A New Approach to Permutation Polynomials over Finite Fields

Xiang-dong Hou

Department of Mathematics and Statistics University of South Florida

Coding, Cryptology and Combinatorial Designs Singapore, 2011-05-30

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

outline

- 1. Introduction
- 2. Reversed Dickson Polynomials in Characteristic 2

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 3. Desirable Triples
- 4. Families of Desirable Triples
- 5. Open Questions

introduction

1. Introduction

the polynomial $g_{q,n}$

 $q=p^{\kappa}, n\geq 0.$

There exists a polynomial $g_{n,q} \in \mathbb{F}_p[\mathbf{x}]$ satisfying

$$\sum_{oldsymbol{a}\in\mathbb{F}_q}(\mathrm{x}+oldsymbol{a})^n=g_{n,q}(\mathrm{x}^q-\mathrm{x}).$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

We want to know when $g_{n,q}$ is a PP of \mathbb{F}_{q^e} .

Call the triple (n, e; q) desirable if $g_{n,q}$ is a PP of \mathbb{F}_{q^e} .

Waring's formula

$$g_{n,q}(\mathrm{x}) = \sum_{rac{n}{q} \leq \ell \leq rac{n}{q-1}} rac{n}{\ell} inom{I}{n-\ell(q-1)} \mathrm{x}^{n-\ell(q-1)}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Not useful for our purpose!

recurrence / negative n

$$\begin{cases} g_{0,q} = \cdots = g_{q-2,q} = 0, \\ g_{q-1,q} = -1, \\ g_{n,q} = \mathbf{x} g_{n-q,q} + g_{n-q+1,q}, \qquad n \geq q. \end{cases}$$

For n < 0, there exists $g_{n,q} \in \mathbb{F}_p[\mathbf{x}, \mathbf{x}^{-1}]$ such that

$$\sum_{\boldsymbol{a}\in\mathbb{F}_q}(\mathbf{x}+\boldsymbol{a})^n=g_{n,q}(\mathbf{x}^q-\mathbf{x}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $g_{n,q}$ satisfies the above recurrence relation for all $n \in \mathbb{Z}$.

about $g_{n,q}$

- introduced recently (2009 2010)
- q-ary version of the reversed Dickson polynomial in characteristic 2
- ► q = 2: PPs g_{2,n} are related to APN; all known desirable triples (n, e; 2) are contained in 4 families.
- q > 2: several families of desirable triples are found; computer search (q = 3, e ≤ 6 and q = 5, e ≤ 2) produced many desirable triples that need explanation.

(ロ) (同) (三) (三) (三) (○) (○)

reversed Dickson polynomials in char 2

2. Reversed Dickson Polynomials in Characteristic 2

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

p = 2 / reversed Dickson polynomial

 $p = 2, g_{2,n} \in \mathbb{F}_2[\mathbf{x}]$ defined by

$$g_{n,2}(x(1-x)) = x^n + (1-x)^n.$$

The *n*th reversed Dickson polynomial $D_n(1, x) \in \mathbb{Z}[x]$ is defined by

$$D_n(1, x(1-x)) = x^n + (1-x)^n.$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

 $g_{n,2} = D_n(1, \mathbf{x})$ in $\mathbb{F}_2[\mathbf{x}]$.

$g_{2,n}$ and APN

APN

A function $f : \mathbb{F}_q \to \mathbb{F}_q$ is called almost perfect nonlinear (APN) if for each $a \in \mathbb{F}_q^*$ and $b \in \mathbb{F}_q$, the equation f(x + a) - f(x) = b has at most two solutions in \mathbb{F}_q .

Power APN

A power function x^n is an APN function on \mathbb{F}_q if and only if for each $b \in \mathbb{F}_q$, the equation $(x + 1)^n - x^n = b$ has at most two solutions in \mathbb{F}_q .

 $g_{2,n}$ and power APN x^n is an APN on $\mathbb{F}_{2^{2e}} \Rightarrow g_{2,n}$ is a PP of $\mathbb{F}_{2^e} \Rightarrow x^n$ is an APN on \mathbb{F}_{2^e} .

desirable triples with q = 2

Known desirable triples (n, e; 2)

е	n	ref
	$2^k + 1$, $(k, 2e) = 1$	Gold
	$2^{k} + 1$, $(k, 2e) = 1$ $2^{2k} - 2^{k} + 1$, $(k, 2e) = 1$	Kasami
even	$2^{e} + 2^{k} + 1, k > 0, (k - 1, e) = 1$ $2^{8k} + 2^{6k} + 2^{4k} + 2^{2k} - 1$	HMSY
5 <i>k</i>	$2^{8k} + 2^{6k} + 2^{4k} + 2^{2k} - 1$	Dobbertin

Conjecture. The above table is complete for q = 2 (up to equivalence).

desirable triples

3. Desirable Triples

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

equivalence

Facts

►
$$g_{pn,q} = g_{n,q}^p$$
.

