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Motivation

Many combinatorial configurations have a large group of symmetries.

A common theme in algebraic combinatorics: Use the structure of the
group and its action on the points to obtain information about the
configuration.

If an automorphism group G is sharply transitive on a set of points then
we may view the structure from within the group ring Z[G ].
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Examples of combinatorial structures in group rings

If the configuration has a sharply transitive automorphism group:

symmetric (v , k , λ) design with sharply transitive G
⇐⇒ (v , k, λ) difference set D ∈ Z[G ].

A strongly regular (v , k , λ, µ) graph with sharply transitive G
⇐⇒ (v , k, λ, µ) partial difference set S ∈ Z[G ].

A group divisible design (v ,m, k , n) with sharply transitive G
⇐⇒ (v ,m, k , n) relative difference set R ∈ Z[G ].

A distance regular graph with sharply transitive G
⇐⇒ translation scheme S ∈ Z[G ].

Other examples include circulant weighing matrices, group developed
weighing matrices, perfect ternary arrays....
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A little ring theory

Combinatorial objects involve the integers. If the object has a sharply
transitive group G then we view it as living in Z[G ].
But analysis of the configuration often involves representations of the
underlying group G and so we consider C[G ].

So we consider a tower of group rings

Z[G ] ⊂ Q[G ] ⊂ K [G ] ⊂ C[G ]

(where K = Q(ζ) is the splitting field of G .)

The interplay between Z[G ] and Q(ζ)[G ] determines existence and
nonexistence of potential combinatorial structures.
We explore that relationship here.
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An example

Consider the (16, 6, 2) difference D = {x , x3, y , y3, xy , x3y3} in
G =< x , y : x4 = y4 = [x , y ] = 1 > .
This is a group-developed Hadamard 16× 16 matrix with G acting on
the rows and columns.
Write D = x + x3 + y + y3 + xy + x3y3. (“Abuse” of notation.)
Abelian G has 16 characters (= linear representations)

1. The trivial character maps D to 6; it simply counts.

2. Six characters map D to the real number 2.

3. The remaining nine characters map D to -2.

D = 6E0 + 2E1 − 2E2 where E0,E1 and E2 are idempotents
corresponding to the eigenvalues (character values.)

This is not new.
But ....
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Array notation

If G =< x , y > then an element of S ∈ Z[G ] has form

S =
∑
i,j

si,jx
iy j

We write this as an array
s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3


Example: S = y + 2y2 + 3y3 + 4x + 5xy + 6xy2 + 7xy3 in Z[C2 × C4] is
written (

0 1 2 3
4 5 6 7

)
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Homomorphisms

D = x + x3 + y + y3 + xy + x3y3 =


0 1 | 0 1
1 1 | 0 0
0 0 | 0 0
1 0 | 0 1


has homomorphic images

D/ < x2 >= (2x+y+y3+xy+xy3)< x2 > =

(
0 1 | 0 1
2 1 | 0 1

)
< x2 >

D/ < x2, y2 >= (2x + 2y + 2xy)< x2, y2 > =

(
0 2
2 2

)
< x2, y2 >

and
(
2 4

)
and

(
6
)
.
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Homomorphisms and character values

These images are determined by certain character values:

D/ < x , y >=
(
6
)
.

D/ < x , y2 >=
(
2 4

)
adds an eigenvalue −2.

D/ < x2, y2 >=

(
0 2
2 2

)
< x2, y2 >

adds two more copies of −2 as eigenvalue

D/ < x2 >=

(
0 1 | 0 1
2 1 | 0 1

)
< x2 >

add 2 eigenvalues equal to −2 and 2 equal to +2 and eventually we get

D =


0 1 | 0 1
1 1 | 0 0
0 0 | 0 0
1 0 | 0 1
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Rational Idempotents

If G is an abelian group, the group ring C[G ] has two natural bases, the
“standard” basis and the “Fourier” basis:
The standard basis is

B1 = {g : g ∈ G}.

If χ ∈ G∗ is a character of G then define

eχ :=
1

|G |
∑
g∈G

χ(g) g .

