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Motivations A Sieve Formula Proofs Applications

Subset Sum Problem (SSP)

Let A be a finite abelian group and D ⊂ A, |D| = n.

For 1 ≤ k ≤ n and b ∈ A, define

ND(k , b) = #{S ⊆ D|
∑
a∈S

a = b}.

Problem (SSP)
Determine if ND(k , b) > 0 for some 1 ≤ k ≤ n.
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Computational Complexity of SSP

Theorem
The Subset Sum Problem (SSP) is NP-hard.

If n = O(log |A|), then SSP can be solved by a reduction to
finding a short vector in a lattice;
If n = O(|A|ε), then SSP can be solved in polynomial time using
dynamic programming;
It is the basis of public-key cryptosystems of knapsack type.
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Counting version of SSP

Problem

How to compute ND(b) =
∑n

k=0 ND(k , b), or more precisely,
compute ND(k , b)?

For example, Erdos and Heilbronn proved in 1964 that when A
is a prime field Zp and n = p,

ND(b) =
2n

p
(1 + o(p))

as n3

p2 →∞ as p →∞.
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Covering Version of SSP

Define D
k

= {a1 + a2 + · · ·+ ak , ai ∈ D, ai 6= aj , i 6= j}.

Problem

Determine if Dk = A.
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A Typical Example

Let A = F∗qh = Fq[α]∗ and D = {α + a|a ∈ Fq}. Then

ND(k , b) > 0 for any b ∈ F∗qh means that
D = {α + a|a ∈ Fq} is a generator set of F∗qh ;

Equivalently, each b ∈ F∗qh can be written to a product of k
distinct elements in D = {α + a|a ∈ Fq};
Note that |D| = q is very small compared to |A| = qh when
h is large;
This is a basic problem in computational finite field theory;
It also arises from graph theory and number theoretic
algorithms and has significant application in coding theory.
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Chung’s construction

V (G) = A;

∀β1, β2 ∈ V (G), (β1, β2) ∈ E(G) iff β1/β2 ∈ D;
G = G(h, q, α) is called a q−difference graph.
G = G(h, q, α) are good expanders with small diameters;
They are studied firstly by F. R. Chung, N. M. Katz, and
more generally by W. C. Li and K. Q. Feng, etc.
Applications: connection networks; extremal graph theory;
cryptography; computational complexity, etc.



Motivations A Sieve Formula Proofs Applications

Chung’s construction

V (G) = A;
∀β1, β2 ∈ V (G), (β1, β2) ∈ E(G) iff β1/β2 ∈ D;

G = G(h, q, α) is called a q−difference graph.
G = G(h, q, α) are good expanders with small diameters;
They are studied firstly by F. R. Chung, N. M. Katz, and
more generally by W. C. Li and K. Q. Feng, etc.
Applications: connection networks; extremal graph theory;
cryptography; computational complexity, etc.



Motivations A Sieve Formula Proofs Applications

Chung’s construction

V (G) = A;
∀β1, β2 ∈ V (G), (β1, β2) ∈ E(G) iff β1/β2 ∈ D;
G = G(h, q, α) is called a q−difference graph.

G = G(h, q, α) are good expanders with small diameters;
They are studied firstly by F. R. Chung, N. M. Katz, and
more generally by W. C. Li and K. Q. Feng, etc.
Applications: connection networks; extremal graph theory;
cryptography; computational complexity, etc.



Motivations A Sieve Formula Proofs Applications

Chung’s construction

V (G) = A;
∀β1, β2 ∈ V (G), (β1, β2) ∈ E(G) iff β1/β2 ∈ D;
G = G(h, q, α) is called a q−difference graph.
G = G(h, q, α) are good expanders with small diameters;

They are studied firstly by F. R. Chung, N. M. Katz, and
more generally by W. C. Li and K. Q. Feng, etc.
Applications: connection networks; extremal graph theory;
cryptography; computational complexity, etc.



Motivations A Sieve Formula Proofs Applications

Chung’s construction

V (G) = A;
∀β1, β2 ∈ V (G), (β1, β2) ∈ E(G) iff β1/β2 ∈ D;
G = G(h, q, α) is called a q−difference graph.
G = G(h, q, α) are good expanders with small diameters;
They are studied firstly by F. R. Chung, N. M. Katz, and
more generally by W. C. Li and K. Q. Feng, etc.

Applications: connection networks; extremal graph theory;
cryptography; computational complexity, etc.



