Measurement Matrices for Compressive Sensing via Column Replacement

Charles J. Colbourn ${ }^{1}$, Daniel Horsley², and Violet R. Syrotiuk ${ }^{1}$

${ }^{1}$ Arizona State University
${ }^{2}$ Monash University

Workshop on Combinatorial Designs, 2011

Outline

Introduction

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Column Replacement and Hash Families

Extensions to Column Replacement

Conclusions and Open Problems

Column

Replacement and Hash Families

Motivation

- Probabilistic algorithms to construct compressive sensing matrices do so with very high probability
- But, how to check that all the properties are satisfied?
- The analysis of such algorithms make assumptions on the random mechanism that may be difficult to implement in practice
- Our interest: the deterministic construction of measurement matrices

Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Compressive sensing

Matrices for
Compressive
Sensing via
Column

- A signal \mathbf{x}, which is a vector in \mathbb{R}^{k}, having at most t nonzero coordinates.
- A sample is a vector of weights $\mathbf{w} \in \mathbb{R}^{k}$, for which the sample measurement is $\mathbf{w} \mathbf{x}^{T}$.
- Goal: Construct a set of N samples so that the unknown signal \mathbf{x} can be recovered from the sample measurements. The $N \times k$ matrix so formed is a measurement matrix.
- (Admittedly, this is an overly simplified version of compressive sensing!)

Charles J.
Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Compressive Sensing

Recoverability

Matrices for
Compressive
Sensing via
Column
Replacement
Charles J.
Colbourn, Daniel Horsley, and Violet R. Syrotiuk

- A measurement matrix A has $\left(\ell_{0}, t\right)$-recoverability when it permits exact recovery of \mathbf{x} using $A \mathbf{x}=\mathbf{b}$, given A and \mathbf{b}, and the fact that \mathbf{x} is t-sparse.
- A measurement matrix A has $\left(\ell_{1}, t\right)$-recoverability when, for each t-sparse signal \mathbf{x}, \mathbf{x} is the unique solution to $\min \left\{\|\mathbf{z}\|_{1}: A \mathbf{z}=A \mathbf{x}\right\}$.

```
Introduction
```


Compressive Sensing

Null Space Conditions: ℓ_{0}

Measurement
Matrices for
Compressive
Sensing via
Column
Replacement
Charles J.
Colbourn, Daniel Horsley,
and Violet R.
Syrotiuk

- $N(A)$ is the null space of the measurement matrix A.

Lemma
Matrix $A \in \mathbb{R}^{m \times n}$ has $\left(\ell_{0}, t\right)$-recoverability if and only if $N(A) \backslash\{0\}$ contains no (2t)-sparse vector.

Compressive Sensing

Null Space Conditions: ℓ_{1}
Measurement
Matrices for
Compressive
Sensing via
Column
Replacement
Charles J.
Colbourn, Daniel Horsley,
and Violet R. Syrotiuk

- When C is a set of coordinate indices of a vector \mathbf{y}, $\mathbf{y}_{\mid C}$ is the vector restricted to the indices in C.

Lemma
Matrix $A \in \mathbb{R}^{m \times n}$ has $\left(\ell_{1}, t\right)$-recoverability if and only if for every $y \in N(A) \backslash\{0\}$ and every $C \subset\{1, \ldots, n\}$ with
$|C|=t,\left\|\mathbf{y}_{\mid C}\right\|_{1}<\frac{1}{2}\|\mathbf{y}\|_{1}$.

Column Replacement

- The column replacement technique:
- Given an $N \times k$ matrix A with columns indexed by $\{1, \ldots, k\}$, and an $M \times \ell$ pattern matrix P with symbols from $\{1, \ldots, k\}$
- For each entry of P, which is necessarily in $\{1, \ldots, k\}$, select the corresponding column of A
- The result is an $M N \times \ell$ matrix having entries chosen from the set of entries of A

Charles J.
Colbourn, Daniel Horsley, and Violet R. Syrotiuk

```
Introduction
```


Column

Replacement and Hash Families

Column Replacement

Example: B is the column replacement of A into P
Measurement
Matrices for
Compressive
Sensing via
Column
Replacement