The “Fourier basis” is
B2 = {eχ : χ ∈ G∗}

We extend a character χ ∈ G∗ to C[G ] as follows:∑
g∈G

sg g 7→
∑
g∈G

sg χ(g).
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B2 = {eχ : χ ∈ G∗}

We extend a character χ ∈ G∗ to C[G ] as follows:∑
g∈G

sg g 7→
∑
g∈G

sg χ(g).
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Final example and comments

The significance of the Fourier basis

Recall eχ :=
1

|G |
∑
g∈G

χ(g) g .

Theorem. Let χ, ψ ∈ G∗, χ 6= ψ. Then (via orthogonality relations on
characters)

1. eχeψ = 0.

2. e2χ = eχ.

Thus the set B2 = {eχ : χ ∈ G∗} is a set of “orthogonal” principle
central idempotents.

Theorem. If S ∈ C[G ] then S =
∑
χ∈G∗

χ(S) eχ.
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An alias for S

Theorem. If S ∈ C[G ] then

S =
∑
χ∈G∗

χ(S) eχ.

Furthermore, let αχ be any element of C[G ] such that χ(αχ) = χ(S).
Then

S =
∑
χ∈G∗

χ(αχ) eχ.

An element αχ is an alias for S (with respect to χ.)
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Rational idempotents

Define an equivalence relation ∼ on G∗ by

χ ∼ χ′ ⇐⇒ Ker(χ) = Ker(χ′).

and define
[eχ] :=

∑
χ′∼χ

eχ′ .

[eχ] is an idempotent fixed by all Galois automorphisms of the splitting
field K of G .
Therefore [eχ] is in Q[G ]; it is a rational idempotent.
Furthermore, all the “primitive” rational idempotents of Q[G ] have this
form.
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Rational Idempotents,Main Theorem

Since
Z[G ] ⊆ Q[G ] ⊆ K [G ] ⊆ C[G ],

we seek to write all elements of Z[G ] in terms of the rational
idempotents.

Theorem. (EMPHASIZE!)
If S ∈ Z[G ] then for each equivalence class of characters χ/∼ choose any
alias αχ ∈ Z[G ] for S .
Then

S =
∑

χ∈G∗/∼

αχ [eχ]

The aliases αχ will vary with the equivalence classes of the characters
but are constant across equivalence classes.
(Notice the flexibility in the choice of aliases.)

Ken W. Smith Construction of combinatorial structures using rational idempotents



Motivation
Rational Idempotents

CW(24,9)
CW(48,36)

Final example and comments

Rational Idempotents,Main Theorem

Since
Z[G ] ⊆ Q[G ] ⊆ K [G ] ⊆ C[G ],

we seek to write all elements of Z[G ] in terms of the rational
idempotents.

Theorem. (EMPHASIZE!)
If S ∈ Z[G ] then for each equivalence class of characters χ/∼ choose any
alias αχ ∈ Z[G ] for S .
Then

S =
∑

χ∈G∗/∼

αχ [eχ]

The aliases αχ will vary with the equivalence classes of the characters
but are constant across equivalence classes.
(Notice the flexibility in the choice of aliases.)

Ken W. Smith Construction of combinatorial structures using rational idempotents



Motivation
Rational Idempotents

CW(24,9)
CW(48,36)

Final example and comments

Rational Idempotents,Main Theorem

Since
Z[G ] ⊆ Q[G ] ⊆ K [G ] ⊆ C[G ],

we seek to write all elements of Z[G ] in terms of the rational
idempotents.

Theorem. (EMPHASIZE!)
If S ∈ Z[G ] then for each equivalence class of characters χ/∼ choose any
alias αχ ∈ Z[G ] for S .
Then

S =
∑

χ∈G∗/∼

αχ [eχ]

The aliases αχ will vary with the equivalence classes of the characters
but are constant across equivalence classes.
(Notice the flexibility in the choice of aliases.)

Ken W. Smith Construction of combinatorial structures using rational idempotents



Motivation
Rational Idempotents

CW(24,9)
CW(48,36)

Final example and comments

Rational Idempotents, cont.

If G =< x : xp
b

= 1 > is a cyclic p-group then the primitive rational
idempotents of G have the form

[eχ] =
p < xp

j+1

> − < xp
j

>

pb−j
.