Motivations A Sieve Formula Proofs Applications

Chung’s construction

V (G) = A;
∀β1, β2 ∈ V (G), (β1, β2) ∈ E(G) iff β1/β2 ∈ D;
G = G(h, q, α) is called a q−difference graph.
G = G(h, q, α) are good expanders with small diameters;
They are studied firstly by F. R. Chung, N. M. Katz, and
more generally by W. C. Li and K. Q. Feng, etc.
Applications: connection networks; extremal graph theory;
cryptography; computational complexity, etc.



Motivations A Sieve Formula Proofs Applications

Geometric Examples

Problem
For which k , m, the following variety defined over Fq has a
rational point:

f1(x1, x2, · · · , xk ) = b1;

f2(x1, x2, · · · , xk ) = b2;

· · · , · · · ;

fm(x1, x2, · · · , xk ) = bm;

xi − xj 6= 0.
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A Concrete Geometric Example

Problem
k∑

i=1

xi = b1,

∑
1≤i1<i2≤k

xi1xi2 = b2,

· · · ,∑
1≤i1<i2<···<im≤k

xi1 · · · xim = bm,

xi − xj 6= 0 (i 6= j), xi ∈ Fq ;
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A Concrete Geometric Example

For which k and n, there is a k -subset S ⊆ Fq such that:∑
a∈S

a = b1,

∑
{a,b}⊆S

ab = b2,

· · · ,∑
{a,b,··· ,c}⊆∈S

ab · · · c = bm.
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A Basic Example

We note that

ND(k , b) = #{(x1, · · · , xk )|x1+· · ·+xk = b, xi ∈ D, xi 6= xj ,∀i 6= j};

Let A = Fq and D = A;
Let X be the number of solutions of the equation

x1 + x2 + · · ·+ xk = b, xi ∈ Fq;

Let Xij be the number of solutions of the equation

x1 + x2 + · · ·+ xk = b, xi ∈ Fq, xi = xj ;

We have that

NFq (k , b) = |
⋂

1≤i<j≤k

Xij |.
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The Inclusion-exclusion Sieving

We have the classical inclusion-exclusion sieving

|X | = |
⋂

1≤i<j≤k

Xij |

= |X | −
∑

1≤i<j≤k

|Xij |+
∑

1≤i<j≤k ,1≤s<t≤k ,(i,j) 6=(s,t)

|Xij
⋂

Xst |

− · · ·+ (−1)(
k
2)|

⋂
1≤i<j≤k

Xij |.

There are totally 2(k
2) terms!
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Brun’s Sieve

|X ≥ |X | −
∑

1≤i<j≤k |Xij |;

The number of terms is 1 +
(k

2

)
;

The sum of remain 2(k
2) −

(k
2

)
− 1 terms may cause a big

error and thus a weak lower bound.
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Bonferroni Inequality

· · · · · ·

|X ≥ |X | −
∑

1≤i<j≤k

|Xij |+
∑

1≤i<j≤k ,1≤s<t≤k ,(i,j) 6=(s,t)

|Xij
⋂

Xst |

−
∑

1≤i<j≤k ,1≤s<t≤k ,1≤m<n≤k

|Xij
⋂

Xst
⋂

Xmn|;

The number of terms is 1 +
(k

2

)
+

((k
2)
2

)
+

((k
2)
3

)
;

This lower bound may be better than Brun’s sieve but more
complicated .
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Weighted Cases

D is a nonempty set and X ⊆ Dk ;

f (x1, x2, · · · , xk ) is a complex valued function;
Consider the summation

F =
∑

{x1,x2,··· ,xk}∈X
all xi are distinct

f (x1, x2, · · · , xk ),

When f (x1, x2, · · · , xk ) ≡ 1 we have F = |X |;
Note that when f (x1, x2, · · · , xk ) is symmetric, we can
regard F as a summation over certain subsets over D.
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General Case of Inclusion-exclusion Sieving

F =
∑

(x1,x2,··· ,xk )∈
⋂

1≤i<j≤k Xij

f (x1, x2, · · · , xk )

=
∑

(x1,x2,··· ,xk )∈X

f (x1, x2, · · · , xk )

−
∑

1≤i<j≤k

∑
(x1,x2,··· ,xk )∈Xij

f (x1, x2, · · · , xk )

+
∑

1≤i<j≤k ,1≤s<t≤k ,(i,j) 6=(s,t)

∑
(x1,x2,··· ,xk )∈Xij

⋂
Xst

f (x1, x2, · · · , xk )

· · ·
+(−1)(

k
2)

∑
(x1,x2,··· ,xk )∈

⋂
1≤i<j≤k Xij

f (x1, x2, · · · , xk ).
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Notations

For τ ∈ Sk , suppose τ factors into disjoint cycles as

τ = (i1i2 · · · ia1)(j1j2 · · · ja2) · · · (l1l2 · · · las), 1 ≤ i ≤ s.

