Some applications of linear algebra over finite
fields
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Let A be a non-singular k x k matrix over [F.
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A nowhere-zero point for linear maps

Let A be a non-singular k x k matrix over [F.

[Jaeger 1981 conjecture]
If ¢ > 4 then there exists an x € Fg such that x and Ax have
no zero coordinate.

11 1 1
Nottrueq:2,A:<O 1>orq:3,A:<1 1).

[Alon and Tarsi 1989]
True for g not prime.



A nowhere-zero point for linear maps
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endomorphism which has matrix A with respect to B.
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A nowhere-zero point for linear maps

Let B = {e1,..., ek} be a basis of IF’; and let f be the
endomorphism which has matrix A with respect to B.

Define linear maps «; from Fg to I, by
k

F(x) = ai(x)e.
i=1

Define a function p(x) from Fg to [, by

p(x) =[] ai(x).

i=1

Assume that p(x) = 0, whenever Hfle x; # 0, where
x = (x1,...,xx) are the coordinates of x with respect to B.



A nowhere-zero point for linear maps

By Alon’s Nullstellensatz, p = Z(Xl.q*1 — 1)h;(X), for some
polynomials h; of degree at most k — g + 1.

With respect to the dual basis {a1,...,ax}, the monomials

Xi = cjaj, for some cj;.

Thus
k

p=lci=> (O ) -1,

i=1

which gives a contradiction for g non-prime, since (¢ — 1)! = 0.
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Let g = p", where p is a prime.
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Large subsets of D*‘é in which every subset of size k is a basis

Let g = p", where p is a prime.

1 1 1 0
o 2 9 is a k x (g + 1) matrix,
: . 0

alfl 312‘*1 35*1 1

every k columns are linearly independent over [,.

The k x k submatrices are Vandermonde and have

determinants
H(a,- — aj) 75 0.



Large subsets of D*‘é in which every subset of size k is a basis

Let g = 2".
1 1 ... 1 00
ai a ... ag 0 1 |isa3x(qg+2) matrix.
a3 a3 ... af] 10

every 3 columns of which are linearly independent over [F,.
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Large subsets of D*‘é in which every subset of size k is a basis

Let S be a set of vectors of FS in which every subset of S of
size k is a basis.

How large can S be ? (at least g + 1)

[Bush 1952]
S={e1,...,ex,e1+ ...+ e} is a set in which every subset

of size k is a basis and if kK > g + 1 then this is best possible.

[MDS conjecture (Segre 1955)]
If Kk < g then S has size at most g + 1

unless g = 2" and k = 3 or k = g — 1, in which case
S| <qg+2
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Suppose €e1,...,e,_o are in S, so in each of the g + 1
hyperplanes, X, 1 = aXy and X, = 0, there is at most one
other vector of S.

(If not then there is a hyperplane containing a set of k vectors
of S which do not form a basis)
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Suppose €e1,...,e,_o are in S, so in each of the g + 1
hyperplanes, X, 1 = aXy and X, = 0, there is at most one
other vector of S.

(If not then there is a hyperplane containing a set of k vectors
of S which do not form a basis)

So|S|<k—-24+q+1=qg+k—-1
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For every e1,...,ex_» in S, there are
t:=q+k—-1—|S]
hyperplanes containing no other vectors of S.

[Segre 1967]

In the quotient space Fg/(el./ ..., €x_3) the vectors dual to
these hyperplanes lie on an algebraic curve of small degree.
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For every Y = {e1,...,ex o} subset of S, define a function

Ty(x) = ][ (%),

where the product is over the linear maps f that define the t
hyperplanes containing the vectors of Y and no others from S.

[Segre 1967] k = 3. For all x,y,z € S,

Toa W) T (2) Tz () = (1) T (2) Ty () Tz ()

For any subset B of S of size k — 3,

Teux(¥) Teuy (2) Teuz(x) = (—1)" Teux(2) Teuy (x) Teuz(y)
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Large subsets of D*‘é in which every subset of size k is a basis

For any subset B of S of size k — 3,

Teux(y) Teuy(2) Teuz(x) = (=1)" Teux(2) Teuy (x) Teuz(y)

By interpolation, for disjoint ordered sequences E of size t + 2
and Y = (y1,...,Yk_2), subsets of S,

Z Ty(e) H det(z./ € V1, .. 7yk72),1 =0.

ecE z€E\e

Fix a y € Y and combine the k — 1 equations given by
Y'=(Y\y)Ueand E' =(E\ e)Uy, for some e € E.



