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Problem (SSP)
Determine if Np(k, b) > 0 for some 1 < k < n.
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Computational Complexity of SSP

The Subset Sum Problem (SSP) is NP-hard.

If n= O(log |A]), then SSP can be solved by a reduction to
finding a short vector in a lattice;
If n = O(|A|), then SSP can be solved in polynomial time using

dynamic programming;
It is the basis of public-key cryptosystems of knapsack type.
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Counting version of SSP

Problem

How to compute Np(b) = >"¢_o Np(k, b), or more precisely,
compute Np(k, b)?

For example, Erdos and Heilbronn proved in 1964 that when A
is a prime field Z, and n = p,
n

No(b) = 2,0(1 + o(p))

3
as%—>ooasp—>oo.



Motivations

Covering Version of SSP

Define D" = {ay + ax +--- + ax, ai € D, a; # a;,i # j}.

Problem
Determine if D¥ = A.




Motivations

A Typical Example

® LetA=F, = Fqla]® and D = {a + ala € Fq}. Then



Motivations

A Typical Example

® LetA=F, = Fqla]® and D = {a + ala € Fq}. Then
@ Np(k,b) >0forany b e I means that
D = {a + ala € Fq} is a generator set of th;



Motivations

A Typical Example

® LetA=F, = Fqla]® and D = {a + ala € Fq}. Then
@ Np(k,b) >0forany b e I means that
D = {a + ala € Fq} is a generator set of th;

@ Equivalently, each b € F’;h can be written to a product of k
distinct elements in D = {a + ala € Fq};



Motivations

A Typical Example

® LetA=F, = Fqla]® and D = {a + ala € Fq}. Then

@ Np(k,b) >0forany b e I means that
D = {a + ala € Fq} is a generator set of th;

@ Equivalently, each b € F’;h can be written to a product of k
distinct elements in D = {a + ala € Fq};

@ Note that |D| = g is very small compared to |A| = g" when
his large;



Motivations

A Typical Example

® LetA=F, = Fqla]® and D = {a + ala € Fq}. Then

@ Np(k,b) >0forany b e I means that
D = {a + ala € Fq} is a generator set of th;

@ Equivalently, each b € F’;h can be written to a product of k
distinct elements in D = {a + ala € Fq};

@ Note that |D| = g is very small compared to |A| = g" when
his large;

@ This is a basic problem in computational finite field theory;



Motivations

A Typical Example

® LetA=F, = Fqla]® and D = {a + ala € Fq}. Then

@ Np(k,b) >0forany b e I means that
D = {a + ala € Fq} is a generator set of th;

@ Equivalently, each b € F’;h can be written to a product of k
distinct elements in D = {a + ala € Fq};

@ Note that |D| = g is very small compared to |A| = g" when
his large;

@ This is a basic problem in computational finite field theory;

@ It also arises from graph theory and number theoretic
algorithms and has significant application in coding theory.
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Chung’s construction

e V(G) =A;

@ V34,02 € V(G), (81,52) € E(G) iff B1/p2 € D,

@ G= G(h,q,«) is called a g—difference graph.

@ G = G(h, g,«) are good expanders with small diameters;

@ They are studied firstly by F. R. Chung, N. M. Katz, and
more generally by W. C. Li and K. Q. Feng, etc.

@ Applications: connection networks; extremal graph theory;
cryptography; computational complexity, etc.



Motivations

Geometric Examples

For which k, m, the following variety defined over Fq4 has a

rational point:
f1(X17X27"' 7Xk) = b1;
f2(X17X27 T 7Xk) = b2;
fm(X17X2)' T 7Xk) = Om;

Xj — X # 0.
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A Concrete Geometric Example

Problem
k
Z X; = by )
i=1
> XX, = b,

1<iy<ip<k

> Xy =+ * Xi, = bm,

1< <ip<--<im<k

Xi— X #0 (i #]), X € Fq;
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A Basic Example

@ We note that
Np(Kk,b) = #{(Xx1, -, Xk)| X1+ - -+Xxk = b, X; € D, X; # X;, Vi # j};

@ Let A=TFgand D = A;
@ Let X be the number of solutions of the equation

X{+Xp+---+xx=b,x; € Fg;
@ Let X be the number of solutions of the equation
X1+ X+ -+ Xk = b, x; € Fg, X; = X;;
@ We have that

Ne,(k,b) =1 () Xjl-

1<i<j<k
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The Inclusion-exclusion Sieving

@ We have the classical inclusion-exclusion sieving

Xl =1 () Xl

1<i<j<k
= XI- > X+ > 1 () Xl
1<i<j<k 1<i<j<k,1<s<t<k,(ij)#(s,t)
k
— (-0 N Xl

1<i<j<k

@ There are totally 2(2) terms!
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Brun’s Sieve

