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Weighing Matrices

A weighing matrix of order  v and weight  n is a square 
i M f d i h i f { 1 0 1} hmatrix  M of order  v with entries from  {1, 0, 1} such 

that
M MT  n IM M  n I

where  I is the identity matrix of order  n and  MT is the 
transpose of  M.p

The matrix  M  (bi j) is called circulant if every row is 
bt i d f th i b li hift t th i htobtained from the previous row by a cyclic shift to the right, 

i.e. for all  i and  j,  bi j  b1, j i .



Perfect Sequences

Suppose  M  (bi j) is a circulant weighing matrix of order  v
d i hand  weight  n.

Let  ai  b1, j1 for  j  0, 1, ..., v 1.
Then the sequence  (a0, a1, ..., av1) is a perfect sequence.

A perfect sequence is a sequence a  (a a a ) withA perfect sequence is a sequence  a  (a0, a1, ..., av1) with 
zero out-of-phase auto-correlation, i.e.
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Group Matrices

Let  G be a finite of order  v and                                .  ][GgaA g Z 
Define the group matrix M  (bgh)g,hG ,  where the rows and 
columns of M are indexed by the elements of G and

Gg

columns of  M are indexed by the elements of  G and
bgh  a if  gh1  .  

If  G is cyclic, then with a proper indexing of rows and 
columns,  M is a circulant matrix.



W(G, n)  and  CW(v, n)

M is a weighing matrix of weight  n if and only if  A
i fisatisfies

(W1) ag  {1, 0, 1};   

(W2) AA(1)  n.
where                                        .][1)1( GgaA g Z  

A is called a  W(G, n) if it satisfies  (W1) and  (W2).
Gg

If  G is cyclic,  A is called a  CW(v, n).   



Proper Group Weighing Matrices

Obviously, if  H is a subgroup of  G and  A  Z[H] is a  
W(H ) h b di A l i Z[G] i iW(H, n),  then by regarding  A as an element in  Z[G],  it is 
clear that  gA is a  W(G, n) for any  g  G.  

To classify all group weighing matrices, it is natural to ignore 
these types. yp

A  Z[G] is called proper if the support of  A is not 
t i d i t f b f Gcontained in any coset of any proper subgroup of  G.

(The corresponding group matrix is also called proper.)



CW(v, 4)

Proper  CW(v, 4) exits if and only if either  v is even or  
7 (E d d H i 1976)v  7.  (Eades and Hain, 1976)

Let G be a cyclic group of order v If A  Z[G] is aLet  G be a cyclic group of order  v.  If  A  Z[G] is a  
CW(v, 4), then there exist  g  G and  t an integer relatively 
prime to  v such that either  gA(t) or  gA(t) is equal to the p g g q
one of the  Ai listed.

1. With  , a, b  G such that  o()  2 and  , , ()
{a, a} {b, b} = ,

A1  (1  ) a  (1  ) b.

2. With  h  G such that  o(h)  7,
A2  1  h  h2  h4.



CW(v, 9)

Proper  CW(v, 9) exits if and only if  v  13,  26 or  24.  
(A A M d S l d 2008)(Ang, Arasu, Ma and Strasslerd, 2008)

Let G be a cyclic group of order v If A  Z[G] is aLet  G be a cyclic group of order  v.  If  A  Z[G] is a  
CW(v, 9),  then there exist  g  G and  t an integer relatively 
prime to  v such that either  gA(t) or  gA(t) is equal to the p g g q
one of the  Ai listed.

1. With h  G such that  o(h)  13,( ) ,
A1  (h h3 h9) ± [(h2 h5 h6)  (h4 h10 h12)].

2. With  , h  G such that  o()  2 and  o(h)  13,, () ( ) ,
A2  (h h3 h9) ± [(h2 h5 h6)  (h4 h10 h12)].

3. With , a  G such that o()  3 and o(a)  8,3. With  , a  G such that  o() 3 and  o(a) 8,
A3  1 + (a a3) (1  a4) + (2) (1 a4).



CW(v, p2)

Let  p be an odd prime.  Our main aim is to determine all  
CW( 2) i i l 5CW(v, p2),  in particular,  p  5.

In the attempt to solve the problem we find that the followingIn the attempt to solve the problem, we find that the following 
two cases are very different:

I v and p are relatively prime;I. v and  p are relatively prime;

II. v is divisible by  p.

We suspect that if  v is divisible by  p (i.e. Case II), no 
proper  CW(v, p2) exists for  p  5.p p ( , p ) p



Case II:  A Known Result

Theorem (Arasu and Ma, 2001)
Let  p be an odd prime and let  G    H be an abelian 
group where  o()  ps and  gcd(|H|, p)  1.

2Then there is no proper  W(G, p2) if  s  1.

