## Proper Circulant Weighing Matrices of Weight $p^{2}$

$$
\begin{gathered}
\text { by } \\
\text { K.H. Leung and S.L. Ma }
\end{gathered}
$$

National University of Singapore

## Weighing Matrices

A weighing matrix of order $v$ and weight $n$ is a square matrix $M$ of order $v$ with entries from $\{-1,0,+1\}$ such that

$$
M M^{\mathrm{T}}=n I
$$

where $I$ is the identity matrix of order $n$ and $M^{\mathrm{T}}$ is the transpose of $M$.

The matrix $M=\left(b_{i j}\right)$ is called circulant if every row is obtained from the previous row by a cyclic shift to the right, i.e. for all $i$ and $j, b_{i j}=b_{1, j-i}$.

## Perfect Sequences

Suppose $M=\left(b_{i j}\right)$ is a circulant weighing matrix of order $v$ and weight $n$.
Let $a_{i}=b_{1, j+1}$ for $j=0,1, \ldots, v-1$.
Then the sequence ( $a_{0}, a_{1}, \ldots, a_{v-1}$ ) is a perfect sequence.
A perfect sequence is a sequence $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{v-1}\right)$ with zero out-of-phase auto-correlation, i.e.

$$
\operatorname{Aut}_{\boldsymbol{a}}(t)=\frac{1}{v} \sum_{j=0}^{v-1} a_{j} a_{j+t(\bmod v)}=0
$$

for all $t \equiv 0(\bmod v)$.

## Group Matrices

Let $G$ be a finite of order $v$ and $A=\sum_{g \in G} a_{g} g \in \mathbf{Z}[G]$.
Define the group matrix $M=\left(b_{g h}\right)_{g, h \in G}$, where the rows and columns of $M$ are indexed by the elements of $G$ and $b_{g h}=a_{\gamma}$ if $g h^{-1}=\gamma$.

If $G$ is cyclic, then with a proper indexing of rows and columns, $M$ is a circulant matrix.

## $W(G, n)$ and $C W(v, n)$

$M$ is a weighing matrix of weight $n$ if and only if $A$ satisfies
(W1) $a_{g} \in\{-1,0,+1\}$;
(W2) $A A^{(-1)}=n$.
where $A^{(-1)}=\sum_{g \in G} a_{g} g^{-1} \in \mathbf{Z}[G]$.
$A$ is called a $W(G, n)$ if it satisfies (W1) and (W2).
If $G$ is cyclic, $A$ is called a $C W(v, n)$.

## Proper Group Weighing Matrices

Obviously, if $H$ is a subgroup of $G$ and $A \in \mathbf{Z}[H]$ is a $W(H, n)$, then by regarding $A$ as an element in $\mathbf{Z}[G]$, it is clear that $g A$ is a $W(G, n)$ for any $g \in G$.

To classify all group weighing matrices, it is natural to ignore these types.
$A \in \mathbf{Z}[G]$ is called proper if the support of $A$ is not contained in any coset of any proper subgroup of $G$. (The corresponding group matrix is also called proper.)

## $C W(v, 4)$

Proper $C W(v, 4)$ exits if and only if either $v$ is even or $v=7$. (Eades and Hain, 1976)

Let $G$ be a cyclic group of order $v$. If $A \in \mathbf{Z}[G]$ is a $C W(v, 4)$, then there exist $g \in G$ and $t$ an integer relatively prime to $v$ such that either $g A^{(t)}$ or $-g A^{(t)}$ is equal to the one of the $A_{i}$ listed.

1. With $\gamma, a, b \in G$ such that $o(\gamma)=2$ and

$$
\begin{aligned}
\{a, \gamma a\} \cap\{b, \gamma b\} & =\varnothing \\
A_{1} & =(1+\gamma) a+(1-\gamma) b .
\end{aligned}
$$

2. With $h \in G$ such that $o(h)=7$,

$$
A_{2}=-1+h+h^{2}+h^{4} .
$$

## $C W(v, 9)$

Proper $C W(v, 9)$ exits if and only if $v=13,26$ or 24. (Ang, Arasu, Ma and Strasslerd, 2008)

Let $G$ be a cyclic group of order $v$. If $A \in \mathbf{Z}[G]$ is a $C W(v, 9)$, then there exist $g \in G$ and $t$ an integer relatively prime to $v$ such that either $g A^{(t)}$ or $-g A^{(t)}$ is equal to the one of the $A_{i}$ listed.