▶ If $n_1, n_2 > 0$ are integers such that $n_1 \equiv n_2 \pmod{q^{pe} - 1}$, then $g_{n_1,q} \equiv g_{n_2,q} \pmod{x^{q^e} - x}$.

Equivalence.

If $n_1, n_2 > 0$ are in the same *p*-cyclotomic coset modulo $q^{pe} - 1$, we say that the two triples $(n_1, e; q)$ and $(n_2, e; q)$ are equivalent and we denote this as $(n_1, e; q) \sim (n_2, e; q)$. If $(n_1, e; q) \sim (n_2, e; q)$, then $(n_1, e; q)$ is desirable if and only if $(n_2, e; q)$ is. Assume that (n, e; q) is desirable.

▶
$$gcd(n, q - 1) = 1.$$

• If
$$q = 2$$
, then $gcd(n, 2^{2e} - 1) = 3$.

 If q > 2 or e > 1, then the p-cyclotomic coset of n modulo q^{pe} − 1 has cardinality peκ (q = p^κ).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

power sum

Theorem. Let $\epsilon \in \mathbb{F}_{q^{pe}}$ such that $\epsilon^{q^e} - \epsilon = 1$. Then

$$\sum_{x\in \mathbb{F}_{q^e}}g_{n,q}(x)^k = \sum_{(a,b)\in \mathbb{F}_q imes \mathbb{F}_{q^e}}(a\epsilon+b)^n \Big[\sum_{c\in \mathbb{F}_q}(a\epsilon+b+c)^n\Big]^{k-1}.$$

Consequently, (n, e; q) is desirable if and only if

$$\sum_{(a,b)\in\mathbb{F}_q\times\mathbb{F}_{q^e}}(a\epsilon+b)^n\Big[\sum_{c\in\mathbb{F}_q}(a\epsilon+b+c)^n\Big]^{k-1}\begin{cases}=0 & \text{if } 1\leq k< q^e-1,\\\neq 0 & \text{if } k=q^e-1.\end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

families of desirable triples

4. Families of Desirable Triples

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The following triples are desirable. In all these cases $g_{n,q} \equiv -x^{q^e-2} \pmod{x^{q^e}-x}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

proposition

For
$$n = \alpha_0 q^0 + \dots + \alpha_t q^t$$
, $0 \le \alpha_i \le q - 1$, $w_q(n) = \alpha_0 + \dots + \alpha_t$.
Proposition. Let $n = \alpha_0 q^0 + \dots + \alpha_t q^t$, $0 \le \alpha_i \le q - 1$. Then

$$g_{n,q} = \begin{cases} 0 & \text{if } w_q(n) < q - 1, \\ -1 & \text{if } w_q(n) = q - 1, \\ \alpha_0 x^{q^0} + (\alpha_0 + \alpha_1) x^{q^1} + \dots + (\alpha_0 + \dots + \alpha_{t-1}) x^{q^{t-1}} + \delta \\ & \text{if } w_q(n) = q, \end{cases}$$

where

$$\delta = egin{cases} 1 & ext{if } q = 2, \ 0 & ext{if } q > 2. \end{cases}$$

<□ > < @ > < E > < E > E のQ @

the case $w_q(n) = q$

Theorem. Let $n = \alpha_0 q^0 + \cdots + \alpha_t q^t$, $0 \le \alpha_i \le q - 1$, with $w_q(n) = q$. Then (n, e; q) is desirable if and only if $gcd(\alpha_0 + (\alpha_0 + \alpha_1)x + \cdots + (\alpha_0 + \cdots + \alpha_{t-1})x^{t-1}, x^e - 1) = 1$.