- P: 2×4 pattern matrix with symbols from $\{1, \ldots, 3\}$
- A : 2×3 matrix with columns indexed by $\{1, \ldots, 3\}$

$$
\begin{gathered}
P=\left[\begin{array}{llll}
1 & 2 & 3 & 1 \\
3 & 1 & 2 & 1
\end{array}\right] \quad A=\left[\begin{array}{lll}
a & b & a \\
b & a & a
\end{array}\right] \\
B=\left[\begin{array}{llll}
a & b & a & a \\
b & a & a & b \\
\hline a & a & b & a \\
a & b & a & b
\end{array}\right]
\end{gathered}
$$

Charles J.
Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Introduction
 Column
 Replacement and Hash Families

- B: 4×4 matrix having entries chosen from the set of entries of A

Column Replacement and Hash Families

- Our goal is to ensure that when A meets one of the null space conditions for sparsity t, B does as well
- Not every pattern matrix will do
- What are the requirements for a pattern matrix such that the sparsity supported by B is at least that of A ?

Matrices for
Compressive
Sensing via
Column
Replacement
Charles J.
Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Perfect Hash Families

Definition and Example

- A perfect hash family $\operatorname{PHF}(N ; k, v, t)$ is an $N \times k$ array on v symbols, in which in every $N \times t$ subarray, at least one row consists of distinct symbols
- Example: a $\operatorname{PHF}(6 ; 12,3,3)$

$$
\left[\begin{array}{llllllllllll}
0 & 1 & 2 & 2 & 1 & 2 & 2 & 0 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & 2 & 2 & 2 & 1 & 0 & 1 & 2 & 1 \\
1 & 0 & 0 & 2 & 2 & 2 & 1 & 1 & 2 & 1 & 0 & 2 \\
2 & 0 & 1 & 1 & 2 & 0 & 2 & 0 & 1 & 1 & 2 & 1 \\
2 & 0 & 2 & 1 & 2 & 1 & 0 & 2 & 2 & 1 & 1 & 0 \\
2 & 0 & 1 & 2 & 1 & 1 & 2 & 2 & 0 & 1 & 2 & 1
\end{array}\right]
$$

- A PHF separates t columns into t parts
- We need a weaker condition

Separating Hash Families

Definition and Example

- A separating hash family $\operatorname{SHF}\left(N ; k, v,\left\{w_{1}, \ldots, w_{s}\right\}\right)$ with $t=\sum_{i=1}^{s} w_{i}$ is an $N \times k$ array on v symbols, in which in every $N \times t$ subarray, and every way to partition the t columns into classes of sizes w_{1}, \ldots, w_{s}, there is at least one row in which symbols in different classes are different
- Example: an $\operatorname{SHF}(3 ; 16,4,\{1,2\})$
- For the specific separation $\{11,16\}$ from $\{15\}$
$\left[\begin{array}{llllllllllllllll}1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 \\ 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & 2 & 1 & 4 & 3 & 3 & 4 & 1 & 2 & 4 & 3 & 2 & 1\end{array}\right]$

Charles J.
Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Column
Replacement and Hash Families

Distributing Hash Families

Definition and Example

- A distributing hash family $\operatorname{DHF}(N ; k, v, t, s)$ is an $\operatorname{SHF}\left(N ; k, v,\left\{w_{1}, \ldots, w_{s}\right\}\right)$ for every way to choose $w_{1}+\cdots+w_{s}=t$
- Example: a $\operatorname{DHF}(10 ; 13,9,5,2) ; *=$ don't care

$$
\left[\begin{array}{lllllllllllll}
6 & 7 & 8 & 3 & 4 & 0 & 2 & 2 & 3 & 0 & 5 & 1 & 1 \\
3 & 1 & 1 & 7 & 2 & 6 & 8 & 4 & 3 & 0 & 2 & 0 & 5 \\
8 & 5 & 1 & 4 & 2 & 3 & 2 & 6 & 7 & 0 & 1 & 3 & 0 \\
0 & 2 & 0 & 2 & 2 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 0 \\
0 & 0 & 2 & 1 & 1 & 1 & 2 & 0 & 0 & 2 & 2 & 0 & 1 \\
1 & 1 & 2 & 2 & 2 & 0 & 1 & 0 & 0 & 2 & 1 & 0 & 0 \\
1 & 0 & 1 & 2 & 0 & 0 & 2 & 0 & 0 & 1 & 2 & 2 & 1 \\
1 & 1 & 0 & 1 & 0 & 4 & 2 & 0 & 2 & 0 & 1 & 0 & 2 \\
0 & 0 & 3 & 0 & 1 & 0 & 0 & 2 & 4 & 0 & 0 & 1 & 0 \\
0 & * & * & * & * & 1 & * & * & 1 & * & * & 0 & 1
\end{array}\right]
$$

Column Replacement and Recoverability

$\left(\ell_{0}, t\right)$-Recoverability

Theorem
Suppose that

- A is an $r \times k$ measurement matrix that meets the $\left(\ell_{0}, t\right)$-null space condition,
- P is an $\operatorname{SHF}(m ; n, k,\{1, t\})$, and
- B is the column replacement of A into P.

