Measurement Matrices for Compressive Sensing via Column Replacement

> Charles J. Colbourn¹, Daniel Horsley², and Violet R. Syrotiuk¹

> > ¹Arizona State University ²Monash University

Workshop on Combinatorial Designs, 2011

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Outline

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Conclusions and Open Problems

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Conclusions and Open Problems

Motivation

- Probabilistic algorithms to construct compressive sensing matrices do so with very high probability
 - But, how to check that all the properties are satisfied?
 - The analysis of such algorithms make assumptions on the random mechanism that may be difficult to implement in practice
- Our interest: the *deterministic* construction of measurement matrices

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Conclusions and Open Problems

Compressive sensing

- ► A signal x, which is a vector in ℝ^k, having at most t nonzero coordinates.
- ► A sample is a vector of weights w ∈ ℝ^k, for which the sample measurement is wx^T.
- Goal: Construct a set of N samples so that the unknown signal x can be recovered from the sample measurements. The N × k matrix so formed is a measurement matrix.
- (Admittedly, this is an overly simplified version of compressive sensing!)

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Compressive Sensing

Recoverability

- A measurement matrix A has (l₀, t)-recoverability when it permits exact recovery of x using Ax = b, given A and b, and the fact that x is t-sparse.
- A measurement matrix A has (ℓ₁, t)-recoverability when, for each t-sparse signal x, x is the unique solution to min{||z||₁ : Az = Ax}.

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Compressive Sensing

Null Space Conditions: ℓ_0

\triangleright N(A) is the null space of the measurement matrix A.

Lemma Matrix $A \in \mathbb{R}^{m \times n}$ has (ℓ_0, t) -recoverability if and only if $N(A) \setminus \{0\}$ contains no (2t)-sparse vector.

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Compressive Sensing

Null Space Conditions: ℓ_1

When C is a set of coordinate indices of a vector y, y_{|C} is the vector restricted to the indices in C.

Lemma

Matrix $A \in \mathbb{R}^{m \times n}$ *has* (ℓ_1, t) *-recoverability if and only if for every* $y \in N(A) \setminus \{0\}$ *and every* $C \subset \{1, ..., n\}$ *with* |C| = t, $||\mathbf{y}_{|C}||_1 < \frac{1}{2}||\mathbf{y}||_1$.

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Column Replacement

► The column replacement technique:

- Given an N × k matrix A with columns indexed by {1,..., k}, and an M × ℓ pattern matrix P with symbols from {1,..., k}
- ► For each entry of *P*, which is necessarily in {1,..., k}, select the corresponding column of *A*
- ► The result is an MN × ℓ matrix having entries chosen from the set of entries of A

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Conclusions and Open Problems

Column Replacement

Example: B is the column replacement of A into P

P: 2 × 4 pattern matrix with *symbols* from {1,...,3}
A: 2 × 3 matrix with columns indexed by {1,...,3}

$$P = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 3 & 1 & 2 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} a & b & a \\ b & a & a \end{bmatrix}$$
$$B = \begin{bmatrix} a & b & a & a \\ b & a & a & b \\ \hline a & a & b & a \\ a & b & a & b \end{bmatrix}$$

B: 4 × 4 matrix having entries chosen from the set of entries of A Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Column Replacement and Hash Families

- Our goal is to ensure that when A meets one of the null space conditions for sparsity t, B does as well
- Not every pattern matrix will do
- What are the requirements for a pattern matrix such that the sparsity supported by B is at least that of A?

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Conclusions and Open Problems

Perfect Hash Families

Definition and Example

- A perfect hash family PHF(N; k, v, t) is an N × k array on v symbols, in which in every N × t subarray, at least one row consists of distinct symbols
- Example: a PHF(6; 12, 3, 3)

- A PHF separates t columns into t parts
- We need a weaker condition

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Separating Hash Families

Definition and Example

• A separating hash family SHF(N; k, v, { w_1 ,..., w_s }) with $t = \sum_{i=1}^{s} w_i$ is an $N \times k$ array on v symbols, in which in every $N \times t$ subarray, and every way to partition the t columns into classes of sizes w_1, \ldots, w_s , there is at least one row in which symbols in different classes are different

Example: an SHF(3; 16, 4, {1, 2})

▶ For the specific separation {11, 16} from {15}

 $\begin{bmatrix} & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 \\ 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & 2 & 1 & 4 & 3 & 3 & 4 & 1 & 2 & 4 & 3 & 2 & 1 \end{bmatrix}$

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Distributing Hash Families

Definition and Example

- A distributing hash family DHF(N; k, v, t, s) is an SHF(N; k, v, {w₁,..., w_s}) for every way to choose w₁ + ··· + w_s = t
- Example: a DHF(10; 13, 9, 5, 2); * = don't care

6]	7	8	3	4	0	2	2	3	0	5	1	1]	
3	1	1	7	2	6	8	4	3	0	2	0	5	
8	5	1	4	2	3	2	6	7	0	1	3	0	
0	2	0	2	2	0	0	1	1	1	1	2	0	
0	0	2	1	1	1	2	0	0	2	2	0	1	
1	1	2	2	2	0	1	0	0	2	1	0	0	
1	0	1	2	0	0	2	0	0	1	2	2	1	
1	1	0	1	0	4	2	0	2	0	1	0	2	
0	0	3	0	1	0	0	2	4	0	0	1	0	
0	*	*	*	*	1	*	*	1	*	*	0	1	

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Column Replacement and Recoverability

 (ℓ_0, t) -Recoverability

Theorem

Suppose that

- ► A is an r × k measurement matrix that meets the (ℓ₀, t)-null space condition,
- ▶ *P* is an SHF(*m*; *n*, *k*, {1, *t*}), and
- B is the column replacement of A into P.