1. With $h \in G$ such that $o(h)=13$,

$$
A_{1}=\left(h+h^{3}+h^{9}\right) \pm\left[\left(h^{2}+h^{5}+h^{6}\right)-\left(h^{4}+h^{10}+h^{12}\right)\right] .
$$

2. With $\gamma, h \in G$ such that $o(\gamma)=2$ and $o(h)=13$,

$$
A_{2}=\gamma\left(h+h^{3}+h^{9}\right) \pm\left[\left(h^{2}+h^{5}+h^{6}\right)-\left(h^{4}+h^{10}+h^{12}\right)\right] .
$$

3 . With $\omega, a \in G$ such that $o(\omega)=3$ and $o(a)=8$,

$$
A_{3}=-1+\left(a+a^{3}\right)\left(1-a^{4}\right)+\left(\omega+\omega^{2}\right)\left(1+a^{4}\right) .
$$

## $C W\left(\nu, p^{2}\right)$

Let $p$ be an odd prime. Our main aim is to determine all $C W\left(v, p^{2}\right)$, in particular, $p=5$.

In the attempt to solve the problem, we find that the following two cases are very different:
I. $v$ and $p$ are relatively prime;
II. $v$ is divisible by $p$.

We suspect that if $v$ is divisible by $p$ (i.e. Case II), no proper $C W\left(v, p^{2}\right)$ exists for $p \geq 5$.

## Case II: A Known Result

Theorem (Arasu and Ma, 2001)
Let $p$ be an odd prime and let $G=\langle\alpha\rangle \times H$ be an abelian group where $o(\alpha)=p^{s}$ and $\operatorname{gcd}(|H|, p)=1$. Then there is no proper $W\left(G, p^{2}\right)$ if $s>1$.

Corollary No Proper $C W\left(p^{s} w, p^{2}\right)$ if $s>1$.

## Case II: Main Structural Result

The following is an improved version of a result by Arasu and Ma, 2001.

Theorem Let $p$ be an odd prime and let $G=\langle\alpha\rangle \times H$ be an abelian group where $o(\alpha)=p$ and $\operatorname{gcd}(|H|, p)=1$.

1. If $p \geq 7$, there exists a proper $W\left(G, p^{2}\right)$ if and only if there exist $\beta \in H$, with $o(\beta)=2$, a subset $Z \subset H-\langle\beta\rangle$, with $Z \cap \beta Z=\varnothing$, and disjoint subsets $X, Y \subset(H /\langle\beta\rangle)-$ $\{1\}$ such that

$$
[1+(1-\beta) Z][1+(1-\beta) Z]^{(-1)}=p-\frac{p-1}{2}\langle\beta\rangle
$$

and

$$
[1+2(X-Y)][1+2(X-Y)]^{(-1)}=p^{2}
$$

## Case II: Main Structural Result

2. If there exists a proper $W(G, 25)$, there exist $\beta \in H$, with $o(\beta)=2$, and disjoint subsets $X, Y \subset(H /\langle\beta\rangle)-\{1\}$ such that

$$
[1+2(X-Y)][1+2(X-Y)]^{(-1)}=25
$$

## Case II: Questions

A. Let $H$ be a finite cyclic group of even order with $\operatorname{gcd}(|H|, p)=1$ and let $\beta \in H$ with $o(\beta)=2$.
Does there exist $Z \subset H-\langle\beta\rangle$ such that $Z \cap \beta Z=\varnothing$ and

$$
[1+(1-\beta) Z][1+(1-\beta) Z]^{(-1)}=p-\frac{p-1}{2}\langle\beta\rangle \text { ? }
$$

B. Let $K$ be a finite cyclic group with $\operatorname{gcd}(|K|, p)=1$.

Does there exist disjoint subsets $X, Y \subset K-\{1\}$ such that

$$
[1+2(X-Y)][1+2(X-Y)]^{(-1)}=p^{2} ?
$$

## Case II: Question A - A Nonexistence Result

Theorem Let $H$ be a finite group of even order and let $\beta \in H$ with $o(\beta)=2$.
If there exist $Z \subset H-\langle\beta\rangle$ such that $Z \cap \beta Z=\varnothing$ and

$$
[1+(1-\beta) Z][1+(1-\beta) Z]^{(-1)}=m-\frac{m-1}{2}\langle\beta\rangle
$$

for some integer $m$, then $m \equiv 1(\bmod 4)$ and $|Z|=(m-1) / 4$.
Proof Counting the coefficients of the identity element in both side of the equation, we have

$$
\begin{aligned}
1+2|Z| & =\text { the sum of squares of the coefficients on LHS } \\
& =m-\frac{m-1}{2}
\end{aligned}
$$

which implies $|Z|=(m-1) / 4$ and hence $m \equiv 1(\bmod 4)$.

