
Trails of triples in Steiner triple systems

Daniel Horsley (Monash University, Australia)

Joint work with Charles Colbourn and Chengmin Wang



Steiner triple systems and block colourings

1

2

3

4

56

7

8

9

1

23

1

47

1

59

1

68

2

49

2

58

2

67

3

48

3

57

3

69

4

56

7

89



Steiner triple systems and block colourings

1

2

3

4

56

7

8

9

1

23

1

47

1

59

1

68

2

49

2

58

2

67

3

48

3

57

3

69

4

56

7

89

An STS(9)



Steiner triple systems and block colourings

1

2

3

4

56

7

8

9

1

23

1

47

1

59

1

68

2

49

2

58

2

67

3

48

3

57

3

69

4

56

7

89

An STS(9) admitting a colouring of type (3, 3, 2, 2, 1, 1)



Theorem [Kirkman (1847)] An STS(v) exists if and only if v ≥ 1 and
v ≡ 1, 3 (mod 6).
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A PSTS(8) admitting a colouring of type (2, 2, 1, 1, 1)



Necessary conditions and a conjecture

For a PSTS(v) which admits a colouring of type (c1, c2, . . . , ct) to exist we
must have

(i) ci ≤ b v3 c for i = 1, 2, . . . , t; and

(ii) c1 + c2 + · · ·+ ct ≤ µ(v), where µ(v) is the maximum number of triples in
a PSTS(v).

If a colour type (c1, c2, . . . , ct) satisfies (i) and (ii) then we will say it is
v-feasible.

Conjecture [Colbourn, Horsley, Wang (2011)] Let v ≥ 14. For every v -feasible
colour type (c1, c2, . . . , ct) there exists a PSTS(v) admitting a colouring of type
(c1, c2, . . . , ct).
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Reasons to care

I A Kirkman triple system is an STS(6t + 3) admitting a colouring of type
(2t + 1, 2t + 1, . . . , 2t + 1).

I A nearly Kirkman triple system is a maximum PSTS(6t) admitting a
colouring of type (2t, 2t, . . . , 2t).

I A Hanani triple system is an STS(6t + 1) admitting a colouring of type
(2t, 2t, . . . , 2t, t).

I The conjecture is also related to 3-frames and to many other block
colouring problems.

I A strong Kirkman signal set SKSS(v ,m) is a maximum PSTS(v)
admitting a colouring of type (m,m, . . . ,m, r), where 1 ≤ r ≤ m.
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Good news and bad news

We’ll say that a colour type is v-realisable if there exists a PSTS(v) which
admits that colour type.

The realisability of many colour types follows immediately from the realisability
of others.

For example, any STS(15) admitting a colouring of type (5, 5, 5, 5, 5, 5, 5) must
also admit a colouring of type (5, 5, 5, 5, 5, 4, 3, 2, 1).

But, for any large v , there are still vast numbers of feasible colour types which
are not implied in this way.

For example, for v = 15, (4, 4, 4, 4, 4, 4, 4, 4, 3) is not implied by
(5, 5, 5, 5, 5, 5, 5) (or any other colour type).
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Trails of triples

If we can order the triples of a PSTS in such a way that any m consecutive
triples are vertex disjoint, then the PSTS must admit all colourings of type
(c1, c2, . . . , ct) where ci ≤ m for i = 1, 2, . . . , t.

Such an ordering of the triples of a PSTS is called m-pessimal.

Note that m can be at most b v3 c.
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Trails of triples

Theorem [Cohen, Colbourn (2000)] For each v ≥ 1 such that
v ≡ 1, 3 (mod 6), there is an STS(v) admitting an b v+6

9 c-pessimal ordering.

Theorem [Colbourn, Horsley, Wang (2011)] For each sufficiently large v , there
is a maximum PSTS(v) admitting an m-pessimal ordering where
m = v

3 (1− o(1)).

In fact m = b 13 (v − (9v)2/3)c+ O(v1/3).

Corollary For each sufficiently large v , each v -feasible colour type
(c1, c2, . . . , ct) with ci ≤ m for i = 1, 2, . . . , t is realisable.
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Lemma Let n be an odd integer. There exists an decomposition of the
complete tripartite graph Kn,n,n into triples which admits an (n − 2)-pessimal
ordering.
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Theorem [Colbourn, Horsley, Wang (2011)] For each sufficiently large v , there
is a maximum PSTS(v) admitting an m-pessimal ordering where
m = v

3 (1− o(1)).



Future directions

I Can we improve our result to m = v
3 −O(1)?

I Can we make this construction better by making it recursive?

I Prove the colouring conjecture.

I Latin square equivalents of these problems.

I For sufficiently large v , is there a maximum PSTS(v) that admits all
v -feasible colourings?
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That’s all.


