A New Approach to Permutation Polynomials over Finite Fields

Xiang-dong Hou

Department of Mathematics and Statistics
University of South Florida

Coding, Cryptology and Combinatorial Designs Singapore, 2011-05-30

outline

1. Introduction
2. Reversed Dickson Polynomials in Characteristic 2
3. Desirable Triples
4. Families of Desirable Triples
5. Open Questions
introduction
6. Introduction

the polynomial $g_{q, n}$

$$
q=p^{\kappa}, n \geq 0 .
$$

There exists a polynomial $g_{n, q} \in \mathbb{F}_{p}[x]$ satisfying

$$
\sum_{a \in \mathbb{F}_{q}}(x+a)^{n}=g_{n, q}\left(x^{q}-x\right) .
$$

We want to know when $g_{n, q}$ is a PP of \mathbb{F}_{q}.
Call the triple $(n, e ; q)$ desirable if $g_{n, q}$ is a PP of $\mathbb{F}_{q^{e}}$.

Waring's formula

$$
g_{n, q}(\mathrm{x})=\sum_{\frac{n}{q} \leq \ell \leq \frac{n}{q-1}} \frac{n}{\ell}\binom{l}{n-\ell(q-1)} x^{n-\ell(q-1)} .
$$

Not useful for our purpose!

recurrence / negative n

$$
\left\{\begin{array}{l}
g_{0, q}=\cdots=g_{q-2, q}=0, \\
g_{q-1, q}=-1, \\
g_{n, q}=x g_{n-q, q}+g_{n-q+1, q}, \quad n \geq q .
\end{array}\right.
$$

For $n<0$, there exists $g_{n, q} \in \mathbb{F}_{p}\left[x, x^{-1}\right]$ such that

$$
\sum_{a \in \mathbb{F}_{q}}(x+a)^{n}=g_{n, q}\left(x^{q}-x\right) .
$$

$g_{n, q}$ satisfies the above recurrence relation for all $n \in \mathbb{Z}$.

about $g_{n, q}$

- introduced recently (2009-2010)
- q-ary version of the reversed Dickson polynomial in characteristic 2
- $q=2$: PPs $g_{2, n}$ are related to APN; all known desirable triples $(n, e ; 2)$ are contained in 4 families.
- $q>2$: several families of desirable triples are found; computer search ($q=3, e \leq 6$ and $q=5, e \leq 2$) produced many desirable triples that need explanation.
reversed Dickson polynomials in char 2

2. Reversed Dickson Polynomials in Characteristic 2

$p=2 /$ reversed Dickson polynomial

$p=2, g_{2, n} \in \mathbb{F}_{2}[\mathrm{x}]$ defined by

$$
g_{n, 2}(x(1-x))=x^{n}+(1-x)^{n} .
$$

The nth reversed Dickson polynomial $D_{n}(1, x) \in \mathbb{Z}[\mathrm{x}]$ is defined by

$$
D_{n}(1, x(1-x))=x^{n}+(1-x)^{n} .
$$

$g_{n, 2}=D_{n}(1, \mathrm{x})$ in $\mathbb{F}_{2}[\mathrm{x}]$.

$g_{2, n}$ and APN

APN

A function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is called almost perfect nonlinear (APN) if for each $a \in \mathbb{F}_{q}^{*}$ and $b \in \mathbb{F}_{q}$, the equation $f(x+a)-f(x)=b$ has at most two solutions in \mathbb{F}_{q}.

Power APN

A power function x^{n} is an APN function on \mathbb{F}_{q} if and only if for each $b \in \mathbb{F}_{q}$, the equation $(x+1)^{n}-x^{n}=b$ has at most two solutions in \mathbb{F}_{q}.
$g_{2, n}$ and power APN
x^{n} is an APN on $\mathbb{F}_{2^{2 e}} \Rightarrow g_{2, n}$ is a PP of $\mathbb{F}_{2^{e}} \Rightarrow x^{n}$ is an APN on $\mathbb{F}_{2^{e}}$.

desirable triples with $q=2$

Known desirable triples ($n, e ; 2$)

e	n	ref
	$2^{k}+1, \quad(k, 2 e)=1$	Gold
	$2^{2 k}-2^{k}+1, \quad(k, 2 e)=1$	Kasami
even	$2^{e}+2^{k}+1, \quad k>0,(k-1, e)=1$	HMSY
$5 k$	$2^{8 k}+2^{6 k}+2^{4 k}+2^{2 k}-1$	Dobbertin

Conjecture. The above table is complete for $q=2$ (up to equivalence).

desirable triples

3. Desirable Triples

equivalence

Facts

- $g_{p n, q}=g_{n, q}^{p}$.
- If $n_{1}, n_{2}>0$ are integers such that $n_{1} \equiv n_{2}\left(\bmod q^{p e}-1\right)$, then $g_{n_{1}, q} \equiv g_{n_{2}, q}\left(\bmod x^{q^{e}}-\mathrm{x}\right)$.