## Case II: Question A - A Nonexistence Result

Corollary For $p \geq 7$, no proper $C W\left(p w, p^{2}\right)$ exists if $p \equiv 3(\bmod 4)$.

## Case II: Question A - Some Examples

By trial-and error, we find some solutions to Question A:
$p=5: \quad H=\langle g\rangle, Z=\{g\}$ and $\beta=g^{2}$ where $o(g)=4$.
$p=13: H=\langle g, \omega\rangle, Z=\left\{g, g^{2} \omega, g^{2} \omega^{2}\right\}$ and $\beta=g^{2}$ where $o(g)=4$ and $o(\omega)=3$.
$p=17: H=\langle h, \omega\rangle, \mathrm{Z}=\left\{h, h^{3}, h^{4} \omega, h^{4} \omega^{2}\right\}$ and $\beta=h^{4}$ where $o(h)=8$ and $o(\omega)=3$.
$p=29: H=\langle g, \pi\rangle, Z=\left\{\pi, \pi^{6}, g \pi, g \pi^{6}, g^{3}, g^{3} \pi^{3}, g^{3} \pi^{4}\right\}$ and $\beta=g^{2}$ where $o(g)=4$ and $o(\pi)=7$.

## Case II: Question B - Basic Results

Let $K$ be a finite cyclic group with $\operatorname{gcd}(|K|, p)=1$.
Suppose there exist disjoint subsets $X, Y \subset K-\{1\}$ such that
$[1+2(X-Y)][1+2(X-Y)]^{(-1)}=p^{2}$ where $p \equiv 1(\bmod 4)$.
(i) $\quad X^{(p)}=X$ and $Y^{(p)}=Y$.
(ii) $|X|=\frac{1}{8}\left(p^{2}+2 p-3\right)$ and $|Y|=\frac{1}{8}\left(p^{2}-2 p+1\right)$.
(iii) $(X+Y)^{(-1)}=X+Y$.

Without lost of generality, we assume that $K$ is the smallest cyclic group that contains both $X$ and $Y$, i.e. $K=\langle X, Y\rangle$.

## Case II: Question B - A Non-Existence Result

Theorem Suppose $|K|$ divides $p^{2}-1$. Then there do not exist disjoint subsets $X, Y \subset K-\{1\}$ such that

$$
[1+2(X-Y)][1+2(X-Y)]^{(-1)}=p^{2}
$$

Corollary For $p \geq 5$, no proper $C W\left(p w, p^{2}\right)$ exists if $w$ divides $p^{2}-1$.

## Case II: Question B-Orbits Under the Action $\boldsymbol{g} \rightarrow \boldsymbol{g}^{\boldsymbol{p}}$

Recall that $X^{(p)}=X$ and $Y^{(p)}=Y$.
In particular, if $g \in X$ (or $Y$ ), then

$$
\left\{g^{p^{k}} \in K: k \in \mathbf{Z}\right\} \subset X \text { (respectively, } Y \text { ). }
$$

For convenience, we define

$$
\theta_{p}(g)=\left\{g^{p^{k}} \in K: k \in \mathbf{Z}\right\} .
$$

We say that $\theta_{p}(g)$ is the orbit of $g$.
$\left|\theta_{p}(g)\right|$ is equal to the smallest positive integer $r$ such that $o(g)$ divides $p^{r}-1$.

## Case II: Question B-p=5

Lemma For any $g \in X \cup Y, \theta_{p}(g)$ and $\theta_{p}\left(g^{-1}\right)$ are two disjoint orbits in $X \cup Y$.

Theorem There do not exist disjoint subsets $X, Y \subset K-\{1\}$ such that $[1+2(X-Y)][1+2(X-Y)]^{(-1)}=25$.

