On Counting Subsets over Finite Fields

Li Jiyou

Department of Mathematics, Shanghai Jiao Tong University

May 2011, Coding, Cryptography and Combinatorial Designs, Singapore

Outline

(1) Motivations
(2) A Sieve Formula
(3) Proofs

4 Applications

Subset Sum Problem (SSP)

- Let A be a finite abelian group and $D \subset A,|D|=n$.

Subset Sum Problem (SSP)

- Let A be a finite abelian group and $D \subset A,|D|=n$.
- For $1 \leq k \leq n$ and $b \in A$, define

$$
N_{D}(k, b)=\#\left\{S \subseteq D \mid \sum_{a \in S} a=b\right\}
$$

Subset Sum Problem (SSP)

- Let A be a finite abelian group and $D \subset A,|D|=n$.
- For $1 \leq k \leq n$ and $b \in A$, define

$$
N_{D}(k, b)=\#\left\{S \subseteq D \mid \sum_{a \in S} a=b\right\} .
$$

Problem (SSP)

Determine if $N_{D}(k, b)>0$ for some $1 \leq k \leq n$.

Computational Complexity of SSP

Theorem

The Subset Sum Problem (SSP) is NP-hard.

Computational Complexity of SSP

Theorem

The Subset Sum Problem (SSP) is NP-hard.
If $n=O(\log |A|)$, then SSP can be solved by a reduction to finding a short vector in a lattice;

Computational Complexity of SSP

Theorem

The Subset Sum Problem (SSP) is NP-hard.
If $n=O(\log |A|)$, then SSP can be solved by a reduction to finding a short vector in a lattice;
If $n=O\left(|A|^{\epsilon}\right)$, then SSP can be solved in polynomial time using dynamic programming;

Computational Complexity of SSP

Theorem

The Subset Sum Problem (SSP) is NP-hard.
If $n=O(\log |A|)$, then SSP can be solved by a reduction to finding a short vector in a lattice;
If $n=O\left(|A|^{\epsilon}\right)$, then SSP can be solved in polynomial time using dynamic programming;
It is the basis of public-key cryptosystems of knapsack type.

Counting version of SSP

Problem

How to compute $N_{D}(b)=\sum_{k=0}^{n} N_{D}(k, b)$, or more precisely, compute $N_{D}(k, b)$?

Counting version of SSP

Problem

How to compute $N_{D}(b)=\sum_{k=0}^{n} N_{D}(k, b)$, or more precisely, compute $N_{D}(k, b)$?

For example, Erdos and Heilbronn proved in 1964 that when A is a prime field Z_{p} and $n=p$,

$$
N_{D}(b)=\frac{2^{n}}{p}(1+o(p))
$$

as $\frac{n^{3}}{p^{2}} \rightarrow \infty$ as $p \rightarrow \infty$.

Covering Version of SSP

Define $D^{k}=\left\{a_{1}+a_{2}+\cdots+a_{k}, a_{i} \in D, a_{i} \neq a_{j}, i \neq j\right\}$.

Problem

Determine if $D^{k}=A$.

A Typical Example

- Let $A=\mathbb{F}_{q^{h}}^{*}=\mathbb{F}_{q}[\alpha]^{*}$ and $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$. Then

A Typical Example

- Let $A=\mathbb{F}_{q^{n}}^{*}=\mathbb{F}_{q}[\alpha]^{*}$ and $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$. Then
- $N_{D}(k, b)>0$ for any $b \in \mathbb{F}_{q^{n}}^{*}$ means that $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$ is a generator set of $\mathbb{F}_{q^{n}}^{*} ;$

A Typical Example

- Let $A=\mathbb{F}_{q^{h}}^{*}=\mathbb{F}_{q}[\alpha]^{*}$ and $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$. Then
- $N_{D}(k, b)>0$ for any $b \in \mathbb{F}_{q^{n}}^{*}$ means that $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$ is a generator set of $\mathbb{F}_{q^{n}}^{*}$;
- Equivalently, each $b \in \mathbb{F}_{q^{h}}^{*}$ can be written to a product of k distinct elements in $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$;

A Typical Example

- Let $A=\mathbb{F}_{q^{h}}^{*}=\mathbb{F}_{q}[\alpha]^{*}$ and $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$. Then
- $N_{D}(k, b)>0$ for any $b \in \mathbb{F}_{q^{n}}^{*}$ means that $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$ is a generator set of $\mathbb{F}_{q^{n}}^{*}$;
- Equivalently, each $b \in \mathbb{F}_{q^{h}}^{*}$ can be written to a product of k distinct elements in $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$;
- Note that $|D|=q$ is very small compared to $|A|=q^{h}$ when h is large;