Equivalence.
If $n_{1}, n_{2}>0$ are in the same p-cyclotomic coset modulo $q^{p e}-1$, we say that the two triples $\left(n_{1}, e ; q\right)$ and $\left(n_{2}, e ; q\right)$ are equivalent and we denote this as $\left(n_{1}, e ; q\right) \sim\left(n_{2}, e ; q\right)$. If $\left(n_{1}, e ; q\right) \sim\left(n_{2}, e ; q\right)$, then $\left(n_{1}, e ; q\right)$ is desirable if and only if $\left(n_{2}, e ; q\right)$ is.

necessary conditions

Assume that $(n, e ; q)$ is desirable.

- $\operatorname{gcd}(n, q-1)=1$.
- If $q=2$, then $\operatorname{gcd}\left(n, 2^{2 e}-1\right)=3$.
- If $q>2$ or $e>1$, then the p-cyclotomic coset of n modulo $q^{p e}-1$ has cardinality $p e \kappa\left(q=p^{\kappa}\right)$.

power sum

Theorem. Let $\epsilon \in \mathbb{F}_{q^{p e}}$ such that $\epsilon^{q^{e}}-\epsilon=1$. Then

$$
\sum_{x \in \mathbb{F}_{q^{e}}} g_{n, q}(x)^{k}=\sum_{(a, b) \in \mathbb{F}_{q} \times \mathbb{F}_{q^{e}}}(a \epsilon+b)^{n}\left[\sum_{c \in \mathbb{F}_{q}}(a \epsilon+b+c)^{n}\right]^{k-1} .
$$

Consequently, $(n, e ; q)$ is desirable if and only if
$\sum_{(a, b) \in \mathbb{F}_{q} \times \mathbb{F}_{q^{e}}}(a \epsilon+b)^{n}\left[\sum_{c \in \mathbb{F}_{q}}(a \epsilon+b+c)^{n}\right]^{k-1} \begin{cases}=0 & \text { if } 1 \leq k<q^{e}-1, \\ \neq 0 & \text { if } k=q^{e}-1 .\end{cases}$

families of desirable triples

4. Families of Desirable Triples

easy cases

The following triples are desirable. In all these cases
$g_{n, q} \equiv-\mathrm{x}^{q^{e}-2}\left(\bmod \mathrm{x}^{q^{e}}-\mathrm{x}\right)$.

- $\left(q^{p e}-2, e ; q\right), q>2$.
- ($\left.q^{2 e}-q^{e}-1, e ; q\right), q=3^{\kappa}$.
- $\left(3^{2 e+1}-2 \cdot 3^{e}-2, e ; 3\right)$.

proposition

For $n=\alpha_{0} q^{0}+\cdots+\alpha_{t} q^{t}, 0 \leq \alpha_{i} \leq q-1, w_{q}(n)=\alpha_{0}+\cdots+\alpha_{t}$.
Proposition. Let $n=\alpha_{0} q^{0}+\cdots+\alpha_{t} q^{t}, 0 \leq \alpha_{i} \leq q-1$. Then

$$
g_{n, q}=\left\{\begin{array}{lc}
0 & \text { if } w_{q}(n)<q-1 \\
-1 & \text { if } w_{q}(n)=q-1 \\
\alpha_{0} \mathrm{x}^{q^{0}}+\left(\alpha_{0}+\alpha_{1}\right) \mathrm{x}^{q^{1}}+\cdots+\left(\alpha_{0}+\cdots+\alpha_{t-1}\right) \mathrm{x}^{q^{t-1}}+\delta \\
& \text { if } w_{q}(n)=q
\end{array}\right.
$$

where

$$
\delta= \begin{cases}1 & \text { if } q=2 \\ 0 & \text { if } q>2\end{cases}
$$

the case $w_{q}(n)=q$

Theorem. Let $n=\alpha_{0} q^{0}+\cdots+\alpha_{t} q^{t}, 0 \leq \alpha_{i} \leq q-1$, with $w_{q}(n)=q$. Then $(n, e ; q)$ is desirable if and only if

$$
\operatorname{gcd}\left(\alpha_{0}+\left(\alpha_{0}+\alpha_{1}\right) \mathrm{x}+\cdots+\left(\alpha_{0}+\cdots+\alpha_{t-1}\right) \mathrm{x}^{t-1}, \mathrm{x}^{e}-1\right)=1
$$

a useful lemma

Lemma. Let $n=\alpha\left(p^{0 e}+p^{1 e}+\cdots+p^{(p-1) e}\right)+\beta$, where $\alpha, \beta \geq 0$ are integers. Then for $x \in \mathbb{F}_{p^{e}}$,

$$
g_{n, p}(x)= \begin{cases}g_{\alpha p+\beta, p}(x) & \text { if } \operatorname{Tr}_{\mathbb{F}_{p^{e}} / \mathbb{F}_{p}}(x)=0 \\ x^{\alpha} g_{\beta, p}(x) & \text { if } \operatorname{Tr}_{\mathbb{F}_{p^{e}} / \mathbb{F}_{p}}(x) \neq 0\end{cases}
$$