Proof Assume there exists such $X$ and $Y$.
We know that $|X|=4$ and $|Y|=2$.
Take any $g \in X \cup Y$. By the lemma, $\left|\theta_{p}(g)\right| \leq 2$ and hence $o(g)$ divides $5^{2}-1$.
But this means $|K|$ divides $5^{2}-1$. This contradicts one of our previous result.

## Case II: Question B - $p=5$

Corollary No proper $C W(5 w, 25)$ exists.

## Case I: A Classical Construction

Theorem Let $L=\langle\alpha\rangle \times G$ be a group of order $2 m u$ such that $o(\alpha)=2$ and $G$ is a group of order $m u$.
Suppose there exists an ( $m, 2 u, n, \lambda$ )-relative difference set $D=X \cup \alpha Y$ in $L$ relative to $\langle\alpha\rangle \times N$ where $N$ is a normal subgroup of $G$ of order $u$ and $X, Y$ are subsets of $G$. Then $A=X-Y$ is a proper $W(G, n)$.

By the classical geometric construction, for any divisor $w$ of $p-1$, there exists a $\left(p^{2}+p+1, w, p^{2},\left(p^{2}-p\right) / w\right)$-relative difference set in the cyclic group of order $\left(p^{2}+p+1\right) w$.
Thus for odd $p$, there exists a proper $C W\left(\left(p^{2}+p+1\right) w / 2, p^{2}\right)$ where $w$ is a divisor of $p-1$ such that $w \equiv 2(\bmod 4)$.
In particular, there exists a proper $C W(31,5)$.

## Case I: Basic Results

Let $G$ be a finite cyclic group of order $v$ with $\operatorname{gcd}(v, p)=1$. Suppose $A=X-Y$ is a $C W\left(v, p^{2}\right)$ where $X$ and $Y$ are disjoint subsets of $K$.
(i) $\quad X^{(p)}=X$ and $Y^{(p)}=Y$.
(ii) $|X|=\frac{1}{2}\left(p^{2} \pm p\right)$ and $|Y|=\frac{1}{2}\left(p^{2} \mp p\right)$.

In particular, if $p=5,\{|X|,|Y|\}=\{15,10\}$.

## Case I: Our Strategy

Our aim is to determine all the proper $C W\left(v, p^{2}\right)$, in particular, $C W(v, 25)$ (probably with the help of a computer).

To do so, we first need to limit the possible choices of $v$.
There is a very rough result given by Ang, Arasu, Ma and Strasslerd, 2008.

Lemma $v$ divides the least common multiple of $p-1$, $p^{2}-1, \ldots, p^{u}-1$ where $u=\left(p^{2}+p\right) / 2$.

The possible choices of $v$ is too much even for $p=5$.

## Case I: Our Strategy

In order to reduce the possible choices of $v$, we need to work on the orbit sizes $\left|\theta_{p}(g)\right|$ for $g \in X \cup Y$.

For example, we can show that there are at least two "irreducible" orbits of the largest size. With this result, the statement of the previous lemma can be refined to:

Lemma $v$ divides the least common multiple of $p-1$, $p^{2}-1, \ldots, p^{u}-1$ where $u=\left(p^{2}-p\right) / 2$.

We have also obtained some better bounds on $\left|\theta_{p}(g)\right|$. But those results are too technical to be stated here.

## $C W(v, 25)$

By a computer search, we have found proper $C W(v, 25)$ for $v=31,62,124,71,142,33$.
Let $G$ be a cyclic group of order $v \in\{31,62,124,71,142$, 33\}. If $A \in \mathbf{Z}[G]$ is a $C W(v, 4)$, then there exist $g \in G$ and $t$ an integer relatively prime to $v$ such that either $g A^{(t)}$ or $-g A^{(t)}$ is equal to the one of the $A_{i}$ listed.
$v=31$ : With $a \in G$ such that $o(a)=31$,

$$
\begin{aligned}
A_{1}=-1+\theta_{5}(a)+\theta_{5}\left(a^{2}\right)+\theta_{5}\left(a^{3}\right) & +\theta_{5}\left(a^{6}\right)+\theta_{5}\left(a^{11}\right) \\
& -\theta_{5}\left(a^{4}\right)-\theta_{5}\left(a^{16}\right)-\theta_{5}\left(a^{17}\right) ; \\
A_{2}=-1+\theta_{5}(a)+\theta_{5}\left(a^{2}\right)+\theta_{5}\left(a^{3}\right) & +\theta_{5}\left(a^{8}\right)+\theta_{5}\left(a^{17}\right) \\
& -\theta_{5}\left(a^{11}\right)-\theta_{5}\left(a^{12}\right)-\theta_{5}\left(a^{16}\right) .
\end{aligned}
$$