° [X>|X|- Z1§i</gk | Xil:
@ The number of terms is 1 + (¥);

@ The sum of remain 2(z) — (’2‘) — 1 terms may cause a big
error and thus a weak lower bound.
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Bonferroni Inequality

X > X|- Y X1+ > X () Xt

1<i<j<k 1<i<j<k1<s<t<Kk,(i,j)#(s,t)

o Z |Xiijstﬂan’;

1<i<j<k,1<s<t<k,1<m<n<k

@ The number of terms is 1 + (&) + ((g)) + ((g));

@ This lower bound may be better than Brun’s sieve but more
complicated .
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Motivations

Weighted Cases

@ Dis a nonempty set and X C DX;
@ f(xy,Xo, -, Xx) is @a complex valued function;
@ Consider the summation

F: Z f(X17X27"'7Xk)7

{x1:X0, X FEX
all x; are distinct

@ When f(x1,Xo,--- ,Xx) = 1 we have F = | X|;

@ Note that when f(xq, X2, - - - , Xk) is symmetric, we can
regard F as a summation over certain subsets over D.
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General Case of Inclusion-exclusion Sieving

>

(%25 Xk) €N <icj<k Xif

- ¥

(X1,X2,+ Xk )EX

- )

1 §I<]§k (X1 X200 ’XK)E)(I]'

+ 2

1 SI</SK71 §S<t§k,(l,j);é(3,t) (X1 X2,

>

(%1, X2, X)) €N <icj<ie Xij

f(X17X2)"' 7Xk)

(=)@

f(X17X27”'

f(X17X27”'

s Xk)

, Xk)

D

= Xk)EXy M Xst

f(x1, %2, -+, Xk)

f(X17X2>"' 7Xk)‘
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A Sieve Formula

Notations

@ For m € S, suppose 7 factors into disjoint cycles as
7= (i ia)(1j2 - Jay) - (hlo- - la),1 <P < s
@ Define

XT:{(X17X27”' 7Xk)€X7X/1 :"':Xia17”' 7X/1 :"':Xlas}‘



A Sieve Formula

The Formula

Theorem (J. Li and D. Wan, 2008)
Let X, X, be defined as above. Then we have

[X| =) sign(r)|X|.

TESK
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A Sieve Formula

Symmetry

@ The symmetric group Sk acts on DX naturally by permuting
coordinates.

@ Forgivenr € Sy and x = (x4, Xp, - - - , Xx) € DK,
TOoOX = (XT(1)>X7'(2)7"' 7XT(k))'

@ Let G be a subgroup of Sk. A subset X ¢ DX is said to be
G-symmetric if forany x € X andany g € G, go x € X.

@ In particular, a Sx-symmetric X is simply called symmetric.



A Sieve Formula

Special Cases

Corollary

[X| =) sign(r)G(7)| X,

T7€GkK

where Gy is the set of G-conjugacy class of S and G(r) is the
orbit length of by G-conjugate action on Sy.
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A Sieve Formula

Special Case

If X is symmetric, then

XI= > (=D em)ixl,

TECk

@ The number of terms is p(k) = 200V,
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Special Case 2

Corollary

If X is strongly symmetric, then we have

k

X = _(=1)e(k, IXil,

i=1

where X; is defined as X, for some 1; € Sk with I(;) = i and
c(k, i) is the signless Stirling number of the first kind.




A Sieve Formula

Special Case 2

Corollary

If X is strongly symmetric, then we have

k

X = _(=1)e(k, IXil,

i=1

where X; is defined as X, for some 1; € Sk with I(;) = i and
c(k, i) is the signless Stirling number of the first kind.

@ The number of terms is k.



A Sieve Formula

Brief Review

2(5) — ki — p(k) — k.



Lemma (Mobius Inversion Formula)

Let (P, <) be a finite partially ordered set. Letf,g: P — C.
Then
g(x)=> f(y),forallx € P

X<y
if and only if
f(x) = ux,y)9(y), forall x € P

X<y

where u(x, y) is the Mobius function defined over the incidence
algebra Inc(P).

v
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@ Let [k] be the set {1,2,---  k}. Let Iy be the set of set
partitions of [K].

@ Define a binary relation “ <" on Iy as follows: 7 < § if
every block of 7 is contained in a block of §.

@ Forinstance, {1,2}{3,4}{5,6} < {1,2,3,4}{5,6} and
{1,3}{2}{4}{5}{6} < {1,2,3}{4}{5,6}.

@ One checks that Ny is indeed a partially ordered set.
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@ For a set partition 7 € Ty, define X naturally.

@ For any 7 € Iy, define X* to be the set of vectors x € X:
such that there does not exist § € Ny satisfying = < § and
X € X;.