Note. The lemma does not hold if p is replaced with q. We do not know if there is a q-ary version of the lemma.

theorem

Theorem. Let $p>2, n=\alpha\left(p^{0 e}+p^{1 e}+\cdots+p^{(p-1) e}\right)+\beta$, where $\alpha, \beta \geq 0$. Then $(n, e ; p)$ is desirable if the following two conditions are satisfied.
(i) Both $g_{\alpha p+\beta, p}$ and $\mathrm{x}^{\alpha} g_{\beta, p}$ are \mathbb{F}_{p}-linear on $\mathbb{F}_{p^{e}}$ and are 1-1 on $\operatorname{Tr}_{\mathbb{F}_{p^{e} /} / \mathbb{F}_{p}}^{-1}(0)=\left\{x \in \mathbb{F}_{p^{e}}: \operatorname{Tr}_{\mathbb{F}_{p^{e} /} / \mathbb{F}_{p}}(x)=0\right\}$.
(ii) $g_{\beta, p}(1) \neq 0$.

Note. There are many instances where (i) and (ii) are satisfied.

example

Example.
Let $p=3, n=8\left(1+3^{e}+3^{2 e}\right)+7 .(\alpha=8, \beta=7$.

$$
g_{n, 3}(x)= \begin{cases}g_{8 \cdot 3+7,3}(x)=g_{31,3}(x)=x^{3^{0}}-x^{3^{1}}-x^{3^{2}} \\ & \text { if } \operatorname{Tr}_{\mathbb{F}_{3_{e}} / \mathbb{F}_{3}}(x)=0 \\ x^{8} g_{7,3}=\mathrm{x}^{9} & \text { if } \operatorname{Tr}_{\mathbb{F}_{3} e} / \mathbb{F}_{3}(x) \neq 0\end{cases}
$$

We have $-g_{31,3}\left(x^{3}-x\right)=x+x^{3}+x^{3^{3}}$. So $g_{31,3}$ is $1-1$ on $\operatorname{Tr}_{\mathbb{F}_{3} e / \mathbb{F}_{3}}^{-1}(0)$ if and only if $\operatorname{gcd}\left(1+x+x^{3}, x^{e}-1\right)=x-1$.

Conclusion: $(n, e ; 3)$ is desirable if and only if $\operatorname{gcd}\left(1+x+x^{3}, x^{e}-1\right)=x-1$.

a more interesting family

Theorem. Let $n=4\left(3^{0}+3^{e}+3^{2 e}\right)-7$. Then $(n, e ; 3)$ is desirable.
Proof.

$$
g_{n, 3}(x)= \begin{cases}g_{4 \cdot 3-7,3}(x)=g_{5,3}(x) & \text { if } \operatorname{Tr}_{\mathbb{F}_{3} e} / \mathbb{F}_{3}(x)=0 \\ x^{4} g_{-7,3}(x) & \text { if } \operatorname{Tr}_{\mathbb{F}_{3} e / \mathbb{F}_{3}}(x) \neq 0\end{cases}
$$

We have $g_{5,3}=-\mathrm{x}, g_{-7,3}=-\mathrm{x}^{-3}+\mathrm{x}^{-5}-\mathrm{x}^{-7}$. So

$$
g_{n, 3}(x)= \begin{cases}-x & \text { if } \operatorname{Tr}_{\mathbb{F}_{3} e / \mathbb{F}_{3}}(x)=0 \\ -x+x^{-1}-x^{-3} & \text { if } \operatorname{Tr}_{\mathbb{F}_{3} e} / \mathbb{F}_{3}(x) \neq 0\end{cases}
$$

It is known that $-x+x^{-1}-x^{-3}$ is 1-1 on $\mathbb{F}_{3} \backslash \operatorname{Tr}_{\mathbb{F}_{3} e / \mathbb{F}_{3}}^{-1}(0)$. (Hollmann and Xiang 04; Yuan, Ding, Wang, Pieprzyk, 08)

theorem

For $m \in \mathbb{Z}$, let m^{\dagger} be the integer such that $0 \leq m^{\dagger} \leq p^{e}-2$ and $m^{\dagger} \equiv m\left(\bmod p^{e}-1\right)$.
Theorem. Let p be a prime. Assume $e \equiv 0(\bmod 2)$ if $p=2$. Let $0<\alpha, \beta<p^{p e}-1$ such that
(i) $\alpha \equiv p^{\ell}\left(\bmod \frac{p^{e}-1}{p-1}\right)$ for some $0 \leq \ell<e$;
(ii) $w_{p}(\beta)=p-1$;
(iii) $w_{p}\left((\alpha p+\beta)^{\dagger}\right)=p$.