## $C W(v, 25)$

$\boldsymbol{v}=62$ : With $\gamma, a \in G$ such that $o(\gamma)=2$ and $o(a)=31$,

$$
\begin{array}{r}
A_{3}=-1+\gamma \theta_{5}(a)+\theta_{5}\left(a^{2}\right)+\theta_{5}\left(a^{3}\right)+\theta_{5}\left(a^{6}\right)+\gamma \theta_{5}\left(a^{11}\right) \\
-\gamma \theta_{5}\left(a^{4}\right)-\gamma \theta_{5}\left(a^{16}\right)-\theta_{5}\left(a^{17}\right) ; \\
A_{4}=-1+\gamma \theta_{5}(a)+\theta_{5}\left(a^{2}\right)+\gamma \theta_{5}\left(a^{3}\right)+\theta_{5}\left(a^{8}\right)+\gamma \theta_{5}\left(a^{17}\right) \\
-\gamma \theta_{5}\left(a^{11}\right)-\theta_{5}\left(a^{12}\right)-\theta_{5}\left(a^{16}\right) ; \\
A_{5}=-1+(1+\gamma) \theta_{5}(a)+(1-\gamma) \theta_{5}\left(a^{11}\right)+\gamma \theta_{5}\left(a^{6}\right)+\theta_{5}\left(a^{8}\right) \\
-\gamma \theta_{5}\left(a^{3}\right)-\theta_{5}\left(a^{12}\right) ; \\
A_{6}=-1+(1+\gamma) \theta_{5}(a)-(1-\gamma) \theta_{5}\left(a^{16}\right)+\theta_{5}\left(a^{6}\right)+\theta_{5}\left(a^{8}\right) \\
-\gamma \theta_{5}\left(a^{3}\right)-\gamma \theta_{5}\left(a^{12}\right) ; \\
A_{7}=-1+(1+\gamma) \theta_{5}(a)+(1-\gamma) \theta_{5}\left(a^{17}\right)+\gamma \theta_{5}\left(a^{4}\right)+\theta_{5}\left(a^{12}\right) \\
-\gamma \theta_{5}\left(a^{8}\right)-\theta_{5}\left(a^{16}\right) ; \\
A_{8}=-1+(1+\gamma) \theta_{5}(a)-(1-\gamma) \theta_{5}\left(a^{11}\right)+\theta_{5}\left(a^{4}\right)+\theta_{5}\left(a^{12}\right) \\
\\
-\gamma \theta_{5}\left(a^{8}\right)-\gamma \theta_{5}\left(a^{16}\right) ;
\end{array}
$$

## $C W(v, 25)$

$$
\begin{aligned}
& A_{9}=-1-(1+\gamma) \theta_{5}(a)+(1-\gamma) \theta_{5}\left(a^{2}\right) \\
& \quad+\gamma \theta_{5}\left(a^{6}\right)+\gamma \theta_{5}\left(a^{11}\right)+\theta_{5}\left(a^{12}\right)+\theta_{5}\left(a^{16}\right) \\
& \begin{aligned}
& A_{10}=-1-(1+\gamma) \theta_{5}(a)+(1-\gamma) \theta_{5}\left(a^{17}\right) \\
&+\theta_{5}\left(a^{6}\right)+\gamma \theta_{5}\left(a^{11}\right)+\gamma \theta_{5}\left(a^{12}\right)+\theta_{5}\left(a^{16}\right)
\end{aligned}
\end{aligned}
$$

$v=124$ : With $\beta, a \in G$ such that $o(\beta)=4$ and $o(a)=31$,

$$
\begin{aligned}
& A_{11}=-1+(1+\beta) \theta_{5}(a)+(1-\beta) \theta_{5}\left(a^{11}\right) \\
& \quad+\beta^{3} \theta_{5}\left(a^{6}\right)+\beta^{2} \theta_{5}\left(a^{8}\right)-\beta^{3} \theta_{5}\left(a^{3}\right)-\beta^{2} \theta_{5}\left(a^{12}\right) ;
\end{aligned}
$$

$$
A_{12}=-1+(1+\beta) \theta_{5}(a)+(1-\beta) \theta_{5}\left(a^{17}\right)
$$

$$
+\beta^{3} \theta_{5}\left(a^{4}\right)+\beta^{2} \theta_{5}\left(a^{12}\right)-\beta^{3} \theta_{5}\left(a^{8}\right)-\beta^{2} \theta_{5}\left(a^{16}\right)
$$