A D F A 同 F A E F A E F A Q A

a useful lemma

Lemma. Let $n = \alpha(p^{0e} + p^{1e} + \dots + p^{(p-1)e}) + \beta$, where $\alpha, \beta \ge 0$ are integers. Then for $x \in \mathbb{F}_{p^e}$,

$$g_{n,p}(x) = egin{cases} g_{lpha p+eta, p}(x) & ext{if } \operatorname{Tr}_{\mathbb{F}_{p^e}/\mathbb{F}_p}(x) = 0, \ x^lpha g_{eta, p}(x) & ext{if } \operatorname{Tr}_{\mathbb{F}_{p^e}/\mathbb{F}_p}(x)
eq 0. \end{cases}$$

Note. The lemma does not hold if p is replaced with q. We do not know if there is a q-ary version of the lemma.

theorem

Theorem. Let p > 2, $n = \alpha(p^{0e} + p^{1e} + \dots + p^{(p-1)e}) + \beta$, where $\alpha, \beta \ge 0$. Then (n, e; p) is desirable if the following two conditions are satisfied.

(i) Both
$$g_{\alpha\rho+\beta,\rho}$$
 and $\mathbf{x}^{\alpha}g_{\beta,\rho}$ are \mathbb{F}_{ρ} -linear on $\mathbb{F}_{\rho^{\varrho}}$ and are 1-1
on $\operatorname{Tr}_{\mathbb{F}_{\rho^{\varrho}}/\mathbb{F}_{\rho}}^{-1}(0) = \{x \in \mathbb{F}_{\rho^{\varrho}} : \operatorname{Tr}_{\mathbb{F}_{\rho^{\varrho}}/\mathbb{F}_{\rho}}(x) = 0\}.$
(ii) $g_{\beta,\rho}(1) \neq 0.$

Note. There are many instances where (i) and (ii) are satisfied.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

example

Example.
Let
$$p = 3$$
, $n = 8(1 + 3^e + 3^{2e}) + 7$. ($\alpha = 8$, $\beta = 7$.)

$$g_{n,3}(x) = \begin{cases} g_{8\cdot3+7,3}(x) = g_{31,3}(x) = x^{3^0} - x^{3^1} - x^{3^2} \\ & \text{if } \operatorname{Tr}_{\mathbb{F}_{3^e}/\mathbb{F}_3}(x) = 0, \\ x^8 g_{7,3} = x^9 & \text{if } \operatorname{Tr}_{\mathbb{F}_{3^e}/\mathbb{F}_3}(x) \neq 0. \end{cases}$$
We have $-g_{31,3}(x^3 - x) = x + x^3 + x^{3^3}$. So $g_{31,3}$ is 1-1 on

 $Tr_{\mathbb{F}_{3^e}/\mathbb{F}_{3}}^{-1}(0) \text{ if and only if } gcd(1 + x + x^3, x^e - 1) = x - 1.$

(日) (日) (日) (日) (日) (日) (日)

Conclusion: (n, e; 3) is desirable if and only if $gcd(1 + x + x^3, x^e - 1) = x - 1$.

a more interesting family

Theorem. Let $n = 4(3^0 + 3^e + 3^{2e}) - 7$. Then (n, e; 3) is desirable. Proof.

$$g_{n,3}(x) = egin{cases} g_{4\cdot 3-7,3}(x) = g_{5,3}(x) & ext{if } \operatorname{Tr}_{\mathbb{F}_{3^e}/\mathbb{F}_3}(x) = 0, \ x^4 g_{-7,3}(x) & ext{if } \operatorname{Tr}_{\mathbb{F}_{3^e}/\mathbb{F}_3}(x)
eq 0. \end{cases}$$

We have $g_{5,3} = -x$, $g_{-7,3} = -x^{-3} + x^{-5} - x^{-7}$. So

$$g_{n,3}(x) = egin{cases} -x & ext{if } \operatorname{Tr}_{\mathbb{F}_{3^e}/\mathbb{F}_3}(x) = 0, \ -x + x^{-1} - x^{-3} & ext{if } \operatorname{Tr}_{\mathbb{F}_{3^e}/\mathbb{F}_3}(x)
eq 0. \end{cases}$$

It is known that $-x + x^{-1} - x^{-3}$ is 1-1 on $\mathbb{F}_{3^e} \setminus \text{Tr}_{\mathbb{F}_{3^e}/\mathbb{F}_3}^{-1}(0)$. (Hollmann and Xiang 04; Yuan, Ding, Wang, Pieprzyk, 08)

theorem

For $m \in \mathbb{Z}$, let m^{\dagger} be the integer such that $0 \le m^{\dagger} \le p^{e} - 2$ and $m^{\dagger} \equiv m \pmod{p^{e} - 1}$.