A Typical Example

- Let $A=\mathbb{F}_{q^{h}}^{*}=\mathbb{F}_{q}[\alpha]^{*}$ and $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$. Then
- $N_{D}(k, b)>0$ for any $b \in \mathbb{F}_{q^{n}}^{*}$ means that $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$ is a generator set of $\mathbb{F}_{q^{n}}^{*}$;
- Equivalently, each $b \in \mathbb{F}_{q^{n}}^{*}$ can be written to a product of k distinct elements in $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$;
- Note that $|D|=q$ is very small compared to $|A|=q^{h}$ when h is large;
- This is a basic problem in computational finite field theory;

A Typical Example

- Let $A=\mathbb{F}_{q^{h}}^{*}=\mathbb{F}_{q}[\alpha]^{*}$ and $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$. Then
- $N_{D}(k, b)>0$ for any $b \in \mathbb{F}_{q^{n}}^{*}$ means that $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$ is a generator set of $\mathbb{F}_{q^{n}}^{*}$;
- Equivalently, each $b \in \mathbb{F}_{q^{n}}^{*}$ can be written to a product of k distinct elements in $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$;
- Note that $|D|=q$ is very small compared to $|A|=q^{h}$ when h is large;
- This is a basic problem in computational finite field theory;
- It also arises from graph theory and number theoretic algorithms and has significant application in coding theory.

Chung's construction

- $V(G)=A ;$

Chung's construction

- $V(G)=A$;
- $\forall \beta_{1}, \beta_{2} \in V(G),\left(\beta_{1}, \beta_{2}\right) \in E(G)$ iff $\beta_{1} / \beta_{2} \in D$;

Chung's construction

- $V(G)=A$;
- $\forall \beta_{1}, \beta_{2} \in V(G),\left(\beta_{1}, \beta_{2}\right) \in E(G)$ iff $\beta_{1} / \beta_{2} \in D$;
- $G=G(h, q, \alpha)$ is called a q-difference graph.

Chung's construction

- $V(G)=A$;
- $\forall \beta_{1}, \beta_{2} \in V(G),\left(\beta_{1}, \beta_{2}\right) \in E(G)$ iff $\beta_{1} / \beta_{2} \in D$;
- $G=G(h, q, \alpha)$ is called a q-difference graph.
- $G=G(h, q, \alpha)$ are good expanders with small diameters;

Chung's construction

- $V(G)=A$;
- $\forall \beta_{1}, \beta_{2} \in V(G),\left(\beta_{1}, \beta_{2}\right) \in E(G)$ iff $\beta_{1} / \beta_{2} \in D$;
- $G=G(h, q, \alpha)$ is called a q-difference graph.
- $G=G(h, q, \alpha)$ are good expanders with small diameters;
- They are studied firstly by F. R. Chung, N. M. Katz, and more generally by W. C. Li and K. Q. Feng, etc.

Chung's construction

- $V(G)=A$;
- $\forall \beta_{1}, \beta_{2} \in V(G),\left(\beta_{1}, \beta_{2}\right) \in E(G)$ iff $\beta_{1} / \beta_{2} \in D$;
- $G=G(h, q, \alpha)$ is called a q-difference graph.
- $G=G(h, q, \alpha)$ are good expanders with small diameters;
- They are studied firstly by F. R. Chung, N. M. Katz, and more generally by W. C. Li and K. Q. Feng, etc.
- Applications: connection networks; extremal graph theory; cryptography; computational complexity, etc.

Geometric Examples

Problem

For which k, m, the following variety defined over F_{q} has a rational point:

$$
\begin{array}{r}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{k}\right)=b_{1} \\
f_{2}\left(x_{1}, x_{2}, \cdots, x_{k}\right)=b_{2} \\
\cdots, \cdots \\
f_{m}\left(x_{1}, x_{2}, \cdots, x_{k}\right)=b_{m} \\
x_{i}-x_{j} \neq 0
\end{array}
$$

A Concrete Geometric Example

Problem

$$
\begin{gathered}
\sum_{i=1}^{k} x_{i}=b_{1} \\
\sum_{1 \leq i_{1}<i_{2} \leq k} x_{i_{1}} x_{i_{2}}=b_{2} \\
\cdots, \\
\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq k} x_{i_{1}} \cdots x_{i_{m}}=b_{m} \\
x_{i}-x_{j} \neq 0(i \neq j), x_{i} \in \mathbf{F}_{q} ;
\end{gathered}
$$

A Concrete Geometric Example

For which k and n, there is a k-subset $S \subseteq \mathbf{F}_{q}$ such that:

$$
\begin{gathered}
\sum_{a \in S} a=b_{1}, \\
\sum_{\{a, b\} \subseteq S} a b=b_{2}, \\
\cdots, \\
\sum_{\{a, b, \cdots, c\} \subseteq \in S} a b \cdots c=b_{m} .
\end{gathered}
$$

A Basic Example

- We note that

$$
N_{D}(k, b)=\#\left\{\left(x_{1}, \cdots, x_{k}\right) \mid x_{1}+\cdots+x_{k}=b, x_{i} \in D, x_{i} \neq x_{j}, \forall i \neq j\right\}
$$

