On Counting Subsets over Finite Fields

Li Jiyou

Department of Mathematics, Shanghai Jiao Tong University

May 2011, Coding, Cryptography and Combinatorial Designs, Singapore

Motivations	A Sieve Formula	Proofs	Applications
Outling			

• Let *A* be a finite abelian group and $D \subset A$, |D| = n.

- Let A be a finite abelian group and $D \subset A$, |D| = n.
- For $1 \le k \le n$ and $b \in A$, define

$$N_D(k,b) = \#\{S \subseteq D | \sum_{a \in S} a = b\}.$$

- Let A be a finite abelian group and $D \subset A$, |D| = n.
 - For $1 \le k \le n$ and $b \in A$, define

$$N_D(k,b) = \#\{S \subseteq D | \sum_{a \in S} a = b\}.$$

Problem (SSP)

Determine if $N_D(k, b) > 0$ for some $1 \le k \le n$.

Computational Complexity of SSP

Theorem

The Subset Sum Problem (SSP) is NP-hard.

Computational Complexity of SSP

Theorem

The Subset Sum Problem (SSP) is NP-hard.

If $n = O(\log |A|)$, then **SSP** can be solved by a reduction to finding a short vector in a lattice;

Computational Complexity of SSP

Theorem

The Subset Sum Problem (SSP) is NP-hard.

If $n = O(\log |A|)$, then **SSP** can be solved by a reduction to finding a short vector in a lattice; If $n = O(|A|^{\epsilon})$, then **SSP** can be solved in polynomial time using dynamic programming;

Computational Complexity of SSP

Theorem

The Subset Sum Problem (SSP) is NP-hard.

If $n = O(\log |A|)$, then **SSP** can be solved by a reduction to finding a short vector in a lattice;

If $n = O(|A|^{\epsilon})$, then **SSP** can be solved in polynomial time using dynamic programming;

It is the basis of public-key cryptosystems of knapsack type.

Counting version of SSP

Problem

How to compute $N_D(b) = \sum_{k=0}^n N_D(k, b)$, or more precisely, compute $N_D(k, b)$?

Counting version of SSP

Problem

How to compute $N_D(b) = \sum_{k=0}^n N_D(k, b)$, or more precisely, compute $N_D(k, b)$?

For example, Erdos and Heilbronn proved in 1964 that when *A* is a prime field Z_p and n = p,

$$N_D(b)=\frac{2^n}{p}(1+o(p))$$

as $\frac{n^3}{p^2} \to \infty$ as $p \to \infty$.

Covering Version of SSP

Define
$$D^k = \{a_1 + a_2 + \dots + a_k, a_i \in D, a_i \neq a_j, i \neq j\}.$$

Problem

Determine if $D^k = A$.

Motivations	A Sieve Formula	Proofs	Applications
A Typical Example			

• Let $A = \mathbb{F}_{q^h}^* = \mathbb{F}_q[\alpha]^*$ and $D = \{\alpha + a | a \in \mathbb{F}_q\}$. Then

- Let $A = \mathbb{F}_{q^h}^* = \mathbb{F}_q[\alpha]^*$ and $D = \{\alpha + a | a \in \mathbb{F}_q\}$. Then
- $N_D(k, b) > 0$ for any $b \in \mathbb{F}_{q^h}^*$ means that $D = \{ \alpha + a | a \in \mathbb{F}_q \}$ is a generator set of $\mathbb{F}_{q^h}^*$;

- Let $A = \mathbb{F}_{q^h}^* = \mathbb{F}_q[\alpha]^*$ and $D = \{\alpha + a | a \in \mathbb{F}_q\}$. Then
- *N_D*(*k*, *b*) > 0 for any *b* ∈ 𝔽^{*}_{q^h} means that
 D = {α + *a*|*a* ∈ 𝔽_q} is a generator set of 𝔽^{*}_{α^h};
- Equivalently, each b ∈ 𝔽^{*}_{q^h} can be written to a product of k distinct elements in D = {α + a|a ∈ 𝔽_q};

- Let $A = \mathbb{F}_{q^h}^* = \mathbb{F}_q[\alpha]^*$ and $D = \{\alpha + a | a \in \mathbb{F}_q\}$. Then
- *N_D*(*k*, *b*) > 0 for any *b* ∈ 𝔽^{*}_{q^h} means that
 D = {α + *a*|*a* ∈ 𝔽_q} is a generator set of 𝔽^{*}_{q^h};
- Equivalently, each b ∈ 𝔽^{*}_{q^h} can be written to a product of k distinct elements in D = {α + a|a ∈ 𝔽_q};
- Note that |D| = q is very small compared to |A| = q^h when h is large;