Then B is an $r m \times n$ measurement matrix that meets the $\left(\ell_{0}, t\right)$-null space condition.

Column Replacement and Recoverability

$\left(\ell_{1}, t\right)$-Recoverability

Theorem
Suppose that

- A is an $r \times k$ measurement matrix that meets the $\left(\ell_{1}, t\right)$-null space condition,
- P is a $\operatorname{DHF}(m ; n, k, t+1,2)$, and
- B is the column replacement of A into P.

Then B is an $r m \times n$ measurement matrix that meets the $\left(\ell_{1}, t\right)$-null space condition.

Extensions to Column Replacement

- Let's revisit the pattern matrix $\operatorname{DHF}(10 ; 13,9,5,2)$:

$$
\left[\begin{array}{lllllllllllll}
6 & 7 & 8 & 3 & 4 & 0 & 2 & 2 & 3 & 0 & 5 & 1 & 1 \\
3 & 1 & 1 & 7 & 2 & 6 & 8 & 4 & 3 & 0 & 2 & 0 & 5 \\
8 & 5 & 1 & 4 & 2 & 3 & 2 & 6 & 7 & 0 & 1 & 3 & 0 \\
0 & 2 & 0 & 2 & 2 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 0 \\
0 & 0 & 2 & 1 & 1 & 1 & 2 & 0 & 0 & 2 & 2 & 0 & 1 \\
1 & 1 & 2 & 2 & 2 & 0 & 1 & 0 & 0 & 2 & 1 & 0 & 0 \\
1 & 0 & 1 & 2 & 0 & 0 & 2 & 0 & 0 & 1 & 2 & 2 & 1 \\
1 & 1 & 0 & 1 & 0 & 4 & 2 & 0 & 2 & 0 & 1 & 0 & 2 \\
0 & 0 & 3 & 0 & 1 & 0 & 0 & 2 & 4 & 0 & 0 & 1 & 0 \\
0 & * & * & * & * & 1 & * & * & 1 & * & * & 0 & 1
\end{array}\right]
$$

- Number of symbols per row need not be the same
- As many A matrices as there are rows of P!
- The strength of each A matrix may be different!

An Extension to Column Replacement

$$
\left[\begin{array}{lllllllllllll}
6 & 7 & 8 & 3 & 4 & 0 & 2 & 2 & 3 & 0 & 5 & 1 & 1 \\
3 & 1 & 1 & 7 & 2 & 6 & 8 & 4 & 3 & 0 & 2 & 0 & 5 \\
8 & 5 & 1 & 4 & 2 & 3 & 2 & 6 & 7 & 0 & 1 & 3 & 0 \\
\hline 0 & 2 & 0 & 2 & 2 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 0 \\
0 & 0 & 2 & 1 & 1 & 1 & 2 & 0 & 0 & 2 & 2 & 0 & 1 \\
1 & 1 & 2 & 2 & 2 & 0 & 1 & 0 & 0 & 2 & 1 & 0 & 0 \\
1 & 0 & 1 & 2 & 0 & 0 & 2 & 0 & 0 & 1 & 2 & 2 & 1 \\
1 & 1 & 0 & 1 & 0 & 4 & 2 & 0 & 2 & 0 & 1 & 0 & 2 \\
0 & 0 & 3 & 0 & 1 & 0 & 0 & 2 & 4 & 0 & 0 & 1 & 0 \\
0 & * & * & * & * & 1 & * & * & 1 & * & * & 0 & 1
\end{array}\right]
$$

- Rows $1-3$ use ≤ 9 symbols; ≤ 5 symbols to separate
- Rows 4-10 use ≤ 5 symbols; ≤ 3 to separate
- This gives great flexibility in column replacement
- ...and, also in recovery

Column Replacement Revisited

- The column replacement technique:
- Given an $M \times \ell$ pattern matrix P with symbols in row ρ from $\left\{1, \ldots, k_{\rho}\right\}$ for $1 \leq \rho \leq M$, and
- for each $1 \leq \rho \leq M$, an $N_{\rho} \times k_{\rho}$ matrix A with columns indexed by $\left\{1, \ldots, k_{\rho}\right\}$
- For each entry in row ρ of P, which is necessarily in $\left\{1, \ldots, k_{\rho}\right\}$, select the corresponding column of A_{ρ}
- The result is an $\left(\sum_{\rho=1}^{M} N_{\rho}\right) \times \ell$ matrix having entries chosen from the set of entries of the $\left\{A_{\rho}\right\}$
- The theorems for recoverability extend in an 'obvious’ way, but ...
- How do we use different strength ingredients?