A Basic Example

- We note that
$N_{D}(k, b)=\#\left\{\left(x_{1}, \cdots, x_{k}\right) \mid x_{1}+\cdots+x_{k}=b, x_{i} \in D, x_{i} \neq x_{j}, \forall i \neq j\right\} ;$
- Let $A=\mathbb{F}_{q}$ and $D=A$;

A Basic Example

- We note that

$$
N_{D}(k, b)=\#\left\{\left(x_{1}, \cdots, x_{k}\right) \mid x_{1}+\cdots+x_{k}=b, x_{i} \in D, x_{i} \neq x_{j}, \forall i \neq j\right\}
$$

- Let $A=\mathbb{F}_{q}$ and $D=A$;
- Let X be the number of solutions of the equation

$$
x_{1}+x_{2}+\cdots+x_{k}=b, x_{i} \in \mathbb{F}_{q}
$$

A Basic Example

- We note that

$$
N_{D}(k, b)=\#\left\{\left(x_{1}, \cdots, x_{k}\right) \mid x_{1}+\cdots+x_{k}=b, x_{i} \in D, x_{i} \neq x_{j}, \forall i \neq j\right\} ;
$$

- Let $A=\mathbb{F}_{q}$ and $D=A$;
- Let X be the number of solutions of the equation

$$
x_{1}+x_{2}+\cdots+x_{k}=b, x_{i} \in \mathbb{F}_{q}
$$

- Let $X_{i j}$ be the number of solutions of the equation

$$
x_{1}+x_{2}+\cdots+x_{k}=b, x_{i} \in \mathbb{F}_{q}, x_{i}=x_{j}
$$

A Basic Example

- We note that

$$
N_{D}(k, b)=\#\left\{\left(x_{1}, \cdots, x_{k}\right) \mid x_{1}+\cdots+x_{k}=b, x_{i} \in D, x_{i} \neq x_{j}, \forall i \neq j\right\} ;
$$

- Let $A=\mathbb{F}_{q}$ and $D=A$;
- Let X be the number of solutions of the equation

$$
x_{1}+x_{2}+\cdots+x_{k}=b, x_{i} \in \mathbb{F}_{q}
$$

- Let $X_{i j}$ be the number of solutions of the equation

$$
x_{1}+x_{2}+\cdots+x_{k}=b, x_{i} \in \mathbb{F}_{q}, x_{i}=x_{j} ;
$$

- We have that

$$
N_{\mathbb{F}_{q}}(k, b)=\left|\bigcap_{1 \leq i<j \leq k} \overline{X_{i j}}\right| .
$$

The Inclusion-exclusion Sieving

- We have the classical inclusion-exclusion sieving

$$
\begin{aligned}
|\bar{X}|= & \left|\bigcap_{1 \leq i<j \leq k} \overline{X_{i j}}\right| \\
= & |X|-\sum_{1 \leq i<j \leq k}\left|X_{i j}\right|+\sum_{1 \leq i<j \leq k, 1 \leq s<t \leq k,(i, j) \neq(s, t)}\left|X_{i j} \cap X_{s t}\right| \\
& -\cdots+(-1)^{\binom{k}{2}}\left|\bigcap_{1 \leq i<j \leq k} X_{i j}\right| .
\end{aligned}
$$

The Inclusion-exclusion Sieving

- We have the classical inclusion-exclusion sieving

$$
\begin{aligned}
|\bar{X}|= & \left|\bigcap_{1 \leq i<j \leq k} \overline{X_{i j}}\right| \\
= & |X|-\sum_{1 \leq i<j \leq k}\left|X_{i j}\right|+\sum_{1 \leq i<j \leq k, 1 \leq s<t \leq k,(i, j) \neq(s, t)}\left|X_{i j} \cap X_{s t}\right| \\
& -\cdots+(-1)^{\binom{k}{2}}\left|\bigcap_{1 \leq i<j \leq k} X_{i j}\right| .
\end{aligned}
$$

- There are totally $2\binom{k}{2}$ terms!

Brun's Sieve

- $\left|\bar{X} \geq|X|-\sum_{1 \leq i<j \leq k}\right| X_{i j} \mid ;$

Brun's Sieve

- $\left|\bar{X} \geq|X|-\sum_{1 \leq i<j \leq k}\right| X_{i j} \mid ;$
- The number of terms is $1+\binom{k}{2}$;

Brun's Sieve

- $\left|\bar{X} \geq|X|-\sum_{1 \leq i<j \leq k}\right| X_{i j} \mid ;$
- The number of terms is $1+\binom{k}{2}$;
- The sum of remain $2\left(\begin{array}{l}\binom{k}{2}-\binom{k}{2}-1 \text { terms may cause a big }\end{array}\right.$ error and thus a weak lower bound.