- Let $A = \mathbb{F}_{q^h}^* = \mathbb{F}_q[\alpha]^*$ and $D = \{\alpha + a | a \in \mathbb{F}_q\}$. Then
- *N_D*(*k*, *b*) > 0 for any *b* ∈ 𝔽^{*}_{q^h} means that
 D = {α + *a*|*a* ∈ 𝔽_q} is a generator set of 𝔽^{*}_{q^h};
- Equivalently, each b ∈ 𝔽^{*}_{q^h} can be written to a product of k distinct elements in D = {α + a|a ∈ 𝔽_q};
- Note that |D| = q is very small compared to |A| = q^h when h is large;
- This is a basic problem in computational finite field theory;

- Let $A = \mathbb{F}_{q^h}^* = \mathbb{F}_q[\alpha]^*$ and $D = \{\alpha + a | a \in \mathbb{F}_q\}$. Then
- *N_D*(*k*, *b*) > 0 for any *b* ∈ 𝔽^{*}_{q^h} means that
 D = {α + *a*|*a* ∈ 𝔽_q} is a generator set of 𝔽^{*}_{q^h};
- Equivalently, each b ∈ 𝔽^{*}_{q^h} can be written to a product of k distinct elements in D = {α + a|a ∈ 𝔽_q};
- Note that |D| = q is very small compared to |A| = q^h when h is large;
- This is a basic problem in computational finite field theory;
- It also arises from graph theory and number theoretic algorithms and has significant application in coding theory.

Motivations	A Sieve Formula	Proofs	Applications
Chung's constr	uction		

•
$$V(G) = A;$$

N //	Oth	/at	nr	
	iou:	vau		

•
$$V(G) = A;$$

• $\forall \beta_1, \beta_2 \in V(G), (\beta_1, \beta_2) \in E(G) \text{ iff } \beta_1/\beta_2 \in D;$

- V(G) = A;
- $\forall \beta_1, \beta_2 \in V(G), (\beta_1, \beta_2) \in E(G) \text{ iff } \beta_1/\beta_2 \in D;$
- $G = G(h, q, \alpha)$ is called a q-difference graph.

- V(G) = A;
- $\forall \beta_1, \beta_2 \in V(G), (\beta_1, \beta_2) \in E(G) \text{ iff } \beta_1/\beta_2 \in D;$
- $G = G(h, q, \alpha)$ is called a q-difference graph.
- $G = G(h, q, \alpha)$ are good expanders with small diameters;

- V(G) = A;
- $\forall \beta_1, \beta_2 \in V(G), (\beta_1, \beta_2) \in E(G) \text{ iff } \beta_1/\beta_2 \in D;$
- $G = G(h, q, \alpha)$ is called a q-difference graph.
- $G = G(h, q, \alpha)$ are good expanders with small diameters;
- They are studied firstly by F. R. Chung, N. M. Katz, and more generally by W. C. Li and K. Q. Feng, etc.

- V(G) = A;
- $\forall \beta_1, \beta_2 \in V(G), (\beta_1, \beta_2) \in E(G) \text{ iff } \beta_1/\beta_2 \in D;$
- $G = G(h, q, \alpha)$ is called a q-difference graph.
- $G = G(h, q, \alpha)$ are good expanders with small diameters;
- They are studied firstly by F. R. Chung, N. M. Katz, and more generally by W. C. Li and K. Q. Feng, etc.
- Applications: connection networks; extremal graph theory; cryptography; computational complexity, etc.

Geometric Examples

Problem

For which k, m, the following variety defined over \mathbf{F}_q has a rational point:

$$f_{1}(x_{1}, x_{2}, \cdots, x_{k}) = b_{1};$$

$$f_{2}(x_{1}, x_{2}, \cdots, x_{k}) = b_{2};$$

$$\cdots, \cdots;$$

$$f_{m}(x_{1}, x_{2}, \cdots, x_{k}) = b_{m};$$

$$x_{i} - x_{j} \neq 0.$$

A Concrete Geometric Example

Problem

$$\sum_{i=1}^{k} x_{i} = b_{1},$$

$$\sum_{1 \le i_{1} < i_{2} \le k} x_{i_{1}} x_{i_{2}} = b_{2},$$

$$\cdots,$$

$$\sum_{\le i_{1} < i_{2} < \cdots < i_{m} \le k} x_{i_{1}} \cdots x_{i_{m}} = b_{m},$$

$$x_{i} - x_{j} \ne 0 \ (i \ne j), x_{i} \in \mathbf{F}_{q};$$

Proc

A Concrete Geometric Example

For which *k* and *n*, there is a *k*-subset $S \subseteq \mathbf{F}_q$ such that:

$$\sum_{a \in S} a = b_1,$$

$$\sum_{\{a,b\}\subseteq S} ab = b_2,$$

$$\cdots,$$

$$\sum_{\{a,b,\cdots,c\}\subseteq \in S} ab \cdots c = b_m.$$

Motivations	A Sieve Formula	Proofs	Applications
A Basic Example			

 $N_D(k,b) = \#\{(x_1,\cdots,x_k)|x_1+\cdots+x_k = b, x_i \in D, x_i \neq x_j, \forall i \neq j\};$