Then B is an $rm \times n$ measurement matrix that meets the (ℓ_0, t) -null space condition.

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Column Replacement and Recoverability

 (ℓ_1, t) -Recoverability

Theorem

Suppose that

- ► A is an r × k measurement matrix that meets the (ℓ₁, t)-null space condition,
- ▶ *P* is a DHF(*m*; *n*, *k*, *t* + 1, 2), and
- B is the column replacement of A into P.

Then B is an $rm \times n$ measurement matrix that meets the (ℓ_1, t) -null space condition.

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Conclusions and Open Problems

Extensions to Column Replacement

Let's revisit the pattern matrix DHF(10; 13, 9, 5, 2):

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Conclusions and Open Problems

Number of symbols per row need not be the same

- As many A matrices as there are rows of P!
- The strength of each A matrix may be different!

An Extension to Column Replacement

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Conclusions and Open Problems

▶ Rows 1–3 use ≤ 9 symbols; ≤ 5 symbols to separate

- Rows 4–10 use \leq 5 symbols; \leq 3 to separate
- This gives great flexibility in column replacement
 - ...and, also in recovery

Column Replacement Revisited

- ► The *column replacement* technique:
 - Given an $M \times \ell$ pattern matrix P with symbols in row ρ from $\{1, \ldots, k_{\rho}\}$ for $1 \le \rho \le M$, and
 - For each 1 ≤ ρ ≤ M, an N_ρ × k_ρ matrix A with columns indexed by {1,..., k_ρ}
 - For each entry in row ρ of P, which is necessarily in {1,..., k_ρ}, select the corresponding column of A_ρ
 - The result is an (∑^M_{ρ=1} N_ρ) × ℓ matrix having entries chosen from the set of entries of the {A_ρ}
- The theorems for recoverability extend in an 'obvious' way, but ...
- How do we use different strength ingredients?

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Strengthening Hash Families

- In row ρ, we say a separation is *effective* only if on the columns used in the separation, the number of symbols used does not exceed m_ρ
- and every row p may have a different threshold —
- while $m_{\rho} \leq t + 1$, it is very possible that $m_{\rho} < t + 1$

If this holds, then for row ρ we need only a (N_ρ × k_ρ) measurement matrix for sparsity m_ρ − 1, and hence can use ingredient matrices that support lower sparsity!

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Preliminary Results

- Trade-offs: may be able to use fewer A_ρ if they have higher strength
 - Sometimes this seems to save a lot, sometimes not!
- We developed a simple greedy algorithm to find a pattern matrix based on the Stein-Lovász method
- The colours correspond to different kinds of hash families

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Conclusions and Open Problems

Preliminary Results from Heuristic Search DHF(N; 13, v, t, s)Number of symbols v (up to 9 shown)

S	m	t	2	3	4	5	6	7	8	9	
2	2	2	4	3	2	2	2	2	2	2	
	2	3	10	9	10	10	10	10	10	10	
	2	4	22	23	22	23	22	21	21	22	
	2	5	58	60	60	61	61	59	61	61	
	2	6	127	126	131	126	130	132	126	127	
	3	3		6	4	3	3	3	3	3	
	3	4		11	11	11	11	11	11	11	
	3	5		27	25	26	26	27	26	26	
	3	6		58	61	61	60	59	60	59	
	4	4			7	6	5	4	4	4	
	4	5			15	14	15	14	14	14	
	4	6			32	33	33	31	33	33	
	5	5				10	8	6	6	5	
	5	6				20	16	15	17	16	
	6	6					14	10	8	6	

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Results after a Simple Post-Optimization DHF(*N*; 13, *v*, *t*, *s*)

Number of symbols v (up to 7 shown)

Measurement

Matrices for Compressive

Sensing via

Column

				Replacement					
S	m	t	2	3	4	5	6	7	Charles J.
2	2	2	4	3	2	2	2	2	Colbourn, Danie Horsley
	2	3	<mark>10</mark> /9						and Violet R. Svrotiuk
	2	4	<mark>22</mark> /19						Cyroddia
	2	5	<mark>58</mark> /50						Introduction
	2	6	127 /106						Column Replacement and
	3	3		<mark>6</mark> /5	4	3	3	3	Hash Families
	3	4		<mark>11</mark> /10					Extensions to Column
	3	5		<mark>27</mark> /24					Replacement
	3	6		<mark>58</mark> /53					Conclusions and Open Problems
	4	4			7/—	<mark>6</mark> /5	5	4	
	4	5			<mark>15</mark> /14				
	4	6			<mark>32</mark> /30				
	5	5				<mark>10</mark> /9	<mark>8</mark> /7	6	
	5	6				<mark>20</mark> /18	<mark>16</mark> /15		
	6	6					<mark>14</mark> /13	10/	

Conclusions

- The observation that each row of the pattern matrix could use a different measurement matrix gives great flexibility in the construction
 - B is the column replacement of A_ρ into row ρ of P, 1 ≤ ρ ≤ M
- Furthermore, the strength of each A_ρ need not be the same
- Recovery is also affected
 - Indeed, the recovery technique need not be the same for each of the A_ρ matrices
- This flexibility in construction and recovery deserves more investigation

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement

Current Research

- 1. Develop construction techniques for pattern matrices (hash families)
- 2. Investigate the trade-offs between hash family size and the sizes and strengths of the measurement matrices A_{ρ}
- 3. Investigate the trade-offs for signal recovery; now, we don't need to use the same recovery technique for each matrix!
- 4. Cope with noise in the signal; this requires additional conditions, both on the hash family used and the ingredient measurement matrices A_{ρ}

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction

Column Replacement and Hash Families

Extensions to Column Replacement