elements,

G={G1,Go,...,G,} is aset of subsets of X which partition
X (called groups),

B is a family of subsets of X of size k,

every pair of elements from X is in exactly A blocks if they are

form different groups, and zero blocks if they are in the same
group.

if all groups are of the same size m, such GDD is said to be of

type m", and is denoted by (k, \)-GDD of type m".




Asymptotic Results

e (Chang) Given fixed K > 2, A\ > 1, and m > 1, there exists n
such that a (k, \)-GDD of type m™ exists whenever n. > ny
and \m(n —1)=0 (mod k — 1) and Am?n(n —1) =0
(mod k(k —1)).

e (Mohacsy) Let £ and n be fixed integers satisfying 2 < £ < n.

Then there exists 1mq such that (k, 1)-GDD of type m" exists

for all integers m > my if the conditions m(n — 1) =0
(mod k —1)and m*n(n —1) =0 (mod k(k —1)) are

satisfied.




A consequence

e Give fixed 2 < k < nand m > 1, there exists a (k, 1)-GDD

of type m™ whenever m(n — 1) = (mod k — 1) and

m?n(n —1) =0 (mod k(k — 1)) except possibly for a

finite number of pairs (m, n).
e Proof is by PBD closure of the set {n| there exists a
(k,1)-GDD of type m™}.




Liu’s result on frames

e Liu proved an asymptotic result on k-frames (a special type of

k-GDD of type m" with an additional property.)

e (Conjecture) Given integers £ > 2 and m > 1, there exists ng

such that a (k, 1)-RGDD of type m" exists for all integers

n > ny that satisfy the necessary conditions m(n — 1) = 0
(mod k —1)and mn =0 (mod k).




Asymptotic result for RGDDs

e (Chan, Dukes, Lamken and Ling) Given fixed integers m, A > 1

and k > 2, there exists an integer nq such that for n > ny,

there exists a resolvable (k, \)-RGDD of type m™ if and only if
Am(n—1)=0 (mod k—1)andmn =0 (mod k).




ldeas

e Main challenge is that for many m, there is no known example

of £-RGDD of type m" for any n (Example, m = 2.)

e Our idea was to construct some examples, and then apply

recursion.




Examples

e if there exists a RBD(v, k, 1),k-RGDD of type (mn)*, k-GDD

v—1

of type m™ with less than —

k-RGDD of type m"".

color classes, then there exists a

e Inflate the RBD(v, k, 1) by the RTD(k, mn), leaving mn

copies of the RBD(v, k, 1) unfilled. Fill in the groups by k-GDD
of type m"™ and combine the color classes on the rows, with the

resolution classes on the RBDs.

e Use frames to get examples for many congruence classes, and

then apply recursive constructions for the asymptotic results.




Extention to G-RGDD

e Two different ways to obtain examples for (G-RGDD;

e Modify the above construction to use RGDs, and (-GDDs as
input instead of RBDs and k-GDDs.

e An alternative way is to start with a RGD(v, G) design and a

v-RGDD of type m™. Fill in each block of size v with a
RGD(v, G), one can obtain a G-RGDD of type m".

® Then some recursive constructions and tedious computation

can be used to prove the final result.




Open Problems
e |s there a RGDD version of the result on the asymptotic
existence of k-RGDD of type m™ for large n?

e Existence of £-RGDD of type m™ with finite number of possible

exceptions?

e Existence of k-GDD of type m"™u' with finite number of possible

exceptions? (The problem is still open even when £ = 4!).




Jamison’s Problem

e Suppose (5 is a path of length n.

e The existence problem for decomposing K, into (7 is solved.

e |s there a decomposition in which no two copies of (G has more

than two vertices in common?




Super Simple Designs
e aBIBD(v, k, \) is super-simple if any two blocks has at most
two points in common.

e |t has been used to construct specific small perfect hash

families and related objects.

e It is not known if the existence of super-simple BIBD(v, k, \) is

asymptoticly sufficient.