If G is cyclic, the primitive rational idempotents of G are products of
primitive idempotents from the Sylow subgroups.

So we know all the primitive rational idempotents of cyclic groups.
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Rational Idempotents, cont.

(Repeating...) Any element X ∈ Z[G ] can be written (uniquely) in the
form

X =
∑

χ∈G∗/∼

χ(X )[eχ]

An effective means to constructing a combinatorial object in a cyclic
group is to build it up from the rational idempotents, using the possible
character values of the object.

This is particularly effective if we also take advantage of various
homomorphic images.
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Cyclic groups, example

Suppose G = C24
∼= C3 × C8 =< y , z : y3 = z8 = [y , z ] = 1 > .

There are 4 rational idempotents for C8 =< z : z8 = 1 > .
They are

< z >

8
,

2 < z2 > − < z >

8
=

(1− z) < z2 >

8
,

2 < z4 > − < z2 >

4
=

(1− z2) < z4 >

4
,

2 < z8 > − <4>

2
=

(1− z4)

2

There are 2 rational idempotents for C3 =< y : y3 = 1 > .
They are

< y >

3
and

3 < y3 > − < y >

3
=

2− y − y2

3
.
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Cyclic groups, example

In array notation the idempotents of C8 and C3 are

1

8

(
1 1 1 1 1 1 1 1

)
,

1

8

(
1 −1 1 −1 1 −1 1 −1

)
,

1

8

(
2 0 −2 0 2 0 −2 0

)
,

1

8

(
4 0 0 0 −4 0 0 0

)
,

and

1

3

1
1
1

 ,
1

3

 2
−1
−1

 .

Ken W. Smith Construction of combinatorial structures using rational idempotents



Motivation
Rational Idempotents

CW(24,9)
CW(48,36)

Final example and comments

Cyclic groups, example

In array notation the idempotents of C8 and C3 are

1

8

(
1 1 1 1 1 1 1 1

)
,

1

8

(
1 −1 1 −1 1 −1 1 −1

)
,

1

8

(
2 0 −2 0 2 0 −2 0

)
,

1

8

(
4 0 0 0 −4 0 0 0

)
,

and

1

3

1
1
1

 ,
1

3

 2
−1
−1

 .

Ken W. Smith Construction of combinatorial structures using rational idempotents



Motivation
Rational Idempotents

CW(24,9)
CW(48,36)

Final example and comments

Cyclic groups, example

In array notation the idempotents of C8 and C3 are

1

8

(
1 1 1 1 1 1 1 1

)
,

1

8

(
1 −1 1 −1 1 −1 1 −1

)
,

1

8

(
2 0 −2 0 2 0 −2 0

)
,

1

8

(
4 0 0 0 −4 0 0 0

)
,

and

1

3

1
1
1

 ,
1

3

 2
−1
−1

 .

Ken W. Smith Construction of combinatorial structures using rational idempotents



Motivation
Rational Idempotents

CW(24,9)
CW(48,36)

Final example and comments

Cyclic groups, example

The eight rational idempotents of C3 × C8 are just the products of these.
(In our array notation, that is just the pointwise (Schur) product of these
arrays.)
For example, the idempotent corresponding to any character of order 21
is

1

8

(
4 0 0 0 −4 0 0 0

)
◦ 1

3

 2
−1
−1

 =

1

24

 8 0 0 0 −8 0 0 0
−4 0 0 0 4 0 0 0
−4 0 0 0 4 0 0 0
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Some notation

If
G = Cs × Ct =< x : x s = 1 > × < y : y t = 1 >,

write χi,j for the character which maps x to ζ is and y to ζ jt .

If G = {x iy j} then G∗ = {χi,j}

Extend this notation to ei,j and [ei,j ].
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The unique CW (24, 9)

G := C3 × C8 =< y , z : y3 = z8 = [y , z ] = 1 >
We seek S ∈ Z[G ] such that SS (−1) = 9 and ∀g ∈ G , sg ∈ {−1, 0, 1}.

S = α0,0e0,0 + α0,4e0,4 + α0,2[e0,2] + α0,1[e0,1]

+α1,0[e1,0] + α1,4[e1,4] + α1,2[e1,2] + α1,1[e1,1].