Bonferroni Inequality

$$
\begin{gathered}
\left|\bar{X} \geq|X|-\sum_{1 \leq i<j \leq k}\right| X_{i j}\left|+\sum_{1 \leq i<j \leq k, 1 \leq s<t \leq k,(i, j) \neq(s, t)}\right| X_{i j \cap}\left|X_{s t}\right| \\
-\sum_{i j}\left|X_{s t} \cap X_{m n}\right| ;
\end{gathered}
$$

Bonferroni Inequality

-

$$
\left|\bar{X} \geq|X|-\sum_{1 \leq i<j \leq k}\right| X_{i j}\left|+\sum_{1 \leq i<j \leq k, 1 \leq s<t \leq k,(i, j) \neq(s, t)}\right| X_{i j}\left|X_{s t}\right|
$$

- The number of terms is $1+\binom{k}{2}+\binom{\binom{k}{2}}{2}+\binom{\binom{k}{2}}{3}$;

Bonferroni Inequality

$$
\begin{array}{r}
\left|\bar{X} \geq|X|-\sum_{1 \leq i<j \leq k}\right| X_{i j}\left|+\sum_{1 \leq i<j \leq k, 1 \leq s<t \leq k,(i, j) \neq(s, t)}\right| X_{i j}\left|X_{s t}\right| \\
-\sum_{i j \cap}\left|X_{s t} \cap X_{m n}\right|
\end{array}
$$

- The number of terms is $1+\binom{k}{2}+\left(\begin{array}{c}k \\ 2 \\ 2\end{array}\right)+\binom{k}{\binom{k}{3}}$;
- This lower bound may be better than Brun's sieve but more complicated.

Weighted Cases

- D is a nonempty set and $X \subseteq D^{k}$;

Weighted Cases

- D is a nonempty set and $X \subseteq D^{k}$;
- $f\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ is a complex valued function;

Weighted Cases

- D is a nonempty set and $X \subseteq D^{k}$;
- $f\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ is a complex valued function;
- Consider the summation

$$
F=\sum_{\substack{\left\{x_{1}, x_{2}, \cdots, x_{i}\right\} \in X \\ \text { all } x_{i} \text { are distinct }}} f\left(x_{1}, x_{2}, \cdots, x_{k}\right),
$$

Weighted Cases

- D is a nonempty set and $X \subseteq D^{k}$;
- $f\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ is a complex valued function;
- Consider the summation

$$
F=\sum_{\substack{\left\{x_{1}, x_{2}, \cdots, x_{i}\right\} \in X \\ \text { al } x_{i} \text { are distinct }}} f\left(x_{1}, x_{2}, \cdots, x_{k}\right),
$$

- When $f\left(x_{1}, x_{2}, \cdots, x_{k}\right) \equiv 1$ we have $F=|\bar{X}|$;

Weighted Cases

- D is a nonempty set and $X \subseteq D^{k}$;
- $f\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ is a complex valued function;
- Consider the summation

$$
F=\sum_{\substack{\left\{x_{1}, x_{2}, \cdots, x_{k}\right\} \in X \\ \text { all } x_{i} \text { are distinct }}} f\left(x_{1}, x_{2}, \cdots, x_{k}\right)
$$

- When $f\left(x_{1}, x_{2}, \cdots, x_{k}\right) \equiv 1$ we have $F=|\bar{X}|$;
- Note that when $f\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ is symmetric, we can regard F as a summation over certain subsets over D.

General Case of Inclusion-exclusion Sieving

$$
\begin{aligned}
F= & \sum_{\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in \bigcap_{1 \leq i<j \leq k} \overline{X_{i j}}} f\left(x_{1}, x_{2}, \cdots, x_{k}\right) \\
& =\sum_{\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in X} f\left(x_{1}, x_{2}, \cdots, x_{k}\right) \\
& -\sum_{1 \leq i<j \leq k} \sum_{\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in X_{i j}} f\left(x_{1}, x_{2}, \cdots, x_{k}\right) \\
& +\sum_{1 \leq i<j \leq k, 1 \leq s<t \leq k,(i, j) \neq(s, t)} \sum_{\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in X_{i j} \cap x_{s t}} f\left(x_{1}, x_{2}, \cdots, x_{k}\right) \\
& \cdots \sum_{\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in \bigcap_{1 \leq i<j \leq k} x_{i j}} f\left(x_{1}, x_{2}, \cdots, x_{k}\right) .
\end{aligned}
$$

Notations

- For $\tau \in S_{k}$, suppose τ factors into disjoint cycles as

$$
\tau=\left(i_{1} i_{2} \cdots i_{a_{1}}\right)\left(j_{1} j_{2} \cdots j_{a_{2}}\right) \cdots\left(l_{1} l_{2} \cdots l_{a_{s}}\right), 1 \leq i \leq s .
$$

Notations

- For $\tau \in S_{k}$, suppose τ factors into disjoint cycles as

$$
\tau=\left(i_{1} i_{2} \cdots i_{a_{1}}\right)\left(j_{1} j_{2} \cdots j_{a_{2}}\right) \cdots\left(l_{1} l_{2} \cdots l_{a_{s}}\right), 1 \leq i \leq s
$$