Strengthening Hash Families

- In row ρ, we say a separation is effective only if on the columns used in the separation, the number of symbols used does not exceed m_{ρ}
- and every row ρ may have a different threshold -
- while $m_{\rho} \leq t+1$, it is very possible that $m_{\rho}<t+1$
- if this holds, then for row ρ we need only a ($N_{\rho} \times k_{\rho}$) measurement matrix for sparsity $m_{\rho}-1$, and hence can use ingredient matrices that support lower sparsity!

Preliminary Results

- Trade-offs: may be able to use fewer A_{ρ} if they have higher strength
- Sometimes this seems to save a lot, sometimes not!
- We developed a simple greedy algorithm to find a pattern matrix based on the Stein-Lovász method
- The colours correspond to different kinds of hash families

Matrices for
Compressive
Sensing via
Column
Replacement
Charles J.
Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Preliminary Results from Heuristic Search $\operatorname{DHF}(N ; 13, v, t, s)$

Number of symbols v (up to 9 shown)

s	m	t	2	3	4	5	6	7	8	9
2	2	2	4	3	2	2	2	2	2	2
	2	3	10	9	10	10	10	10	10	10
	2	4	22	23	22	23	22	21	21	22
	2	5	58	60	60	61	61	59	61	61
	2	6	127	126	131	126	130	132	126	127
	3	3		6	4	3	3	3	3	3
	3	4		11	11	11	11	11	11	11
	3	5		27	25	26	26	27	26	26
	3	6		58	61	61	60	59	60	59
	4	4			7	6	5	4	4	4
	4	5			15	14	15	14	14	14
	4	6			32	33	33	31	33	33
	5	5				10	8	6	6	5
	5	6				20	16	15	17	16
	6	6					14	10	8	6

Measurement Matrices for Compressive Sensing via Column Replacement

Charles J.
Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Extensions to Column
Replacement

Results after a Simple Post-Optimization

Number of symbols v (up to 7 shown)

s	m	t	2	3	4	5	6	7
2	2	2	4	3	2	2	2	2
	2	3	$10 / 9$					
	2	4	$22 / 19$					
	2	5	$58 / 50$					
	2	6	$127 / 106$					
	3	3		$6 / 5$	4	3	3	3
	3	4		$11 / 10$				
	3	5		$27 / 24$				
	3	6		$58 / 53$				
	4	4			$7 /-$	$6 / 5$	5	4
	4	5			$15 / 14$			
	4	6			$32 / 30$			
	5	5				$10 / 9$	$8 / 7$	6
	5	6				$20 / 18$	$16 / 15$	
	6	6					$14 / 13$	$10 /-$

Charles J.
Colbourn, Daniel Horsley, and Violet R. Syrotiuk

Extensions to Column
Replacement
Conclusions and Open Problems

Conclusions

- The observation that each row of the pattern matrix could use a different measurement matrix gives great flexibility in the construction
- B is the column replacement of A_{ρ} into row ρ of P, $1 \leq \rho \leq M$
- Furthermore, the strength of each A_{ρ} need not be the same
- Recovery is also affected
- Indeed, the recovery technique need not be the same for each of the A_{ρ} matrices
- This flexibility in construction and recovery deserves more investigation

Current Research

1. Develop construction techniques for pattern matrices (hash families)
2. Investigate the trade-offs between hash family size and the sizes and strengths of the measurement matrices A_{ρ}
3. Investigate the trade-offs for signal recovery; now, we don't need to use the same recovery technique for each matrix!
4. Cope with noise in the signal; this requires additional conditions, both on the hash family used and the ingredient measurement matrices A_{ρ}

Matrices for
Compressive
Sensing via
Column
Replacement
Charles J.
Colbourn, Daniel Horsley, and Violet R. Syrotiuk