Motivations	A Sieve Formula	Proofs	Applications
A Basic Example			

 $N_D(k,b) = \#\{(x_1,\cdots,x_k)|x_1+\cdots+x_k = b, x_i \in D, x_i \neq x_j, \forall i \neq j\};$

• Let
$$A = \mathbb{F}_q$$
 and $D = A$;

 $N_D(k,b) = \#\{(x_1,\cdots,x_k)|x_1+\cdots+x_k = b, x_i \in D, x_i \neq x_j, \forall i \neq j\};$

• Let
$$A = \mathbb{F}_q$$
 and $D = A$;

• Let X be the number of solutions of the equation

$$x_1 + x_2 + \cdots + x_k = b, x_i \in \mathbb{F}_q;$$

 $N_D(k,b) = \#\{(x_1,\cdots,x_k)|x_1+\cdots+x_k = b, x_i \in D, x_i \neq x_j, \forall i \neq j\};$

• Let
$$A = \mathbb{F}_q$$
 and $D = A$;

• Let X be the number of solutions of the equation

$$x_1 + x_2 + \cdots + x_k = b, x_i \in \mathbb{F}_q;$$

Let X_{ii} be the number of solutions of the equation

$$x_1 + x_2 + \cdots + x_k = b, x_i \in \mathbb{F}_q, x_i = x_j;$$

 $N_D(k, b) = \#\{(x_1, \dots, x_k) | x_1 + \dots + x_k = b, x_i \in D, x_i \neq x_i, \forall i \neq j\};$

• Let
$$A = \mathbb{F}_q$$
 and $D = A$;

Let X be the number of solutions of the equation

$$x_1 + x_2 + \cdots + x_k = b, x_i \in \mathbb{F}_q;$$

Let X_{ii} be the number of solutions of the equation

$$x_1 + x_2 + \cdots + x_k = b, x_i \in \mathbb{F}_q, x_i = x_j;$$

We have that

$$\mathcal{N}_{\mathbb{F}_q}(k,b) = |igcap_{1\leq i < j \leq k} \overline{X_{ij}}|.$$

The Inclusion-exclusion Sieving

We have the classical inclusion-exclusion sieving

$$\begin{aligned} |\overline{X}| &= |\bigcap_{1 \le i < j \le k} \overline{X_{ij}}| \\ &= |X| - \sum_{1 \le i < j \le k} |X_{ij}| + \sum_{1 \le i < j \le k, 1 \le s < t \le k, (i,j) \ne (s,t)} |X_{ij} \bigcap X_{st}| \\ &- \dots + (-1)^{\binom{k}{2}} |\bigcap_{1 \le i < j \le k} X_{ij}|. \end{aligned}$$

The Inclusion-exclusion Sieving

We have the classical inclusion-exclusion sieving

$$\begin{aligned} |\overline{X}| &= |\bigcap_{1 \le i < j \le k} \overline{X_{ij}}| \\ &= |X| - \sum_{1 \le i < j \le k} |X_{ij}| + \sum_{1 \le i < j \le k, 1 \le s < t \le k, (i,j) \ne (s,t)} |X_{ij} \bigcap X_{st}| \\ &- \dots + (-1)^{\binom{k}{2}} |\bigcap_{1 \le i < j \le k} X_{ij}|. \end{aligned}$$

• There are totally $2^{\binom{k}{2}}$ terms!

Motivations	A Sieve Formula	Proofs	Applications
Brun's Sieve			

•
$$|\overline{X} \ge |X| - \sum_{1 \le i < j \le k} |X_{ij}|;$$

N/I	otii	Vat	inn	
1.01	υu	vai	101	

Brun's Sieve

•
$$|\overline{X} \ge |X| - \sum_{1 \le i < j \le k} |X_{ij}|;$$

• The number of terms is $1 + \binom{k}{2}$;
Brun's Sieve

- $|\overline{X} \ge |X| \sum_{1 \le i < j \le k} |X_{ij}|;$
- The number of terms is $1 + \binom{k}{2}$;
- The sum of remain $2\binom{k}{2} \binom{k}{2} 1$ terms may cause a big error and thus a weak lower bound.