Let $n=\alpha\left(1+p^{e}+\cdots+p^{(p-1) e}\right)+\beta$ and write

$$
(\alpha p+\beta)^{\dagger}=a_{0} p^{0}+\cdots+a_{t} p^{t}, \quad 0 \leq a_{i} \leq p-1 .
$$

Then ($n, e ; p$) is desirable if and only if

$$
\operatorname{gcd}\left(a_{0}+\left(a_{0}+a_{1}\right) x+\cdots+\left(a_{0}+\cdots+a_{t-1}\right) x^{t-1}, x^{e}-1\right)=1 .
$$

proof of the theorem

Let $x \in \mathbb{F}_{p^{e}}$. If $\operatorname{Tr}_{\mathbb{F}_{p^{e}} / \mathbb{F}_{p}}(x)=0$,

$$
g_{n, p}(x)=a_{0} x^{p^{0}}+\left(a_{0}+a_{1}\right) x^{p^{1}}+\cdots+\left(a_{0}+\cdots+a_{t-1}\right) x^{p^{t-1}}
$$

If $\operatorname{Tr}_{\mathbb{F}_{p e} / \mathbb{F}_{p}}(x) \neq 0$,

$$
g_{n, p}(x)=-x^{p^{\ell}} N_{\mathbb{F}_{p^{e}} / \mathbb{F}_{p}}(x)^{s}
$$

where s is defined by $\alpha=p^{\ell}+s \frac{p^{e}-1}{p-1}$.
The rest is easy.

open questions

5. Open Questions

a difficult one

Prove that for $p=2$, all desirable triples are given in the table. (A similar conjecture for binary power APN has been standing for many years.)

Known desirable triples ($n, e ; 2$)

e	n	ref
	$2^{k}+1, \quad(k, 2 e)=1$	Gold
	$2^{2 k}-2^{k}+1, \quad(k, 2 e)=1$	Kasami
even	$2^{e}+2^{k}+1, \quad k>0,(k-1, e)=1$	HMSY
$5 k$	$2^{8 k}+2^{6 k}+2^{4 k}+2^{2 k}-1$	Dobbertin

another question

Recall:

Theorem. Let $\epsilon \in \mathbb{F}_{q^{p e}}$ such that $\epsilon^{q^{e}}-\epsilon=1$. Then $(n, e ; q)$ is desirable if and only if
$\sum_{(a, b) \in \mathbb{F}_{q} \times \mathbb{F}_{q} e}(a \epsilon+b)^{n}\left[\sum_{c \in \mathbb{F}_{q}}(a \epsilon+b+c)^{n}\right]^{k-1} \begin{cases}=0 & \text { if } 1 \leq k<q^{e}-1, \\ \neq 0 & \text { if } k=q^{e}-1 .\end{cases}$

Question: What can be said about the sum

$$
\sum_{(a, b) \in \mathbb{F}_{q} \times \mathbb{F}_{q^{e}}}(a \epsilon+b)^{n}\left[\sum_{c \in \mathbb{F}_{q}}(a \epsilon+b+c)^{n}\right]^{k-1} ?
$$

a specific questions

$$
\begin{gathered}
p=3, e=4, n=20\left(1+3^{e}+3^{2 e}\right)+219 .(\alpha=20, \beta=219 .) \\
g_{n, 3}(x)= \begin{cases}\left(x-x^{3}-x^{3^{2}}\right)^{3^{2}} & \text { if } \operatorname{Tr}_{\mathbb{F}_{3}} / \mathbb{F}_{3}(x)=0, \\
{\left[x^{-20}\left(x+x^{3}\right)+x^{-1}+x\right]^{3}} & \text { if } \operatorname{Tr}_{\mathbb{F}_{3^{4}} / \mathbb{F}_{3}}(x) \neq 0 .\end{cases}
\end{gathered}
$$

($n, e ; 3$) is desirable because of the following curious fact:
$(*) x^{-20}\left(x+x^{3}\right)+x^{-1}+x$ is a permutation of $\mathbb{F}_{3^{4}} \backslash \operatorname{T}_{\mathbb{F}_{3^{4} / \mathbb{F}_{3}}}(0)$.
Question: Can (*) be generalized to \mathbb{F}_{3} for a general e ?

Thank you!