Define

Xτ =
{

(x1, x2, · · · , xk ) ∈ X , xi1 = · · · = xia1
, · · · , xl1 = · · · = xlas

}
.
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The Formula

Theorem (J. Li and D. Wan, 2008)

Let X , Xτ be defined as above. Then we have

|X | =
∑
τ∈Sk

sign(τ)|Xτ |.
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Symmetry

The symmetric group Sk acts on Dk naturally by permuting
coordinates.

For given τ ∈ Sk and x = (x1, x2, · · · , xk ) ∈ Dk ,

τ ◦ x = (xτ(1), xτ(2), · · · , xτ(k)).

Let G be a subgroup of Sk . A subset X ⊂ Dk is said to be
G-symmetric if for any x ∈ X and any g ∈ G, g ◦ x ∈ X .
In particular, a Sk -symmetric X is simply called symmetric.
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Special Cases

Corollary

|X | =
∑
τ∈Gk

sign(τ)G(τ)|Xτ |,

where Gk is the set of G-conjugacy class of Sk and G(τ) is the
orbit length of τ by G-conjugate action on Sk .
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Special Case

Corollary
If X is symmetric, then

|X | =
∑
τ∈Ck

(−1)k−l(τ)C(τ)|Xτ |,

The number of terms is p(k) = 2O(
√

k).
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Special Case 2

Corollary
If X is strongly symmetric, then we have

|X | =
k∑

i=1

(−1)k−ic(k , i)|Xi |,

where Xi is defined as Xτi for some τi ∈ Sk with l(τi) = i and
c(k , i) is the signless Stirling number of the first kind.

The number of terms is k .
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Brief Review

2(k
2) → k ! → p(k) → k .
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Proof-0

Lemma (Möbius Inversion Formula)
Let (P,≤) be a finite partially ordered set. Let f , g : P → C.
Then

g(x) =
∑
x≤y

f (y), for all x ∈ P

if and only if

f (x) =
∑
x≤y

µ(x , y)g(y), for all x ∈ P

where µ(x , y) is the Möbius function defined over the incidence
algebra Inc(P).



Motivations A Sieve Formula Proofs Applications

Proof-1

Let [k ] be the set {1, 2, · · · , k}. Let Πk be the set of set
partitions of [k ].

Define a binary relation “ ≤ ” on Πk as follows: τ ≤ δ if
every block of τ is contained in a block of δ.
For instance, {1, 2}{3, 4}{5, 6} ≤ {1, 2, 3, 4}{5, 6} and
{1, 3}{2}{4}{5}{6} ≤ {1, 2, 3}{4}{5, 6}.
One checks that Πk is indeed a partially ordered set.
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Proof-2

For a set partition τ ∈ Πk , define Xτ naturally.

For any τ ∈ Πk , define X ◦
τ to be the set of vectors x ∈ Xτ

such that there does not exist δ ∈ Πk satisfying τ < δ and
x ∈ Xδ.

|Xδ| =
∑
δ≤τ

|X ◦
τ |,

and thus by the Möbius Inversion Formula we have

|X ◦
δ | =

∑
δ≤τ

µ(δ, τ)|Xτ |.
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and thus by the Möbius Inversion Formula we have

|X ◦
δ | =

∑
δ≤τ

µ(δ, τ)|Xτ |.



Motivations A Sieve Formula Proofs Applications

Proof-2

For a set partition τ ∈ Πk , define Xτ naturally.
For any τ ∈ Πk , define X ◦

τ to be the set of vectors x ∈ Xτ

such that there does not exist δ ∈ Πk satisfying τ < δ and
x ∈ Xδ.

|Xδ| =
∑
δ≤τ

|X ◦
τ |,
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Proof-3

In particular, let δ = 1 = {1}{2} · · · {k}, then X ◦
1 is just X .

Thus we have

|X | =
∑
1≤τ

µ(1, τ)|Xτ |

=
∑
τ∈Πk

µ(1, τ)|Xτ |

=
∑

τ∈Πk :(n1,n2,··· ,nl )

l∏
i=1

(−1)ni−1(ni − 1)!|Xτ |

=
∑
τ∈Sk

sign(τ)|Xτ |.