Bonferroni Inequality

• • • • • • •

$$\begin{split} |\overline{X} \ge |X| - \sum_{1 \le i < j \le k} |X_{ij}| + \sum_{1 \le i < j \le k, 1 \le s < t \le k, (i,j) \ne (s,t)} |X_{ij} \bigcap X_{st}| \\ - \sum_{1 \le i < j \le k, 1 \le s < t \le k, 1 \le m < n \le k} |X_{ij} \bigcap X_{st} \bigcap X_{mn}|; \end{split}$$

Bonferroni Inequality

• • • • • • •

$$\begin{split} |\overline{X} \ge |X| - \sum_{1 \le i < j \le k} |X_{ij}| + \sum_{1 \le i < j \le k, 1 \le s < t \le k, (i,j) \ne (s,t)} |X_{ij} \bigcap X_{st}| \\ - \sum_{1 \le i < j \le k, 1 \le s < t \le k, 1 \le m < n \le k} |X_{ij} \bigcap X_{st} \bigcap X_{mn}|; \end{split}$$

• The number of terms is $1 + \binom{k}{2} + \binom{\binom{k}{2}}{2} + \binom{\binom{k}{2}}{2};$

Bonferroni Inequality

• • • • • • • •

$$\begin{split} |\overline{X} \ge |X| - \sum_{1 \le i < j \le k} |X_{ij}| + \sum_{1 \le i < j \le k, 1 \le s < t \le k, (i,j) \ne (s,t)} |X_{ij} \bigcap X_{st}| \\ - \sum_{1 \le i < j \le k, 1 \le s < t \le k, 1 \le m < n \le k} |X_{ij} \bigcap X_{st} \bigcap X_{mn}|; \end{split}$$

- The number of terms is $1 + \binom{k}{2} + \binom{\binom{k}{2}}{2} + \binom{\binom{k}{2}}{3};$
- This lower bound may be better than Brun's sieve but more complicated .

• *D* is a nonempty set and $X \subseteq D^k$;

- *D* is a nonempty set and $X \subseteq D^k$;
- $f(x_1, x_2, \dots, x_k)$ is a complex valued function;

Weighted Cases

- *D* is a nonempty set and $X \subseteq D^k$;
- $f(x_1, x_2, \cdots, x_k)$ is a complex valued function;
- Consider the summation

$$\mathcal{F} = \sum_{\substack{\{x_1, x_2, \cdots, x_k\} \in X \\ \text{all } x_i \text{ are distinct}}} f(x_1, x_2, \cdots, x_k),$$

Weighted Cases

- *D* is a nonempty set and $X \subseteq D^k$;
- $f(x_1, x_2, \cdots, x_k)$ is a complex valued function;
- Consider the summation

$$\mathcal{F} = \sum_{\substack{\{x_1, x_2, \cdots, x_k\} \in X \\ \text{all } x_i \text{ are distinct}}} f(x_1, x_2, \cdots, x_k),$$

• When $f(x_1, x_2, \cdots, x_k) \equiv 1$ we have $F = |\overline{X}|$;

Weighted Cases

- *D* is a nonempty set and $X \subseteq D^k$;
- $f(x_1, x_2, \dots, x_k)$ is a complex valued function;
- Consider the summation

$$\mathcal{F} = \sum_{\substack{\{x_1, x_2, \cdots, x_k\} \in X \\ \text{all } x_i \text{ are distinct}}} f(x_1, x_2, \cdots, x_k),$$

- When $f(x_1, x_2, \cdots, x_k) \equiv 1$ we have $F = |\overline{X}|$;
- Note that when f(x₁, x₂, ··· , x_k) is symmetric, we can regard F as a summation over certain subsets over D.

General Case of Inclusion-exclusion Sieving

$$F = \sum_{\substack{(x_1, x_2, \cdots, x_k) \in \bigcap_{1 \le i < j \le k} \overline{X_{ij}} \\ = \sum_{\substack{(x_1, x_2, \cdots, x_k) \in X} f(x_1, x_2, \cdots, x_k)} f(x_1, x_2, \cdots, x_k)} \\ - \sum_{1 \le i < j \le k} \sum_{\substack{(x_1, x_2, \cdots, x_k) \in X_{ij}}} f(x_1, x_2, \cdots, x_k) \\ + \sum_{\substack{1 \le i < j \le k, 1 \le s < t \le k, (i,j) \ne (s,t) \ (x_1, x_2, \cdots, x_k) \in X_{ij} \cap X_{st}}} \sum_{\substack{f(x_1, x_2, \cdots, x_k) \in \bigcap_{1 \le i < j \le k} X_{ij}}} f(x_1, x_2, \cdots, x_k).$$

