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Motivation

I Probabilistic algorithms to construct compressive
sensing matrices do so with very high probability

I But, how to check that all the properties are
satisfied?

I The analysis of such algorithms make assumptions
on the random mechanism that may be difficult to
implement in practice

I Our interest: the deterministic construction of
measurement matrices
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Compressive sensing

I A signal x, which is a vector in Rk , having at most t
nonzero coordinates.

I A sample is a vector of weights w ∈ Rk , for which the
sample measurement is wxT .

I Goal: Construct a set of N samples so that the
unknown signal x can be recovered from the sample
measurements. The N × k matrix so formed is a
measurement matrix.

I (Admittedly, this is an overly simplified version of
compressive sensing!)
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Compressive Sensing
Recoverability

I A measurement matrix A has (`0, t)-recoverability
when it permits exact recovery of x using Ax = b,
given A and b, and the fact that x is t-sparse.

I A measurement matrix A has (`1, t)-recoverability
when, for each t-sparse signal x, x is the unique
solution to min{||z||1 : Az = Ax}.
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Compressive Sensing
Null Space Conditions: `0

I N(A) is the null space of the measurement matrix A.

Lemma
Matrix A ∈ Rm×n has (`0, t)-recoverability if and only if
N(A) \ {0} contains no (2t)-sparse vector.
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Compressive Sensing
Null Space Conditions: `1

I When C is a set of coordinate indices of a vector y,
y|C is the vector restricted to the indices in C.

Lemma
Matrix A ∈ Rm×n has (`1, t)-recoverability if and only if for
every y ∈ N(A) \ {0} and every C ⊂ {1, . . . ,n} with
|C| = t , ||y|C ||1 < 1

2 ||y||1.
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Column Replacement

I The column replacement technique:
I Given an N × k matrix A with columns indexed by
{1, . . . , k}, and an M × ` pattern matrix P with
symbols from {1, . . . , k}

I For each entry of P, which is necessarily in
{1, . . . , k}, select the corresponding column of A

I The result is an MN × ` matrix having entries chosen
from the set of entries of A
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Column Replacement
Example: B is the column replacement of A into P

I P: 2× 4 pattern matrix with symbols from {1, . . . ,3}
I A: 2× 3 matrix with columns indexed by {1, . . . ,3}

P =

[
1 2 3 1
3 1 2 1

]
A =

[
a b a
b a a

]

B =


a b a a
b a a b
a a b a
a b a b


I B: 4× 4 matrix having entries chosen from the set of

entries of A
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Column Replacement and Hash Families

I Our goal is to ensure that when A meets one of the
null space conditions for sparsity t , B does as well

I Not every pattern matrix will do
I What are the requirements for a pattern matrix such

that the sparsity supported by B is at least that of A?
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Perfect Hash Families
Definition and Example

I A perfect hash family PHF(N; k , v , t) is an N × k
array on v symbols, in which in every N × t subarray,
at least one row consists of distinct symbols

I Example: a PHF(6; 12,3,3)

↓ ↓ ↓
0 1 2 2 1 2 2 0 1 1 0 0
0 2 1 0 2 2 2 1 0 1 2 1
1 0 0 2 2 2 1 1 2 1 0 2
2 0 1 1 2 0 2 0 1 1 2 1
2 0 2 1 2 1 0 2 2 1 1 0
2 0 1 2 1 1 2 2 0 1 2 1


I A PHF separates t columns into t parts
I We need a weaker condition
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Separating Hash Families
Definition and Example

I A separating hash family SHF(N; k , v , {w1, . . . ,ws})
with t =

∑s
i=1 wi is an N × k array on v symbols, in

which in every N × t subarray, and every way to
partition the t columns into classes of sizes
w1, . . . ,ws, there is at least one row in which symbols
in different classes are different

I Example: an SHF(3; 16,4, {1,2})
I For the specific separation {11,16} from {15}

↓ ↓ ↓
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1


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Distributing Hash Families
Definition and Example

I A distributing hash family DHF(N; k , v , t , s) is an
SHF(N; k , v , {w1, . . . ,ws}) for every way to choose
w1 + · · ·+ ws = t

I Example: a DHF(10; 13,9,5,2); ∗ = don’t care

6 7 8 3 4 0 2 2 3 0 5 1 1
3 1 1 7 2 6 8 4 3 0 2 0 5
8 5 1 4 2 3 2 6 7 0 1 3 0
0 2 0 2 2 0 0 1 1 1 1 2 0
0 0 2 1 1 1 2 0 0 2 2 0 1
1 1 2 2 2 0 1 0 0 2 1 0 0
1 0 1 2 0 0 2 0 0 1 2 2 1
1 1 0 1 0 4 2 0 2 0 1 0 2
0 0 3 0 1 0 0 2 4 0 0 1 0
0 ∗ ∗ ∗ ∗ 1 ∗ ∗ 1 ∗ ∗ 0 1


13
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Column Replacement and Recoverability
(`0, t)-Recoverability

Theorem
Suppose that

I A is an r × k measurement matrix that meets the
(`0, t)-null space condition,

I P is an SHF(m; n, k , {1, t}), and
I B is the column replacement of A into P.

Then B is an rm × n measurement matrix that meets the
(`0, t)-null space condition.
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Column Replacement and Recoverability
(`1, t)-Recoverability

Theorem
Suppose that

I A is an r × k measurement matrix that meets the
(`1, t)-null space condition,

I P is a DHF(m; n, k , t + 1,2), and
I B is the column replacement of A into P.

Then B is an rm × n measurement matrix that meets the
(`1, t)-null space condition.

15



Measurement
Matrices for

Compressive
Sensing via

Column
Replacement

Charles J.
Colbourn, Daniel

Horsley,
and Violet R.