Theorem. Let *p* be a prime. Assume $e \equiv 0 \pmod{2}$ if p = 2. Let $0 < \alpha, \beta < p^{pe} - 1$ such that (i) $\alpha \equiv p^{\ell} \pmod{\frac{p^e - 1}{p-1}}$ for some $0 \le \ell < e$; (ii) $w_p(\beta) = p - 1$; (iii) $w_p((\alpha p + \beta)^{\dagger}) = p$. Let $n = \alpha(1 + p^e + \dots + p^{(p-1)e}) + \beta$ and write $(\alpha p + \beta)^{\dagger} = a_0 p^0 + \dots + a_t p^t$, $0 \le a_i \le p - 1$.

Then (n, e; p) is desirable if and only if

 $gcd(a_0 + (a_0 + a_1)x + \dots + (a_0 + \dots + a_{t-1})x^{t-1}, x^e - 1) = 1.$

proof of the theorem

Let
$$x \in \mathbb{F}_{p^{e}}$$
. If $\operatorname{Tr}_{\mathbb{F}_{p^{e}}/\mathbb{F}_{p}}(x) = 0$,
 $g_{n,p}(x) = a_{0}x^{p^{0}} + (a_{0} + a_{1})x^{p^{1}} + \dots + (a_{0} + \dots + a_{t-1})x^{p^{t-1}}$.
If $\operatorname{Tr}_{\mathbb{F}_{p^{e}}/\mathbb{F}_{p}}(x) \neq 0$,

$$g_{n,p}(x) = -x^{p^\ell} \mathsf{N}_{\mathbb{F}_{p^e}/\mathbb{F}_p}(x)^s,$$

where s is defined by $\alpha = p^{\ell} + s \frac{p^{e-1}}{p-1}$.

The rest is easy.

open questions

5. Open Questions

a difficult one

Prove that for p = 2, all desirable triples are given in the table. (A similar conjecture for binary power APN has been standing for many years.)

Known desirable triples (n, e; 2)

е	n	ref
	$2^{k} + 1$, $(k, 2e) = 1$	Gold
	$2^{2k}-2^k+1$, $(k,2e)=1$	Kasami
even	$2^{e}+2^{k}+1, k > 0, (k-1, e) = 1$	HMSY
5 <i>k</i>	$2^{8k} + 2^{6k} + 2^{4k} + 2^{2k} - 1$	Dobbertin

another question

Recall:

Theorem. Let $\epsilon \in \mathbb{F}_{q^{pe}}$ such that $\epsilon^{q^e} - \epsilon = 1$. Then (n, e; q) is desirable if and only if

$$\sum_{(a,b)\in\mathbb{F}_q\times\mathbb{F}_{q^e}}(a\epsilon+b)^n\Big[\sum_{c\in\mathbb{F}_q}(a\epsilon+b+c)^n\Big]^{k-1}\begin{cases}=0 & \text{if } 1\leq k< q^e-1,\\\neq 0 & \text{if } k=q^e-1.\end{cases}$$

Question: What can be said about the sum

$$\sum_{(a,b)\in\mathbb{F}_q\times\mathbb{F}_{q^e}}(a\epsilon+b)^n\Big[\sum_{c\in\mathbb{F}_q}(a\epsilon+b+c)^n\Big]^{k-1}?$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

a specific questions

$$p = 3, e = 4, n = 20(1 + 3^e + 3^{2e}) + 219. (\alpha = 20, \beta = 219.)$$

$$g_{n,3}(x) = egin{cases} (x-x^3-x^{3^2})^{3^2} & ext{if } \operatorname{Tr}_{\mathbb{F}_{3^4}/\mathbb{F}_3}(x) = 0, \ [x^{-20}(x+x^3)+x^{-1}+x]^3 & ext{if } \operatorname{Tr}_{\mathbb{F}_{3^4}/\mathbb{F}_3}(x)
eq 0. \end{cases}$$

(n, e; 3) is desirable because of the following curious fact: (*) $x^{-20}(x + x^3) + x^{-1} + x$ is a permutation of $\mathbb{F}_{3^4} \setminus \text{Tr}_{\mathbb{F}_{3^4}/\mathbb{F}_3}(0)$.

Question: Can (*) be generalized to \mathbb{F}_{3^e} for a general *e*?

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●