• For $\tau \in S_k$, suppose τ factors into disjoint cycles as $\tau = (i_1 i_2 \cdots i_{a_1})(j_1 j_2 \cdots j_{a_2}) \cdots (l_1 l_2 \cdots l_{a_s}), 1 \le i \le s.$

- For $\tau \in S_k$, suppose τ factors into disjoint cycles as $\tau = (i_1 i_2 \cdots i_{a_1})(j_1 j_2 \cdots j_{a_2}) \cdots (l_1 l_2 \cdots l_{a_s}), 1 \le i \le s.$
- Define

$$X_{\tau} = \left\{ (x_1, x_2, \cdots, x_k) \in X, x_{i_1} = \cdots = x_{i_{a_1}}, \cdots, x_{l_1} = \cdots = x_{l_{a_s}} \right\}.$$

Mc	otivat	ions	

The Formula

Theorem (J. Li and D. Wan, 2008)

Let \overline{X} , X_{τ} be defined as above. Then we have

$$|\overline{X}| = \sum_{ au \in \mathcal{S}_k} \textit{sign}(au) |X_{ au}|.$$

• The symmetric group S_k acts on D^k naturally by permuting coordinates.

• The symmetric group S_k acts on D^k naturally by permuting coordinates.

• For given
$$\tau \in S_k$$
 and $x = (x_1, x_2, \cdots, x_k) \in D^k$,

$$\tau \circ \mathbf{X} = (\mathbf{X}_{\tau(1)}, \mathbf{X}_{\tau(2)}, \cdots, \mathbf{X}_{\tau(k)}).$$

- The symmetric group S_k acts on D^k naturally by permuting coordinates.
- For given $\tau \in S_k$ and $x = (x_1, x_2, \cdots, x_k) \in D^k$,

$$\tau \circ \mathbf{X} = (\mathbf{X}_{\tau(1)}, \mathbf{X}_{\tau(2)}, \cdots, \mathbf{X}_{\tau(k)}).$$

• Let *G* be a subgroup of S_k . A subset $X \subset D^k$ is said to be *G*-symmetric if for any $x \in X$ and any $g \in G$, $g \circ x \in X$.

- The symmetric group S_k acts on D^k naturally by permuting coordinates.
- For given $\tau \in S_k$ and $x = (x_1, x_2, \cdots, x_k) \in D^k$,

$$\tau \circ \mathbf{X} = (\mathbf{X}_{\tau(1)}, \mathbf{X}_{\tau(2)}, \cdots, \mathbf{X}_{\tau(k)}).$$

- Let *G* be a subgroup of S_k . A subset $X \subset D^k$ is said to be *G*-symmetric if for any $x \in X$ and any $g \in G$, $g \circ x \in X$.
- In particular, a S_k -symmetric X is simply called symmetric.

ΝЛ	\sim	٠.	Ŧ 1	\sim	n	0
ινι	U		u	U		

Special Cases

Corollary

$$|\overline{X}| = \sum_{ au \in G_k} \mathit{sign}(au) \mathcal{G}(au) |X_{ au}|,$$

where G_k is the set of G-conjugacy class of S_k and $G(\tau)$ is the orbit length of τ by G-conjugate action on S_k .

Motivati	ons	

Special Case

Corollary

If X is symmetric, then

$$|X| = \sum_{\tau \in \mathcal{C}_k} (-1)^{k-l(\tau)} \mathcal{C}(\tau) |X_{\tau}|,$$

ΝЛ	\sim	٠.	Ŧ 1	\sim	n	0
ινι	U		u	U		

Special Case

Corollary

If X is symmetric, then

$$|X| = \sum_{\tau \in \mathcal{C}_k} (-1)^{k-l(\tau)} \mathcal{C}(\tau) |X_{\tau}|,$$

• The number of terms is $p(k) = 2^{O(\sqrt{k})}$.

Special Case 2

Corollary

If X is strongly symmetric, then we have

$$|\overline{X}| = \sum_{i=1}^{k} (-1)^{k-i} c(k,i) |X_i|,$$

where X_i is defined as X_{τ_i} for some $\tau_i \in S_k$ with $l(\tau_i) = i$ and c(k, i) is the signless Stirling number of the first kind.

Special Case 2

Corollary

If X is strongly symmetric, then we have

$$|\overline{X}| = \sum_{i=1}^{k} (-1)^{k-i} c(k,i) |X_i|,$$

where X_i is defined as X_{τ_i} for some $\tau_i \in S_k$ with $l(\tau_i) = i$ and c(k, i) is the signless Stirling number of the first kind.

• The number of terms is k.