The C4 image is α0,0e0,0 + α0,4e0,4 + α0,2[e0,2]

=
α0,0

4

(
1 1 1 1

)
+
α0,4

4

(
1 −1 1 −1

)
+
α0,2

4

(
2 0 −2 0

)
where the αi,j are aliases for χ(S)χS = 9 in the appropriate number
theoretic ring.

Ken W. Smith Construction of combinatorial structures using rational idempotents



Motivation
Rational Idempotents

CW(24,9)
CW(48,36)

Final example and comments

The unique CW (24, 9)

G := C3 × C8 =< y , z : y3 = z8 = [y , z ] = 1 >
We seek S ∈ Z[G ] such that SS (−1) = 9 and ∀g ∈ G , sg ∈ {−1, 0, 1}.

S = α0,0e0,0 + α0,4e0,4 + α0,2[e0,2] + α0,1[e0,1]

+α1,0[e1,0] + α1,4[e1,4] + α1,2[e1,2] + α1,1[e1,1].

The C4 image is α0,0e0,0 + α0,4e0,4 + α0,2[e0,2]

=
α0,0

4

(
1 1 1 1

)
+
α0,4

4

(
1 −1 1 −1

)
+
α0,2

4

(
2 0 −2 0

)
where the αi,j are aliases for χ(S)χS = 9 in the appropriate number
theoretic ring.

Ken W. Smith Construction of combinatorial structures using rational idempotents



Motivation
Rational Idempotents

CW(24,9)
CW(48,36)

Final example and comments

The unique CW (24, 9)

The C4 image of S is

S/ < y , z4 >= (
3

4
)
(
1 1 1 1

)
+(

3

4
)
(
1 −1 1 −1

)
+(

3x i

4
)
(
2 0 −2 0

)
=

1

4

(
6 6 6 −6

)
or

1

4

(
12 0 0 0

)
.
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The C3 and C6 images of CW (24, 9)

The C3 image is 3e0,0 ± 3[e1,0] =

1
1
1

±
 2
−1
−1


giving 3

0
0

 or

−1
2
2


When we move on to C6, we get four solutions

3e0,0 ± 3[e1,0] + 3e0,4 ± 3[e1,4] =3 0
0 0
0 0

 ,

1 2
1 −1
1 −1

 ,

1 −2
1 1
1 1

 or

−1 0
2 0
2 0

 ,
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The C12 images of CW (24, 9)

We take previous C12 solution, multiply it by
1 + z2

2
and add to that

3y i1 [e0,2]± 3y i2 [e1,2]

=
1

2
y i1

1 0 −1 0
1 0 −1 0
1 0 −1 0


±1

2
y i2

 2 0 −2 0
−1 0 1 0
−1 0 1 0
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The C12 images of CW (24, 9), II

This allows only four C12 = C3 × C4 solutions. (The first is then
prohibited by the coset bound.)3 0 0 0

0 0 0 0
0 0 0 0

 ,

1 0 −2 0
1 0 1 0
1 0 1 0


1 0 2 0

1 0 −1 0
1 0 −1 0

 ,

−1 0 0 0
2 0 0 0
2 0 0 0
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The final idempotents

To get the final object in C24, we take the C12 image (one of three

above), multiply it by 1+z4

2 and add alias-idempotent combinations

α0,1[e0,1] + α0,1[e1,1].

The character of order 8 allows us to work in Z[ζ8] (ζ8 := eπi/4) where we
may write 9 = (1 + 2

√
2i)(−1− 2

√
2i) = (1 + 2ζ8 + 2ζ38 )(1− 2ζ8 − 2ζ38 ).

Thus α0,1 might be ±3 or might be something more interesting like
±(1 + 2z + 2z3)!
The order-24 alias can even more interesting since there we allow a Gauss
sum. In this case,

χ1,1(α1,1) = (ω − ω2)(1 +
√

2i) = (ω − ω2)(1 + ζ8 + ζ38 )

(where ω is a primitive cube root of unity.)
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The choices

So A3 + B2 + C2 =

0 1 0 1 −1 −1 0 −1
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0



Similarly A3 + B3 + C3 =

0 −1 0 −1 −1 1 0 1
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0


But these are equivalent under the automorphism g 7→ g−1.
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Final example and comments

The unique CW (24, 9)

S = −1 + (y + y2)(1 + z4) + (z + z3)(1− z4)

=

−1 1 0 1 0 −1 −1 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0

 .

is a CW (24, 9) and it is unique up to a common notion of equivalence.