- Define

$$
X_{\tau}=\left\{\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in X, x_{i_{1}}=\cdots=x_{i_{a_{1}}}, \cdots, x_{l_{1}}=\cdots=x_{l_{s}}\right\} .
$$

The Formula

Theorem (J. Li and D. Wan, 2008)

Let \bar{X}, X_{τ} be defined as above. Then we have

$$
|\bar{X}|=\sum_{c c c} \operatorname{sign}(\tau)\left|X_{\tau}\right| .
$$

Symmetry

- The symmetric group S_{k} acts on D^{k} naturally by permuting coordinates.

Symmetry

- The symmetric group S_{k} acts on D^{k} naturally by permuting coordinates.
- For given $\tau \in S_{k}$ and $x=\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in D^{k}$,

$$
\tau \circ x=\left(x_{\tau(1)}, x_{\tau(2)}, \cdots, x_{\tau(k)}\right)
$$

Symmetry

- The symmetric group S_{k} acts on D^{k} naturally by permuting coordinates.
- For given $\tau \in S_{k}$ and $x=\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in D^{k}$,

$$
\tau \circ x=\left(x_{\tau(1)}, x_{\tau(2)}, \cdots, x_{\tau(k)}\right)
$$

- Let G be a subgroup of S_{k}. A subset $X \subset D^{k}$ is said to be G-symmetric if for any $x \in X$ and any $g \in G, g \circ x \in X$.

Symmetry

- The symmetric group S_{k} acts on D^{k} naturally by permuting coordinates.
- For given $\tau \in S_{k}$ and $x=\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in D^{k}$,

$$
\tau \circ x=\left(x_{\tau(1)}, x_{\tau(2)}, \cdots, x_{\tau(k)}\right)
$$

- Let G be a subgroup of S_{k}. A subset $X \subset D^{k}$ is said to be G-symmetric if for any $x \in X$ and any $g \in G, g \circ x \in X$.
- In particular, a S_{k}-symmetric X is simply called symmetric.

Special Cases

Corollary

$$
|\bar{X}|=\sum_{\tau \in G_{k}} \operatorname{sign}(\tau) G(\tau)\left|X_{\tau}\right|,
$$

where G_{k} is the set of G-conjugacy class of S_{k} and $G(\tau)$ is the orbit length of τ by G-conjugate action on S_{k}.

Special Case

Corollary

If X is symmetric, then

$$
|X|=\sum_{\tau \in C_{k}}(-1)^{k-l(\tau)} C(\tau)\left|X_{\tau}\right|,
$$

Special Case

Corollary

If X is symmetric, then

$$
|X|=\sum_{\tau \in C_{k}}(-1)^{k-I(\tau)} C(\tau)\left|X_{\tau}\right|
$$

- The number of terms is $p(k)=2^{O(\sqrt{k})}$.

Special Case 2

Corollary

If X is strongly symmetric, then we have

$$
|\bar{X}|=\sum_{i=1}^{k}(-1)^{k-i} c(k, i)\left|X_{i}\right|
$$

where X_{i} is defined as $X_{\tau_{i}}$ for some $\tau_{i} \in S_{k}$ with $I\left(\tau_{i}\right)=i$ and $c(k, i)$ is the signless Stirling number of the first kind.

Special Case 2

Corollary

If X is strongly symmetric, then we have

$$
|\bar{X}|=\sum_{i=1}^{k}(-1)^{k-i} c(k, i)\left|X_{i}\right|
$$

where X_{i} is defined as $X_{\tau_{i}}$ for some $\tau_{i} \in S_{k}$ with $I\left(\tau_{i}\right)=i$ and $c(k, i)$ is the signless Stirling number of the first kind.

- The number of terms is k.

Brief Review

$$
2\binom{k}{2} \rightarrow k!\rightarrow p(k) \rightarrow k .
$$

Proof-0

Lemma (Möbius Inversion Formula)

Let (P, \leq) be a finite partially ordered set. Let $f, g: P \rightarrow \mathbb{C}$. Then

$$
g(x)=\sum_{x \leq y} f(y), \text { for all } x \in P
$$

if and only if

$$
f(x)=\sum_{x \leq y} \mu(x, y) g(y), \text { for all } x \in P
$$

where $\mu(x, y)$ is the Möbius function defined over the incidence algebra $\operatorname{Inc}(P)$.

Proof-1

- Let $[k]$ be the set $\{1,2, \cdots, k\}$. Let Π_{k} be the set of set partitions of $[k]$.

Proof-1

- Let $[k]$ be the set $\{1,2, \cdots, k\}$. Let Π_{k} be the set of set partitions of $[k]$.
- Define a binary relation " \leq " on Π_{k} as follows: $\tau \leq \delta$ if every block of τ is contained in a block of δ.