Motivations	A Sieve Formula	Proofs	Applications
Brief Review			

$$2^{\binom{k}{2}} \rightarrow k! \rightarrow p(k) \rightarrow k.$$

Lemma (Möbius Inversion Formula)

Let (P, \leq) be a finite partially ordered set. Let $f, g : P \to \mathbb{C}$. Then

$$g(x) = \sum_{x \leq y} f(y)$$
, for all $x \in P$

if and only if

$$f(x) = \sum_{x \leq y} \mu(x, y) g(y), ext{ for all } x \in P$$

where $\mu(x, y)$ is the Möbius function defined over the incidence algebra Inc(P).

Let [k] be the set {1,2,...,k}. Let Π_k be the set of set partitions of [k].

- Let [k] be the set {1,2,...,k}. Let Π_k be the set of set partitions of [k].
- Define a binary relation "≤" on Π_k as follows: τ ≤ δ if every block of τ is contained in a block of δ.

- Let [k] be the set {1,2,...,k}. Let Π_k be the set of set partitions of [k].
- Define a binary relation "≤" on Π_k as follows: τ ≤ δ if every block of τ is contained in a block of δ.
- For instance, $\{1,2\}\{3,4\}\{5,6\} \leq \{1,2,3,4\}\{5,6\}$ and $\{1,3\}\{2\}\{4\}\{5\}\{6\} \leq \{1,2,3\}\{4\}\{5,6\}.$

- Let [k] be the set {1,2,...,k}. Let Π_k be the set of set partitions of [k].
- Define a binary relation "≤" on Π_k as follows: τ ≤ δ if every block of τ is contained in a block of δ.
- For instance, $\{1,2\}\{3,4\}\{5,6\} \leq \{1,2,3,4\}\{5,6\}$ and $\{1,3\}\{2\}\{4\}\{5\}\{6\} \leq \{1,2,3\}\{4\}\{5,6\}.$
- One checks that Π_k is indeed a partially ordered set.

• For a set partition $\tau \in \Pi_k$, define X_{τ} naturally.

- For a set partition $\tau \in \Pi_k$, define X_{τ} naturally.
- For any τ ∈ Π_k, define X^o_τ to be the set of vectors x ∈ X_τ such that there does not exist δ ∈ Π_k satisfying τ < δ and x ∈ X_δ.

- For a set partition $\tau \in \Pi_k$, define X_{τ} naturally.
- For any τ ∈ Π_k, define X^o_τ to be the set of vectors x ∈ X_τ such that there does not exist δ ∈ Π_k satisfying τ < δ and x ∈ X_δ.

• For a set partition $\tau \in \Pi_k$, define X_{τ} naturally.

۲

For any τ ∈ Π_k, define X^o_τ to be the set of vectors x ∈ X_τ such that there does not exist δ ∈ Π_k satisfying τ < δ and x ∈ X_δ.

$$|m{X}_{\delta}| = \sum_{\delta \leq au} |m{X}^{\circ}_{ au}|,$$

• For a set partition $\tau \in \Pi_k$, define X_{τ} naturally.

٠

For any τ ∈ Π_k, define X[◦]_τ to be the set of vectors x ∈ X_τ such that there does not exist δ ∈ Π_k satisfying τ < δ and x ∈ X_δ.

$$|X_\delta| = \sum_{\delta \leq au} |X^\circ_ au|,$$

• and thus by the Möbius Inversion Formula we have

$$|X_{\delta}^{\circ}| = \sum_{\delta \leq \tau} \mu(\delta, \tau) |X_{\tau}|.$$

Motivations	A Sieve Formula	Proofs	Applications
Proof-3			

• In particular, let $\delta = 1 = \{1\}\{2\}\cdots\{k\}$, then X_1° is just \overline{X} .

- In particular, let $\delta = 1 = \{1\}\{2\}\cdots\{k\}$, then X_1° is just \overline{X} .
- Thus we have

$$|\overline{X}| = \sum_{1 \leq \tau} \mu(1, \tau) |X_{\tau}|$$

- In particular, let $\delta = 1 = \{1\}\{2\}\cdots\{k\}$, then X_1° is just \overline{X} .
- Thus we have

$$egin{array}{rl} |\overline{X}| &=& \displaystyle{\sum_{1\leq au} \mu(1, au) |X_ au|} \ &=& \displaystyle{\sum_{ au\in \Pi_k} \mu(1, au) |X_ au|} \end{array}$$

- In particular, let $\delta = 1 = \{1\}\{2\}\cdots\{k\}$, then X_1° is just \overline{X} .
 - Thus we have

$$\begin{aligned} \overline{X}| &= \sum_{1 \le \tau} \mu(1, \tau) |X_{\tau}| \\ &= \sum_{\tau \in \Pi_{k}} \mu(1, \tau) |X_{\tau}| \\ &= \sum_{\tau \in \Pi_{k}: (n_{1}, n_{2}, \cdots, n_{l})} \prod_{i=1}^{l} (-1)^{n_{i}-1} (n_{i}-1)! |X_{\tau}| \end{aligned}$$