This object was first found by Vincent in 1989 by computer search.
It was later re-discovered by Arasu, Ma and Strassler in 1998.
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The unique CW (24, 9)

Write G := C3 × C8 =< y , z : y3 = z8 = [y , z ] = 1 >

1. A =< y > −(3− < y >) = 2 < y > −3 =

−1
2
2

 has character

values of length 3 for all characters of G .

2. B = −1 + (z + z3) =
(
−1 1 0 1 0 0 0 0

)
has character

values of length 3 for most characters of G
Therefore,

3. ( 1+z4

2 )A + ( 1−z4
2 )B = −1 + (y + y2)(1 + z4) + (z + z3)(1− z4)

=

−1 1 0 1 0 −1 −1 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0

 .

gives a CW (24, 9).
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Final example and comments

The problem

A CW(24,9) is used by Vincent to construct a CW(96,36).

Is there a CW(48,36)?

This question has been open since at least 1989.

A student of Arasu’s (Alex Gutman) lists it as still open in his
masters thesis in 2007.
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Final example and comments

A CW(48,36)

Suppose D is a CW (48, 36) in G =< y , z : y3 = z16 = [y , z ] = 1 > .
Write

D = A(
1 + z8

2
) + B(

1− z8

2
)

where A is a CW (24, 9) in G/ < z8 >∼= C24.

(We can show that the entries in B must be even. Since B is even, so is

A. Therefore
1

2
A has the coefficients and character values to be a

CW (24, 9) in G/ < z8 > .)
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A CW(48,36)

A(
1 + z8

2
) =

[
−1 + (y + y2)(1 + z4) + (z + z3)(1− z4)

]
(1 + z8).

=

−1 1 0 1 0 −1 −1 0 | . . .
1 0 0 0 1 0 0 0 | . . .
1 0 0 0 1 0 0 0 | . . .

 .

satisfies the character requirements for all characters which are principle
on < z8 >
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Final example and comments

A CW(48,36)

(1 + y + y2)(1− z8) =

1 0 0 0 0 0 0 0 | . . .
1 0 0 0 0 0 0 0 | . . .
1 0 0 0 0 0 0 0 | . . .


satisfies the character requirements for characters principle on < y > but
not principle on < z8 > .

(y−y2)(1+z2+z6)(1−z8) =

 0 0 0 0 0 0 0 0 | . . .
1 0 1 0 0 0 1 0 | . . .
−1 0 −1 0 0 0 −1 0 | . . .


satisfies the character requirements for characters of order 48.
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A CW(48,36)

−1 1 0 1 0 −1 −1 0 | . . .
1 0 0 0 1 0 0 0 | . . .
1 0 0 0 1 0 0 0 | . . .

 .

1 0 0 0 0 0 0 0 | . . .
1 0 0 0 0 0 0 0 | . . .
1 0 0 0 0 0 0 0 | . . .


 0 0 0 0 0 0 0 0 | . . .

1 0 1 0 0 0 1 0 | . . .
−1 0 −1 0 0 0 −1 0 | . . .


Shifting does not change the modulus of images under characters, so we
may shift these three elements to form a set satisfying all the character
requirements.
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Final example and comments

Three pieces to the jigsaw puzzle

− + 0 + 0 − − 0 | . . .
+ 0 0 0 + 0 0 0 | . . .
+ 0 0 0 + 0 0 0 | . . .

 .

+g1

+ 0 0 0 0 0 0 0 | . . .
+ 0 0 0 0 0 0 0 | . . .
+ 0 0 0 0 0 0 0 | . . .


+g2

0 0 0 0 0 0 0 0 | . . .
+ 0 + 0 0 0 + 0 | . . .
− 0 − 0 0 0 − 0 | . . .


=

− + + + 0 − − 0 | . . .
+ + + + + 0 + 0 | . . .
+ − + − + 0 − 0 | . . .

 .

!!
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Final example and comments

One last example

Davis: Is there a (64, 18, 2, 6) PDS in C8 × C8?