X1 = 31X,

o<t

@ and thus by the Mobius Inversion Formula we have

X5 =D u(6, 7)1 |-

o<t
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@ Inparticular, let § = 1 = {1}{2} - - - {k}, then X} is just X.
@ Thus we have

IXI = > ()X

1<r

= Z /’1/(177)’)(7"

TEMg

/
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@ Inparticular, let § = 1 = {1}{2} - - - {k}, then X} is just X.
@ Thus we have

> u(1,7)IX|

1<r

> u(1, )X

TEMg

/
> [0 (= 11X

Tenk:(n‘] 2, 7nl) i=1

> sign(r)|X-|.

TESK



Proof-3

@ Inparticular, let § = 1 = {1}{2} - - - {k}, then X} is just X.
@ Thus we have

IXI = > ()X

1<r

- Z /’L(17T)’XT‘

TelMg

/
= Y I -1l

Tenk:(n‘] 2, 7nl) i=1

= Y sign(r)|X:|.

TESK

@ The last equality comes from an elementary counting on
the number of permutations for a given set partition of [k].



Applications

Application on Generators over Finite Fields

Theorem (J. Li and D. Wan, 2009)

LetA=TFp, = Fqla]® and D = {a + ala € Fq}. Then, for any
e > 0, there is a constant c. > 0 such that if h < ek'/? and
4¢2In? g < k < c.q, we have Np(k,b) > 0 forany b € F.

In other words, each element of th can be written to the
product of precisely k distinct factors each in {o + a, a € Fg}.
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@ Let N be the number of k-subset S C F, satisfying that:

Za:b17

acS
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Applications on Counting Rational Points

@ Let N be the number of k-subset S C F, satisfying that:

acs
> ab=bs,

{a,b}CS

Z ab---c=bpn

{a,b,:--,c}CeS
Then we have
°
N_ (D] (a/p+mya+k
qm\k/| — k ’



Applications

Result on Counting Subsets over Finite Abelian Groups

Theorem (J. Li and D. Wan, 2011)

Suppose we are given the isomorphism

A= Zp, X Lpy X -+ X Lpg Withn = |Al=nq---ns. Givenb € A,
suppose (by, bo, - - - , bs) is the image of b in the isomorphism.
Let N(k, b) be the number of k-subsets of A whose elements
sum to b. Then we have

N(,D) = 3 (1 () o(r.b),

r|(n,k)

where &(r, b) = 31 (a6, #(r/d) [T7=1 (i, d) and p is the
usual Mébius function defined over the integers.
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@ In particular, when A is cyclic then
o(r.b)= Y u(r/d)d,
dl(b,r)

and the formular for this case was first found by
Ramanathan in 1944 using the properties of the
Ramanujan’s trigonometrical sum.

@ Interestingly, ®(r, b) can be also defined as

Cb(r, b) _ Z eZwikb/r‘
k (k I’):1

@ In particular,

Nk, = = (1o ()).

r|(n,k)
where ¢ is the Euler function.

Applications
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Applications

Corollary

Theorem

Let N(b) be the number of subsets of A sum to b. Then we
have

N(b):% > o(r,b)2"".

rin,r odd

Furthermore, if A is cyclic and n is odd then we get a classical
formula

N(0) = % > (r)2n.

rin




Applications

Corollary

Theorem

Let Fq be the finite field of q elements with characteristic p. Let
A be any additive subgroup of Fq and |A| = n. Forany b € A,
let N(k, b) be the number of k-subsets of A whose elements
sum to b. Define v(b) = —1ifb#0,and v(b) =n—1ifb=0.

Ifptk, then
1/n
N(k,b) = n<k)'
Ifp| k, then

w35 )
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Zhu-Wan’s result on Cyclotomic subgroups

@ Let A=TFj and D be a multiplicative subgroup of Fy with
index m;

Theorem (Zhu and Wan, 2011)

Then for 1 < k < 91 we have

otk 0) — (7)< (YO ),

@ Corollary: Let p > 2. There is an effectively computable
absolute constant 0 <c < 1suchthatif m< c,/qand
6Ing < k < %, then Np(k, b) > 0 for all b € Fg.

2m’



Applications

Applications in Additive Combinatorics

@ We say a subset D C A is smooth if for any nontrivial
additive character x, |>_,.p x(a)| = O(y/nlog|A|).
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Applications in Additive Combinatorics

@ We say a subset D C A is smooth if for any nontrivial
additive character x, |>_,.p x(a)| = O(y/nlog|A|).

Theorem (Li, 2011)

Let D C Zp and e be a positive constant. If |D| = log'*< p and
D is smooth, then there is two constants ¢y and c> such that
when ¢y 293P < k < con, we have DX = Zp.

loglog p




Applications

Thank you very much for your attention!



	Motivations
	A Sieve Formula
	Proofs
	Applications