- In particular, let $\delta = 1 = \{1\}\{2\}\cdots\{k\}$, then X_1° is just \overline{X} .
- Thus we have

$$\begin{aligned} |\overline{X}| &= \sum_{1 \leq \tau} \mu(1,\tau) |X_{\tau}| \\ &= \sum_{\tau \in \Pi_k} \mu(1,\tau) |X_{\tau}| \\ &= \sum_{\tau \in \Pi_k: (n_1, n_2, \cdots, n_l)} \prod_{i=1}^l (-1)^{n_i - 1} (n_i - 1)! |X_{\tau}| \\ &= \sum_{\tau \in \mathcal{S}_k} sign(\tau) |X_{\tau}|. \end{aligned}$$

motivat	10113	A Gleve I officia	1 10013	Applications
Pro	of-3			
	In particular	let $\delta = 1 = \{1\}\{2\}\dots\{n\}$	k} then X° is just 3	x

• Thus we have

$$\begin{aligned} \overline{X}| &= \sum_{1 \leq \tau} \mu(1,\tau) |X_{\tau}| \\ &= \sum_{\tau \in \Pi_{k}} \mu(1,\tau) |X_{\tau}| \\ &= \sum_{\tau \in \Pi_{k}: (n_{1},n_{2},\cdots,n_{l})} \prod_{i=1}^{l} (-1)^{n_{i}-1} (n_{i}-1)! |X_{\tau}| \\ &= \sum_{\tau \in \mathcal{S}_{k}} sign(\tau) |X_{\tau}|. \end{aligned}$$

 The last equality comes from an elementary counting on the number of permutations for a given set partition of [k].

Application on Generators over Finite Fields

Theorem (J. Li and D. Wan, 2009)

Let $A = \mathbb{F}_{q^h}^* = \mathbb{F}_q[\alpha]^*$ and $D = \{\alpha + a | a \in \mathbb{F}_q\}$. Then, for any $\epsilon > 0$, there is a constant $c_{\epsilon} > 0$ such that if $h < \epsilon k^{1/2}$ and $4\epsilon^2 \ln^2 q < k \le c_{\epsilon}q$, we have $N_D(k, b) > 0$ for any $b \in \mathbb{F}_{q^h}^*$. In other words, each element of $\mathbf{F}_{q^h}^*$ can be written to the product of precisely k distinct factors each in $\{\alpha + a, a \in \mathbf{F}_q\}$.

Applications on Counting Rational Points

• Let *N* be the number of k-subset $S \subseteq \mathbf{F}_q$ satisfying that:

$$\sum_{a \in S} a = b_1,$$

$$\sum_{\{a,b\} \subseteq S} ab = b_2,$$

$$\cdots,$$

$$\sum_{\{a,b,\cdots,c\} \subseteq \in S} ab \cdots c = b_m$$

Then we have

A Sieve Formula

Proofs

Applications on Counting Rational Points

• Let *N* be the number of k-subset $S \subseteq \mathbf{F}_q$ satisfying that:

$$\sum_{a \in S} a = b_1,$$

$$\sum_{\{a,b\}\subseteq S} ab = b_2,$$

$$\cdots,$$

$$\sum_{\{a,b,\cdots,c\}\subseteq \in S} ab \cdots c = b_m$$

Then we have

٠

 $\left|N-\frac{1}{q^m}\binom{q}{k}\right|\leq \binom{q/p+m\sqrt{q}+k}{k}.$

Applications

Result on Counting Subsets over Finite Abelian Groups

Theorem (J. Li and D. Wan, 2011)

Suppose we are given the isomorphism $A \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_s}$ with $n = |A| = n_1 \cdots n_s$. Given $b \in A$, suppose (b_1, b_2, \cdots, b_s) is the image of b in the isomorphism. Let N(k, b) be the number of k-subsets of A whose elements sum to b. Then we have

$$N(k,b) = \frac{1}{n} \sum_{r \mid (n,k)} (-1)^{k+\frac{k}{r}} {n/r \choose k/r} \Phi(r,b),$$

where $\Phi(r, b) = \sum_{d|r,(n_i,d)|b_i} \mu(r/d) \prod_{i=1}^{s} (n_i, d)$ and μ is the usual Möbius function defined over the integers.

• In particular, when A is cyclic then

$$\Phi(r,b) = \sum_{d|(b,r)} \mu(r/d)d,$$

and the formular for this case was first found by Ramanathan in 1944 using the properties of the Ramanujan's trigonometrical sum.