® The setis PBD-closed.




Construct Examples

e Wilson’s Theory on the choice function over finite field to

construct block/graph designs.

It does not guarantee that any two blocks intersect in at most

two points.

Need to distribute the cosets to each block in such a way that

any two blocks share at most one coset.

Apply recursive constructions to get to other congurence

classes.




q-gary Constant-Weight Codes

e X and R are sets, X finite R* denotes the set of vectors of

length | X |, where each component of a vector u € R* has

value in K and is indexed by an element of X, that is,
u = (Uy)xex.

A g-ary code of length n is a set CC Z(‘JX, for some X of size

n. The elements of C are called codewords.
The support of a vector u € Z* isthe set {z € X : u, # 0}.
The weight of u € Z_* is defined as ||u|| = |supp(u).

The distance induced by this norm is called the Hamming
distance so that d (u, v) = ||u — v||, foru,v € Z*.
A code (' is said to have distance d if the distance of any

distinct two codes is at least d.




® A code is said to be have constant weight w if every codeword

in C' has weight w.

e Given g and | X |, what is the largest size of C'?




e Johnson Bound and an earlier result by (Chee et. al.) implies
any upper bound of the order of n2q2.

e |f the support of the codes is super-simple, then it implies that

the distance between any two codewords is at least 2w — 3.

e In particular, if we can construct w-GDD of type (¢ — 1)™ in

which the “support” of the GDD is super simple, the codewords

derived from the GDD would construct an optimal code.

e this can be done via a generalization of the super-simple

property of the edge-colored block designs.




Balanced sampling designs avoding contiguous
units

Consider a finite ordered population of v identifiable units,
labeled as 0,1,2,...,v — 1.

Let A; denote a quantitative characteristic A for unit 2.

A, are unknown, but they can observed for any unit.

Observation of a sample of £ units at a time can be used to

obtain an estimate the popular total.

In some applications, contiguous units of the v units are less

likely to appear together than units that are further apart.

Hedayat, Rao and Stufken justify this idea in terms of the

variance of the Horvitz-Thompson estimator.




Balanced sample designs avoiding contiguous units

e ABSEC(v, k, A), is a block design with the properties that

e ecach block is a set of k different units,

e any two contiguous units do not appear simultaneously in any of
the blocks,

e any two noncontiguous units appear simultaneously in the same

number of \ blocks.




Result on BSECs

e (Hedayat, Rao and Stufken) For k > 3, ifa BSEC(v, k, \)
exists, then v > 3k; for k = 3,4 a BSEC(v, k, \) exists for
some A ifv > 3k.

e (Colbourn et. al.) provided a solution for &k = 3, 4.

e (Dukes et. al). provided a solution for all £ and for some A.

e Fixing k£ and A, is it true that such designs exist for large

enough v?




ldea

e This problem is equivalent to decomposing a complete graph,

K, minus a Hamiltonian cycle into K.

e Examples are possible to obtain by recursive construction due

to the existence of k-GDD of type 3™ as the leave is a 2-regular

graph.

e Using product constructions to make the 3-cycles to “stitch”

together to become a Hamiltonian cycle.

e [t involves an extension of a type of design called Holey GDDs.




Hamilton-Waterloo problem: the case of Hamiltonian
cycle and 3

e Decompose K, into r Hamiltonian cycle and resolvable classes
of Kg.

e The hardest case turns out be be 1 Hamiltonian cycle!
e Dinitz et. al. solves this for all but a few possible exceptions.

® [s it possible to otain such a decomposition for large v for a fix

k?




Polygon designs

e In BSEC, we cover A copies of all pairs of K, except when they

are adjacent.

What if we only cover pairs that are at least distance d apart?
It becomes polygon designs!

The problem is open even for k£ = 3!

Dukes et. al. provides a solution for large A.

Can an asymptotic existence result be established?

This is not equivalent to Hamilton-Waterloo problem!