Proof-1

- Let $[k]$ be the set $\{1,2, \cdots, k\}$. Let Π_{k} be the set of set partitions of $[k]$.
- Define a binary relation " \leq " on Π_{k} as follows: $\tau \leq \delta$ if every block of τ is contained in a block of δ.
- For instance, $\{1,2\}\{3,4\}\{5,6\} \leq\{1,2,3,4\}\{5,6\}$ and $\{1,3\}\{2\}\{4\}\{5\}\{6\} \leq\{1,2,3\}\{4\}\{5,6\}$.

Proof-1

- Let $[k]$ be the set $\{1,2, \cdots, k\}$. Let Π_{k} be the set of set partitions of $[k]$.
- Define a binary relation " \leq " on Π_{k} as follows: $\tau \leq \delta$ if every block of τ is contained in a block of δ.
- For instance, $\{1,2\}\{3,4\}\{5,6\} \leq\{1,2,3,4\}\{5,6\}$ and $\{1,3\}\{2\}\{4\}\{5\}\{6\} \leq\{1,2,3\}\{4\}\{5,6\}$.
- One checks that Π_{k} is indeed a partially ordered set.

Proof-2

- For a set partition $\tau \in \Pi_{k}$, define X_{τ} naturally.

Proof-2

- For a set partition $\tau \in \Pi_{k}$, define X_{τ} naturally.
- For any $\tau \in \Pi_{k}$, define X_{τ}° to be the set of vectors $x \in X_{\tau}$ such that there does not exist $\delta \in \Pi_{k}$ satisfying $\tau<\delta$ and $x \in X_{\delta}$.

Proof-2

- For a set partition $\tau \in \Pi_{k}$, define X_{τ} naturally.
- For any $\tau \in \Pi_{k}$, define X_{τ}° to be the set of vectors $x \in X_{\tau}$ such that there does not exist $\delta \in \Pi_{k}$ satisfying $\tau<\delta$ and $x \in X_{\delta}$.

Proof-2

- For a set partition $\tau \in \Pi_{k}$, define X_{τ} naturally.
- For any $\tau \in \Pi_{k}$, define X_{τ}° to be the set of vectors $x \in X_{\tau}$ such that there does not exist $\delta \in \Pi_{k}$ satisfying $\tau<\delta$ and $x \in X_{\delta}$.

$$
\left|X_{\delta}\right|=\sum_{\delta \leq \tau}\left|X_{\tau}^{\circ}\right|
$$

Proof-2

- For a set partition $\tau \in \Pi_{k}$, define X_{τ} naturally.
- For any $\tau \in \Pi_{k}$, define X_{τ}° to be the set of vectors $x \in X_{\tau}$ such that there does not exist $\delta \in \Pi_{k}$ satisfying $\tau<\delta$ and $x \in X_{\delta}$.
-

$$
\left|X_{\delta}\right|=\sum_{\delta \leq \tau}\left|X_{\tau}^{\circ}\right|
$$

- and thus by the Möbius Inversion Formula we have

$$
\left|X_{\delta}^{\circ}\right|=\sum_{\delta \leq \tau} \mu(\delta, \tau)\left|X_{\tau}\right| .
$$

Proof-3

- In particular, let $\delta=1=\{1\}\{2\} \cdots\{k\}$, then X_{1}° is just \bar{X}.

Proof-3

- In particular, let $\delta=1=\{1\}\{2\} \cdots\{k\}$, then X_{1}° is just \bar{X}.
- Thus we have

$$
|\bar{X}|=\sum_{1 \leq \tau} \mu(1, \tau)\left|X_{\tau}\right|
$$

Proof-3

- In particular, let $\delta=1=\{1\}\{2\} \cdots\{k\}$, then X_{1}° is just \bar{X}.
- Thus we have

$$
\begin{aligned}
|\bar{X}| & =\sum_{1 \leq \tau} \mu(1, \tau)\left|X_{\tau}\right| \\
& =\sum_{\tau \in \Pi_{k}} \mu(1, \tau)\left|X_{\tau}\right|
\end{aligned}
$$

Proof-3

- In particular, let $\delta=1=\{1\}\{2\} \cdots\{k\}$, then X_{1}° is just \bar{X}.
- Thus we have

$$
\begin{aligned}
|\bar{X}| & =\sum_{1 \leq \tau} \mu(1, \tau)\left|X_{\tau}\right| \\
& =\sum_{\tau \in \Pi_{k}} \mu(1, \tau)\left|X_{\tau}\right| \\
& =\sum_{\tau \in \Pi_{k}:\left(n_{1}, n_{2}, \cdots, n_{l}\right)} \prod_{i=1}^{l}(-1)^{n_{i}-1}\left(n_{i}-1\right)!\left|X_{\tau}\right|
\end{aligned}
$$