Motivations	A Sieve Formula	Proofs	Applications
Remark			

• In particular, when A is cyclic then

$$\Phi(r,b) = \sum_{d|(b,r)} \mu(r/d)d,$$

and the formular for this case was first found by Ramanathan in 1944 using the properties of the Ramanujan's trigonometrical sum.

• Interestingly, $\Phi(r, b)$ can be also defined as

$$\Phi(r,b) = \sum_{k,(k,r)=1} e^{2\pi i k b/r}$$

• In particular, when A is cyclic then

$$\Phi(r,b) = \sum_{d|(b,r)} \mu(r/d)d,$$

and the formular for this case was first found by Ramanathan in 1944 using the properties of the Ramanujan's trigonometrical sum.

• Interestingly, $\Phi(r, b)$ can be also defined as

$$\Phi(r,b) = \sum_{k,(k,r)=1} e^{2\pi i k b/r}$$

In particular,

$$N(k,0) = \frac{1}{n} \sum_{r|(n,k)} (-1)^{k+\frac{k}{r}} \phi(r) \binom{n/r}{k/r},$$

where ϕ is the Euler function.

Corollary

Theorem

Let N(b) be the number of subsets of A sum to b. Then we have

$$N(b) = \frac{1}{n} \sum_{r \mid n, r \text{ odd}} \Phi(r, b) 2^{n/r}.$$

Corollary

Theorem

Let N(b) be the number of subsets of A sum to b. Then we have

$$N(b) = \frac{1}{n} \sum_{r \mid n, r \text{ odd}} \Phi(r, b) 2^{n/r}.$$

Furthermore, if A is cyclic and n is odd then we get a classical formula

$$N(0)=\frac{1}{n}\sum_{r\mid n}\phi(r)2^{n/r}.$$

Corollary

Theorem

Let \mathbb{F}_q be the finite field of q elements with characteristic p. Let A be any additive subgroup of \mathbb{F}_q and |A| = n. For any $b \in A$, let N(k, b) be the number of k-subsets of A whose elements sum to b. Define v(b) = -1 if $b \neq 0$, and v(b) = n - 1 if b = 0. If $p \nmid k$, then

$$N(k,b)=rac{1}{n}\binom{n}{k}.$$

If $p \mid k$, then

$$N(k,b) = \frac{1}{n} \binom{n}{k} + (-1)^{k+\frac{k}{p}} \frac{v(b)}{n} \binom{n/p}{k/p}.$$

Zhu-Wan's result on Cyclotomic subgroups

Let A = 𝔽^{*}_q and D be a multiplicative subgroup of 𝔽^{*}_q with index m;

Zhu-Wan's result on Cyclotomic subgroups

Let A = 𝔽^{*}_q and D be a multiplicative subgroup of ℤ^{*}_q with index m;

Theorem (Zhu and Wan, 2011)

Then for
$$1 \le k \le \frac{q-1}{m}$$
 we have

$$\left|N_D(k,0)-\frac{1}{q}\binom{\frac{q-1}{m}}{k}\right|\leq \binom{\sqrt{q}+k+\frac{q}{mp}}{k}.$$

Zhu-Wan's result on Cyclotomic subgroups

Let A = 𝔽^{*}_q and D be a multiplicative subgroup of ℤ^{*}_q with index m;

Theorem (Zhu and Wan, 2011)

Then for
$$1 \le k \le \frac{q-1}{m}$$
 we have

$$\left|N_{D}(k,0)-\frac{1}{q}\binom{\frac{q-1}{m}}{k}\right|\leq \binom{\sqrt{q}+k+\frac{q}{mp}}{k}.$$

• Corollary: Let p > 2. There is an effectively computable absolute constant 0 < c < 1 such that if $m < c\sqrt{q}$ and $6 \ln q < k \le \frac{q-1}{2m}$, then $N_D(k, b) > 0$ for all $b \in \mathbb{F}_q$.

Applications in Additive Combinatorics

We say a subset D ⊆ A is smooth if for any nontrivial additive character χ, |∑_{a∈D} χ(a)| = O(√n log |A|).

Applications in Additive Combinatorics

We say a subset D ⊆ A is smooth if for any nontrivial additive character χ, |∑_{a∈D} χ(a)| = O(√n log |A|).

Theorem (Li, 2011)

Let $D \subseteq \mathbb{Z}_p$ and ϵ be a positive constant. If $|D| = \log^{1+\epsilon} p$ and D is smooth, then there is two constants c_1 and c_2 such that when $c_1 \frac{\log p}{\log \log p} \le k \le c_2 n$, we have $D^k = \mathbb{Z}_p$.

Thank you very much for your attention!