Exercise. The image of D in G/ < x2, y2 > is

18[e0,0]+2([e0,4]+[e4,0]+[e4,4]) =

(
6 4
4 4

)
= (6+4x+4y+4xy) < x2, y2 >

This leaves (
2 2 4 2
0 2 4 2

)
, {χ0,2, χ0,6} ⊂ S∗

(I can use a multiplier theorem and a natural duality to eliminate all
choices in my search at this level.)
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Final example and comments

All C4 × C4 solutions are equivalent to the following:
0 0 2 0
0 0 2 2
2 2 2 2
0 2 2 0


All C4 × C8 solutions are equivalent to the following:

=


0 0 1 0 | 0 0 1 0
0 0 2 1 | 0 0 0 1
2 1 1 1 | 0 1 1 1
0 1 0 0 | 0 1 2 0


We can easily finish this off to find 4 solutions. (These are nonequivalent
but give the same strongly regular graph.)
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Final example and comments

Comments

This rational idempotent construction is essentially an algorithm for
creating combinatorial objects with prescribed eigenvalues and a sharply
transitive automorphism group.

1. When does this work best? (There are three main ingredients.)

1.1 When the exponent of the group is relatively high, the rational
idempotents collect lots of primitive idempotents.

1.2 When the character values (eigenvalues) are tightly constrained, we
have a limited number of choices for the aliases.

1.3 We would like a nice sieve of homomorphic images of our group.

2. What if the group is nonabelian?
There is an analogous theory for nonabelian groups, but the
“idempotent decomposition” is not nearly as clean.
And then there may be some “noncommutative number theory”!
And the sieve of images may be more complicated too!
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1.2 When the character values (eigenvalues) are tightly constrained, we
have a limited number of choices for the aliases.

1.3 We would like a nice sieve of homomorphic images of our group.

2. What if the group is nonabelian?
There is an analogous theory for nonabelian groups, but the
“idempotent decomposition” is not nearly as clean.
And then there may be some “noncommutative number theory”!
And the sieve of images may be more complicated too!

Ken W. Smith Construction of combinatorial structures using rational idempotents



Motivation
Rational Idempotents

CW(24,9)
CW(48,36)

Final example and comments

Comments

This rational idempotent construction is essentially an algorithm for
creating combinatorial objects with prescribed eigenvalues and a sharply
transitive automorphism group.

1. When does this work best? (There are three main ingredients.)

1.1 When the exponent of the group is relatively high, the rational
idempotents collect lots of primitive idempotents.

1.2 When the character values (eigenvalues) are tightly constrained, we
have a limited number of choices for the aliases.

1.3 We would like a nice sieve of homomorphic images of our group.

2. What if the group is nonabelian?
There is an analogous theory for nonabelian groups, but the
“idempotent decomposition” is not nearly as clean.
And then there may be some “noncommutative number theory”!
And the sieve of images may be more complicated too!

Ken W. Smith Construction of combinatorial structures using rational idempotents



Motivation
Rational Idempotents

CW(24,9)
CW(48,36)

Final example and comments

Comments

This rational idempotent construction is essentially an algorithm for
creating combinatorial objects with prescribed eigenvalues and a sharply
transitive automorphism group.

1. When does this work best? (There are three main ingredients.)

1.1 When the exponent of the group is relatively high, the rational
idempotents collect lots of primitive idempotents.

1.2 When the character values (eigenvalues) are tightly constrained, we
have a limited number of choices for the aliases.

1.3 We would like a nice sieve of homomorphic images of our group.

2. What if the group is nonabelian?
There is an analogous theory for nonabelian groups, but the
“idempotent decomposition” is not nearly as clean.
And then there may be some “noncommutative number theory”!
And the sieve of images may be more complicated too!

Ken W. Smith Construction of combinatorial structures using rational idempotents



Motivation
Rational Idempotents

CW(24,9)
CW(48,36)

Final example and comments

Parts of this work involve collaborations with Jim Davis, John Polhill,
Jessica Stuckey and Bernhard Schmidt,

More extensive notes will be available on my professional webpage at
web.me.com/kenwsmith/Professional (link here)

THANKS!
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