Proof-3

- In particular, let $\delta=1=\{1\}\{2\} \cdots\{k\}$, then X_{1}° is just \bar{X}.
- Thus we have

$$
\begin{aligned}
|\bar{X}| & =\sum_{1 \leq \tau} \mu(1, \tau)\left|X_{\tau}\right| \\
& =\sum_{\tau \in \Pi_{k}} \mu(1, \tau)\left|X_{\tau}\right| \\
& =\sum_{\tau \in \Pi_{k}:\left(n_{1}, n_{2}, \cdots, n_{l}\right)} \prod_{i=1}^{l}(-1)^{n_{i}-1}\left(n_{i}-1\right)!\left|X_{\tau}\right| \\
& =\sum_{\tau \in S_{k}} \operatorname{sign}(\tau)\left|X_{\tau}\right|
\end{aligned}
$$

Proof-3

- In particular, let $\delta=1=\{1\}\{2\} \cdots\{k\}$, then X_{1}° is just \bar{X}.
- Thus we have

$$
\begin{aligned}
|\bar{X}| & =\sum_{1 \leq \tau} \mu(1, \tau)\left|X_{\tau}\right| \\
& =\sum_{\tau \in \Pi_{k}} \mu(1, \tau)\left|X_{\tau}\right| \\
& =\sum_{\tau \in \Pi_{k}:\left(n_{1}, n_{2}, \cdots, n_{l}\right)} \prod_{i=1}^{l}(-1)^{n_{i}-1}\left(n_{i}-1\right)!\left|X_{\tau}\right| \\
& =\sum_{\tau \in S_{k}} \operatorname{sign}(\tau)\left|X_{\tau}\right|
\end{aligned}
$$

- The last equality comes from an elementary counting on the number of permutations for a given set partition of $[k]$.

Application on Generators over Finite Fields

Theorem (J. Li and D. Wan, 2009)

Let $A=\mathbb{F}_{q^{h}}^{*}=\mathbb{F}_{q}[\alpha]^{*}$ and $D=\left\{\alpha+a \mid a \in \mathbb{F}_{q}\right\}$. Then, for any
$\epsilon>0$, there is a constant $c_{\epsilon}>0$ such that if $h<\epsilon k^{1 / 2}$ and $4 \epsilon^{2} \ln ^{2} q<k \leq c_{\epsilon} q$, we have $N_{D}(k, b)>0$ for any $b \in \mathbb{F}_{q^{n}}^{*}$. In other words, each element of $\mathrm{F}_{q^{n}}^{*}$ can be written to the product of precisely k distinct factors each in $\left\{\alpha+\boldsymbol{a}, \boldsymbol{a} \in \mathbf{F}_{q}\right\}$.

Applications on Counting Rational Points

- Let N be the number of k-subset $S \subseteq \mathbf{F}_{q}$ satisfying that:

$$
\begin{gathered}
\sum_{a \in S} a=b_{1}, \\
\sum_{\{a, b\} \subseteq S} a b=b_{2}, \\
\cdots, \\
\sum_{\{a, b, \cdots, c\} \subseteq \in S} a b \cdots c=b_{m}
\end{gathered}
$$

Then we have

Applications on Counting Rational Points

- Let N be the number of k-subset $S \subseteq \mathbf{F}_{q}$ satisfying that:

$$
\begin{gathered}
\sum_{a \in S} a=b_{1} \\
\sum_{\{a, b\} \subseteq S} a b=b_{2} \\
\cdots, \\
\sum_{\{a, b, \cdots, c\} \subseteq \in S} a b \cdots c=b_{m}
\end{gathered}
$$

Then we have
0

$$
\left|N-\frac{1}{q^{m}}\binom{q}{k}\right| \leq\binom{ q / p+m \sqrt{q}+k}{k}
$$

Result on Counting Subsets over Finite Abelian Groups

Theorem (J. Li and D. Wan, 2011)

Suppose we are given the isomorphism
$A \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{s}}$ with $n=|A|=n_{1} \cdots n_{s}$. Given $b \in A$, suppose $\left(b_{1}, b_{2}, \cdots, b_{s}\right)$ is the image of b in the isomorphism. Let $N(k, b)$ be the number of k-subsets of A whose elements sum to b. Then we have

$$
N(k, b)=\frac{1}{n} \sum_{r \mid(n, k)}(-1)^{k+\frac{k}{r}}\binom{n / r}{k / r} \Phi(r, b),
$$

where $\Phi(r, b)=\sum_{d\left|r,\left(n_{i}, d\right)\right| b_{i}} \mu(r / d) \prod_{i=1}^{s}\left(n_{i}, d\right)$ and μ is the usual Möbius function defined over the integers.

Remark

- In particular, when A is cyclic then

$$
\Phi(r, b)=\sum_{d \mid(b, r)} \mu(r / d) d
$$

and the formular for this case was first found by Ramanathan in 1944 using the properties of the Ramanujan's trigonometrical sum.