Large subsets of D*‘é in which every subset of size k is a basis

Combining these equations gives for r < min(k — 1, ¢ + 2),

0= > (ﬁny, >Hdete,z9

er,...,er€E

where 0; = {e1,....€j_1,¥i,...,Yk_2} and the product runs
over the t + 1 vectors of E and Y not in 6, U {e }.
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Combining these equations gives for r < min(k — 1, t + 2),

o=r > (H T?(fi)) [ det(e. 2,0

{e1,....,e,}CE \i=1

where 0; = {e1,...,ei 1,V ..., yk2} and |E| = t + 2.

If |S| = g + 2 then t = k — 3, this gives a sum of just one
term which is zero. Thus, k < p gives a contradiction.

If |S| =g+ 1then t =k —2, and if k < p, we get a set of
k — 2 linearly independent equations in k unknowns, whose
solution is (equivalent to)

S={(1,a...,a" 1Y) |acF,  U{(0,...,0,1)}.
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[Conjecture] If k < g then S has size at most g + 1 unless g = 2"
and k =3 or k =g — 1, in which case |S| < g+ 2.

k < ,/q/4. qodd k < ./q. q even [Segre 1967].

k < q/45. q = p prime. [Voloch 1990]

k < /pq. q = p*"* [Voloch 1991].

k < ./q/2. q=p*", p>5 [Hirschfeld and Korchmaros 1996].

k < q. g = p prime [Ball 2010]

k <2,/q. g = p? [Ball and De Beule 2011]
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dimension k .
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distance separable code over I, is p + 1 and the longest ones
are Reed-Solomon codes.



Large subsets of D*‘é in which every subset of size k is a basis

The row space of the matrix whose columns are the vectors of
S is a maximum distance separable code of length |S| and
dimension k .

Thus, we have that the maximum length of a maximum
distance separable code over I, is p + 1 and the longest ones
are Reed-Solomon codes.

The uniform matroid of rank r and base set E, where
|E| > r +2, is representable over [, if and only if |E| < p+ 1.



Functions over a finite field that do not determine all directions

How few directions can a function over a finite field ¥ determine ?
How small can the set D(f) be ?

D(f) _ {f(y) B f(X)

_)/_X ‘X-/yqu;X?é)’}

ex. if f is linear then |D(f)| = 1.

ex. if f is linear over [Fs < IF; then
q/s+1<[D(f)|<(qg—-1)/(s—1).



Functions over a finite field that do not determine all directions

ex. if f(x) = x(9"1)/2 and q is odd then |D(f)| = (g + 3)/2.

Determined

Direction

Y=-X
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Functions over a finite field that do not determine all directions

Let p be a prime.

[Rédei 1970]
A non-linear function from ¥, to IF, determines at least
(p + 3)/2 directions.

[Lévasz and Schrijver 1981]
If ID(f)| = (p+3)/2 then f is affinely equivalent to x(P*1)/2,

[Gacs 2003]
If |[D(f)| > (p+3)/2 then |D(f)| >2(p—1)/3.



Functions over a finite field that do not determine all directions

If —c & D(f) then x — f(x) + cx is a permutation.

Let /(f) be maximum such 3, . (7(x) +xY)k =0 for all
k=1,...,1(f) — 1.

[Gacs|
Consider x'f(x)/ as elements of [F,(x)/(xP — x).

Note that the above implies that x'f(x) has degree < p — 2 for all
1<i+1<I(f)—1.



Functions over a finite field that do not determine all directions

Consider linear maps

where the degree of A;(x) satisfies deg A; < s — i.

If g, h € Im(¢) then deg(gh) # p — 1.

If s < I(f)/2 then only half the degrees can occur amongst the
polynomials in Im(¢).



Functions over a finite field that do not determine all directions

[Ball and Gécs 2008] If /(f) > (p— 1)/t +t — 1 for some t € N
then every line meets the graph of f in at most t — 1 points or at
least (p — 1)/t + 1 points.

This implies that if |[D(f)| < p —2/p — 1+ 15/4 then the graph
of f has additional properties.

[Conjecture] If I(f) > (p—1)/t+ t — 1 for some t € N then the
graph of f is contained in an algebraic curve of degree t — 1.

[Rédei 1970] True for t = 2.

[Gacs 2003] True for t = 3.



Functions over a finite field that do not determine all directions

Let g be a prime power.
[Ball, Blokhuis, Brouwer, Storme, Szényi 1999], [Ball 2003]

If [D(f)| < (g+1)/2 and s is maximal with the property that
every line meets the graph of f is a multiple of s points then

I’:?S S ]qu
q/s+1<|D(f)] <(q—-1)/(s-1),

and for s > 2 the function f is linear over Fs.
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