Syrotiuk

Introduction

Column
Replacement and
Hash Families

Extensions to
Column
Replacement

Conclusions and
Open Problems

Extensions to Column Replacement

I Let’s revisit the pattern matrix DHF(10; 13,9,5,2):

6 7 8 3 4 0 2 2 3 0 5 1 1
3 1 1 7 2 6 8 4 3 0 2 0 5
8 5 1 4 2 3 2 6 7 0 1 3 0
0 2 0 2 2 0 0 1 1 1 1 2 0
0 0 2 1 1 1 2 0 0 2 2 0 1
1 1 2 2 2 0 1 0 0 2 1 0 0
1 0 1 2 0 0 2 0 0 1 2 2 1
1 1 0 1 0 4 2 0 2 0 1 0 2
0 0 3 0 1 0 0 2 4 0 0 1 0
0 ∗ ∗ ∗ ∗ 1 ∗ ∗ 1 ∗ ∗ 0 1


I Number of symbols per row need not be the same

I As many A matrices as there are rows of P!
I The strength of each A matrix may be different!
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An Extension to Column Replacement


6 7 8 3 4 0 2 2 3 0 5 1 1
3 1 1 7 2 6 8 4 3 0 2 0 5
8 5 1 4 2 3 2 6 7 0 1 3 0
0 2 0 2 2 0 0 1 1 1 1 2 0
0 0 2 1 1 1 2 0 0 2 2 0 1
1 1 2 2 2 0 1 0 0 2 1 0 0
1 0 1 2 0 0 2 0 0 1 2 2 1
1 1 0 1 0 4 2 0 2 0 1 0 2
0 0 3 0 1 0 0 2 4 0 0 1 0
0 ∗ ∗ ∗ ∗ 1 ∗ ∗ 1 ∗ ∗ 0 1


I Rows 1–3 use ≤ 9 symbols; ≤ 5 symbols to separate
I Rows 4–10 use ≤ 5 symbols; ≤ 3 to separate
I This gives great flexibility in column replacement

I ...and, also in recovery
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Column Replacement Revisited

I The column replacement technique:
I Given an M × ` pattern matrix P with symbols in row
ρ from {1, . . . , kρ} for 1 ≤ ρ ≤ M, and

I for each 1 ≤ ρ ≤ M, an Nρ × kρ matrix A with
columns indexed by {1, . . . , kρ}

I For each entry in row ρ of P, which is necessarily in
{1, . . . , kρ}, select the corresponding column of Aρ

I The result is an (
∑M

ρ=1 Nρ)× ` matrix having entries
chosen from the set of entries of the {Aρ}

I The theorems for recoverability extend in an
‘obvious’ way, but ...

I How do we use different strength ingredients?

18
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Strengthening Hash Families

I In row ρ, we say a separation is effective only if on
the columns used in the separation, the number of
symbols used does not exceed mρ

I and every row ρ may have a different threshold —
I while mρ ≤ t + 1, it is very possible that mρ < t + 1

I if this holds, then for row ρ we need only a (Nρ × kρ)
measurement matrix for sparsity mρ − 1, and hence
can use ingredient matrices that support lower
sparsity!
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Preliminary Results

I Trade-offs: may be able to use fewer Aρ if they have
higher strength

I Sometimes this seems to save a lot, sometimes not!
I We developed a simple greedy algorithm to find a

pattern matrix based on the Stein-Lovász method
I The colours correspond to different kinds of hash

families
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Preliminary Results from Heuristic Search
DHF(N; 13, v , t , s)

Number of symbols v (up to 9 shown)
s m t 2 3 4 5 6 7 8 9
2 2 2 4 3 2 2 2 2 2 2

2 3 10 9 10 10 10 10 10 10
2 4 22 23 22 23 22 21 21 22
2 5 58 60 60 61 61 59 61 61
2 6 127 126 131 126 130 132 126 127
3 3 6 4 3 3 3 3 3
3 4 11 11 11 11 11 11 11
3 5 27 25 26 26 27 26 26
3 6 58 61 61 60 59 60 59
4 4 7 6 5 4 4 4
4 5 15 14 15 14 14 14
4 6 32 33 33 31 33 33
5 5 10 8 6 6 5
5 6 20 16 15 17 16
6 6 14 10 8 6

I PHF, DHF, PaHF
21
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Results after a Simple Post-Optimization
DHF(N; 13, v , t , s)

Number of symbols v (up to 7 shown)
s m t 2 3 4 5 6 7
2 2 2 4 3 2 2 2 2

2 3 10/9
2 4 22/19
2 5 58/50
2 6 127/106
3 3 6/5 4 3 3 3
3 4 11/10
3 5 27/24
3 6 58/53
4 4 7/– 6/5 5 4
4 5 15/14
4 6 32/30
5 5 10/9 8/7 6
5 6 20/18 16/15
6 6 14/13 10/–
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Conclusions

I The observation that each row of the pattern matrix
could use a different measurement matrix gives great
flexibility in the construction

I B is the column replacement of Aρ into row ρ of P,
1 ≤ ρ ≤ M

I Furthermore, the strength of each Aρ need not be the
same

I Recovery is also affected
I Indeed, the recovery technique need not be the

same for each of the Aρ matrices
I This flexibility in construction and recovery deserves

more investigation
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Current Research

1. Develop construction techniques for pattern matrices
(hash families)

2. Investigate the trade-offs between hash family size
and the sizes and strengths of the measurement
matrices Aρ

3. Investigate the trade-offs for signal recovery; now, we
don’t need to use the same recovery technique for
each matrix!

4. Cope with noise in the signal; this requires additional
conditions, both on the hash family used and the
ingredient measurement matrices Aρ
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