## $C W(v, 25)$

$v=71$ : With $b \in G$ such that $o(b)=71$,

$$
\begin{aligned}
& A_{13}=\theta_{5}(b)+\theta_{5}\left(b^{2}\right)+\theta_{5}\left(b^{7}\right)-\theta_{5}\left(b^{22}\right)-\theta_{5}\left(b^{42}\right) ; \\
& A_{14}=\theta_{5}(b)+\theta_{5}\left(b^{3}\right)+\theta_{5}\left(b^{18}\right)-\theta_{5}\left(b^{2}\right)-\theta_{5}\left(b^{21}\right) ; \\
& A_{15}=\theta_{5}(b)+\theta_{5}\left(b^{3}\right)+\theta_{5}\left(b^{22}\right)-\theta_{5}\left(b^{11}\right)-\theta_{5}\left(b^{18}\right) ; \\
& A_{16}=\theta_{5}(b)+\theta_{5}\left(b^{3}\right)+\theta_{5}\left(b^{13}\right)-\theta_{5}\left(b^{14}\right)-\theta_{5}\left(b^{22}\right) .
\end{aligned}
$$

$v=142$ : With $\gamma, b \in G$ such that $o(\gamma)=2$ and $o(b)=71$,

$$
A_{15}=\theta_{5}(b)+\theta_{5}\left(b^{3}\right)+\gamma \theta_{5}\left(b^{42}\right)-\theta_{5}\left(b^{11}\right)-\theta_{5}\left(b^{18}\right) ;
$$

$$
A_{16}=\gamma \theta_{5}(b)+\theta_{5}\left(b^{3}\right)+\theta_{5}\left(b^{13}\right)-\theta_{5}\left(b^{14}\right)-\theta_{5}\left(b^{22}\right)
$$

## $C W(v, 25)$

$$
\begin{aligned}
& v=33: \text { With } \omega, c \in G \text { such that } o(\omega)=3 \text { and } o(c)=11, \\
& \qquad \begin{aligned}
A_{17} & =\left(1-\omega-\omega^{2}\right) \theta_{5}(c)+\left(\omega+\omega^{2}\right) \theta_{5}\left(c^{2}\right) \\
& =\theta_{5}(c)-\theta_{5}(\omega c)+\theta_{5}\left(\omega c^{2}\right) .
\end{aligned}
\end{aligned}
$$

## Conclusion

We are still in the process of refining some of our works on $C W(v, 25)$ with $v$ relatively prime to 5 .

However, we believe that there are no other proper $C W(v, 25)$ besides those we have listed in the previous slides.

## Open Problems

1. We have solutions to the equation

$$
[1+(1-\beta) Z][1+(1-\beta) Z]^{(-1)}=p-\frac{p-1}{2}\langle\beta\rangle
$$

in cyclic groups with $p=5,13,17$ and 29.
Are there other solutions for large $p$ ?
Note that solutions to the equation in cyclic groups can give us ternary "almost perfect" sequences.
2. Find solutions of the equation in other groups, say, abelian groups.

## Open Problems

3. Prove or disprove that the equation

$$
[1+2(X-Y)][1+2(X-Y)]^{(-1)}=p^{2}
$$

has no solution in cyclic groups.
4. Find solutions of the equation in other groups.

Note that solutions of the two equations in Questions 1 and 3 can be used to construct group weighing matrices of weight $p^{2}$.

## Open Problems

5. Determine all proper $C W(v, 49)$.
6. Determine all proper $W\left(G, p^{2}\right)$, where $G$ is abelian, for small values of $p$.
7. Apart from the classical construction of proper $C W\left(\left(p^{2}+p+1\right) w / 2, p^{2}\right)$ where $w$ is a divisor of $p-1$ such that $w \equiv 2(\bmod 4)$. Are there other (infinite) families of proper $C W\left(v, p^{2}\right)$ ?