The last equality comes from an elementary counting on
the number of permutations for a given set partition of [k ].
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Application on Generators over Finite Fields

Theorem (J. Li and D. Wan, 2009)

Let A = F∗qh = Fq[α]∗ and D = {α + a|a ∈ Fq}. Then, for any

ε > 0, there is a constant cε > 0 such that if h < εk1/2 and
4ε2 ln2 q < k ≤ cεq, we have ND(k , b) > 0 for any b ∈ F∗qh .
In other words, each element of F∗qh can be written to the
product of precisely k distinct factors each in {α + a, a ∈ Fq}.
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Applications on Counting Rational Points

Let N be the number of k-subset S ⊆ Fq satisfying that:∑
a∈S

a = b1,

∑
{a,b}⊆S

ab = b2,

· · · ,∑
{a,b,··· ,c}⊆∈S

ab · · · c = bm.

Then we have

∣∣∣∣N − 1
qm

(
q
k

)∣∣∣∣ ≤ (
q/p + m

√
q + k

k

)
.
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Result on Counting Subsets over Finite Abelian Groups

Theorem (J. Li and D. Wan, 2011)
Suppose we are given the isomorphism
A ∼= Zn1 × Zn2 × · · · × Zns with n = |A| = n1 · · ·ns. Given b ∈ A,
suppose (b1, b2, · · · , bs) is the image of b in the isomorphism.
Let N(k , b) be the number of k-subsets of A whose elements
sum to b. Then we have

N(k , b) =
1
n

∑
r |(n,k)

(−1)k+ k
r

(
n/r
k/r

)
Φ(r , b),

where Φ(r , b) =
∑

d |r ,(ni ,d)|bi
µ(r/d)

∏s
i=1(ni , d) and µ is the

usual Möbius function defined over the integers.
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Remark

In particular, when A is cyclic then

Φ(r , b) =
∑

d |(b,r)

µ(r/d)d ,

and the formular for this case was first found by
Ramanathan in 1944 using the properties of the
Ramanujan’s trigonometrical sum.

Interestingly, Φ(r , b) can be also defined as

Φ(r , b) =
∑

k ,(k ,r)=1

e2πikb/r .

In particular,

N(k , 0) =
1
n

∑
r |(n,k)

(−1)k+ k
r φ(r)

(
n/r
k/r

)
,

where φ is the Euler function.
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Corollary

Theorem
Let N(b) be the number of subsets of A sum to b. Then we
have

N(b) =
1
n

∑
r |n,r odd

Φ(r , b)2n/r .

Furthermore, if A is cyclic and n is odd then we get a classical
formula

N(0) =
1
n

∑
r |n

φ(r)2n/r .
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Corollary

Theorem
Let Fq be the finite field of q elements with characteristic p. Let
A be any additive subgroup of Fq and |A| = n. For any b ∈ A,
let N(k , b) be the number of k-subsets of A whose elements
sum to b. Define v(b) = −1 if b 6= 0, and v(b) = n − 1 if b = 0.
If p - k, then

N(k , b) =
1
n

(
n
k

)
.

If p | k, then

N(k , b) =
1
n

(
n
k

)
+ (−1)

k+ k
p

v(b)

n

(
n/p
k/p

)
.
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Zhu-Wan’s result on Cyclotomic subgroups

Let A = F∗q and D be a multiplicative subgroup of F∗q with
index m;

Theorem (Zhu and Wan, 2011)

Then for 1 ≤ k ≤ q−1
m we have∣∣∣∣∣ND(k , 0)− 1

q

(q−1
m
k

)∣∣∣∣∣ ≤
(√

q + k + q
mp

k

)
.

Corollary: Let p > 2. There is an effectively computable
absolute constant 0 < c < 1 such that if m < c

√
q and

6 ln q < k ≤ q−1
2m , then ND(k , b) > 0 for all b ∈ Fq.
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Applications in Additive Combinatorics

We say a subset D ⊆ A is smooth if for any nontrivial
additive character χ, |

∑
a∈D χ(a)| = O(

√
n log |A|).

Theorem (Li, 2011)

Let D ⊆ Zp and ε be a positive constant. If |D| = log1+ε p and
D is smooth, then there is two constants c1 and c2 such that
when c1

log p
log log p ≤ k ≤ c2n, we have Dk = Zp.
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Thank you very much for your attention!
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