Remark

- In particular, when A is cyclic then

$$
\Phi(r, b)=\sum_{d \mid(b, r)} \mu(r / d) d
$$

and the formular for this case was first found by Ramanathan in 1944 using the properties of the Ramanujan's trigonometrical sum.

- Interestingly, $\Phi(r, b)$ can be also defined as

$$
\Phi(r, b)=\sum_{k,(k, r)=1} e^{2 \pi i k b / r} .
$$

Remark

- In particular, when A is cyclic then

$$
\Phi(r, b)=\sum_{d \mid(b, r)} \mu(r / d) d
$$

and the formular for this case was first found by Ramanathan in 1944 using the properties of the Ramanujan's trigonometrical sum.

- Interestingly, $\Phi(r, b)$ can be also defined as

$$
\Phi(r, b)=\sum_{k,(k, r)=1} e^{2 \pi i k b / r} .
$$

- In particular,

$$
N(k, 0)=\frac{1}{n} \sum_{r \mid(n, k)}(-1)^{k+\frac{k}{r}} \phi(r)\binom{n / r}{k / r},
$$

where ϕ is the Euler function.

Corollary

Theorem

Let $N(b)$ be the number of subsets of A sum to b. Then we have

$$
N(b)=\frac{1}{n} \sum_{r \mid n, r \text { odd }} \Phi(r, b) 2^{n / r} .
$$

Corollary

Theorem

Let $N(b)$ be the number of subsets of A sum to b. Then we have

$$
N(b)=\frac{1}{n} \sum_{r \mid n, r \text { odd }} \Phi(r, b) 2^{n / r} .
$$

Furthermore, if A is cyclic and n is odd then we get a classical formula

$$
N(0)=\frac{1}{n} \sum_{r \mid n} \phi(r) 2^{n / r} .
$$

Corollary

Theorem

Let \mathbb{F}_{q} be the finite field of q elements with characteristic p. Let A be any additive subgroup of \mathbb{F}_{q} and $|A|=n$. For any $b \in A$, let $N(k, b)$ be the number of k-subsets of A whose elements sum to b. Define $v(b)=-1$ if $b \neq 0$, and $v(b)=n-1$ if $b=0$. If $p \nmid k$, then

$$
N(k, b)=\frac{1}{n}\binom{n}{k} \text {. }
$$

If $p \mid k$, then

$$
N(k, b)=\frac{1}{n}\binom{n}{k}+(-1)^{k+\frac{k}{\rho}} \frac{v(b)}{n}\binom{n / p}{k / p} .
$$

Zhu-Wan's result on Cyclotomic subgroups

- Let $A=\mathbb{F}_{q}^{*}$ and D be a multiplicative subgroup of \mathbb{F}_{q}^{*} with index m;

Zhu-Wan's result on Cyclotomic subgroups

- Let $A=\mathbb{F}_{q}^{*}$ and D be a multiplicative subgroup of \mathbb{F}_{q}^{*} with index m;

Theorem (Zhu and Wan, 2011)

Then for $1 \leq k \leq \frac{q-1}{m}$ we have

$$
\left|N_{D}(k, 0)-\frac{1}{q}\binom{\frac{q-1}{m}}{k}\right| \leq\binom{\sqrt{q}+k+\frac{q}{m p}}{k} .
$$

Zhu-Wan's result on Cyclotomic subgroups

- Let $A=\mathbb{F}_{q}^{*}$ and D be a multiplicative subgroup of \mathbb{F}_{q}^{*} with index m;

Theorem (Zhu and Wan, 2011)

Then for $1 \leq k \leq \frac{q-1}{m}$ we have

$$
\left|N_{D}(k, 0)-\frac{1}{q}\binom{\frac{q-1}{m}}{k}\right| \leq\binom{\sqrt{q}+k+\frac{q}{m p}}{k} .
$$

- Corollary: Let $p>2$. There is an effectively computable absolute constant $0<c<1$ such that if $m<c \sqrt{q}$ and $6 \ln q<k \leq \frac{q-1}{2 m}$, then $N_{D}(k, b)>0$ for all $b \in \mathbb{F}_{q}$.

Applications in Additive Combinatorics

- We say a subset $D \subseteq A$ is smooth if for any nontrivial additive character $\chi,\left|\sum_{a \in D} \chi(a)\right|=O(\sqrt{n \log |A|})$.

Applications in Additive Combinatorics

- We say a subset $D \subseteq A$ is smooth if for any nontrivial additive character $\chi,\left|\sum_{a \in D} \chi(a)\right|=O(\sqrt{n \log |A|})$.

Theorem (Li, 2011)

Let $D \subseteq \mathbb{Z}_{p}$ and ϵ be a positive constant. If $|D|=\log ^{1+\epsilon} p$ and D is smooth, then there is two constants c_{1} and c_{2} such that when $c_{1} \frac{\log p}{\log \log p} \leq k \leq c_{2} n$, we have $D^{k}=\mathbb{Z}_{p}$.

Thank you very much for your attention!