Corollary No Proper CW(psw p2) if s  1Corollary No Proper  CW(psw, p ) if  s  1.



Case II:  Main Structural Result

The following is an improved version of a result by Arasu and 
M 2001Ma, 2001.

Theorem Let p be an odd prime and let G    H be anTheorem Let  p be an odd prime and let  G    H be an 
abelian group where  o()  p and  gcd(|H|, p)  1.
1. If p  7, there exists a proper W(G, p2) if and only if1. If  p  7,  there exists a proper  W(G, p ) if and only if 

there exist    H,  with  o()  2, a subset  Z  H   ,  
with  Z Z = ,  and  disjoint subsets  X, Y  (H/) 
{1} such that

    2
1)1()1(1)1(1   ppZZ

and
[1  2(X  Y)] [1  2(X  Y)](1)  p2.



Case II:  Main Structural Result

2. If there exists a proper  W(G, 25) , there exist    H,  
i h () 2 d di j i b X Y (H/) {1}with  o()  2,  and disjoint subsets  X, Y  (H/)  {1}

such that
[1  2(X Y)] [1  2(X Y)](1) 25[1  2(X  Y)] [1  2(X  Y)](1)  25.



Case II:  Questions

A. Let  H be a finite cyclic group of even order with 
d(|H| ) 1 d l  H i h () 2gcd(|H|, p)  1 and let    H with  o()  2.

Does there exist  Z  H   such that  Z Z =  and

   )1( ?    2
1)1()1(1)1(1   ppZZ

B. Let  K be a finite cyclic group with  gcd(|K|, p)  1.
Does there exist disjoint subsets  X, Y  K  {1} such 
hthat

[1  2(X  Y)] [1  2(X  Y)](1)  p2 ?



Case II:  Question A - A Nonexistence Result

Theorem Let  H be a finite group of even order and 
l  H i h () 2let    H with  o()  2.
If there exist  Z  H   such that  Z Z =  and

for some integer  m,  then  m  1 (mod 4) and  |Z| = (m  1)/4.
    2

1)1()1(1)1(1   mmZZ
g , ( ) | | ( )

Proof Counting the coefficients of the identity element in both 
id f h i hside of the equation, we have
1  2|Z|  the sum of squares of the coefficients on LHS

1m

which implies  |Z| = (m  1)/4 and hence  m  1 (mod 4).
2

1 mm



Case II:  Question A - A Nonexistence Result

C ll F 7 CW( 2) iCorollary For  p  7,  no proper  CW(pw, p2) exists
if  p  3 (mod 4). 



Case II:  Question A - Some Examples

By trial-and error, we find some solutions to Question A: 

p  5: H  g,  Z  {g} and    g2 where  o(g)  4.

p  13: H  g, , Z  {g, g2, g22} and   g2 wherep 13: H g, ,  Z {g, g , g  } and   g where  
o(g)  4 and  o()  3.

p  17: H  h, , Z  {h, h3, h4, h42} and   h4p 17: H h, ,  Z {h, h , h , h  } and   h
where o(h)  8 and  o()  3.

p  29: H  g  Z  {  6 g g 6 g3 g3 3 g3 4} andp  29: H  g, ,  Z  {,  , g, g , g , g  , g  } and 
  g2 where  o(g)  4 and  o()  7.



Case II:  Question B - Basic Results

Let  K be a finite cyclic group with  gcd(|K|, p)  1.
Suppose there exist disjoint subsets  X, Y  K  {1} such that  
[1  2(X  Y)] [1  2(X  Y)](1)  p2 where  p  1 (mod 4).

(i) X(p)  X and  Y(p)  Y.

(ii) |X|  and  |Y |  .  )32( 2
8
1  pp )12( 2

8
1  pp

(iii) (X  Y)(1)  X  Y.

Without lost of generality we assume that K is the smallestWithout lost of generality, we assume that  K is the smallest 
cyclic group that contains both  X and  Y,  i.e.  K  X, Y.



Case II:  Question B - A Non-Existence Result

Theorem Suppose  |K| divides  p2  1.  Then there do not 
i di j i b X Y K {1} h hexist disjoint subsets X, Y  K  {1} such that  

[1  2(X  Y)] [1  2(X  Y)](1)  p2.

Corollary For  p  5,  no proper  CW(pw, p2) exists
if w divides p2 1if  w divides  p  1.



Case II:  Question B - Orbits Under the Action  g  gp

Recall that  X(p)  X and  Y(p)  Y.  

In particular, if  g  X (or  Y),  then
(respectively,  Y).XkKg kp  }:{ Z ( p y, )

For convenience, we define

g }{

.

We say that  (g) is the orbit of g

}:{)( Z kKgg kp
p

We say that  p(g) is the orbit of  g.

|p(g)| is equal to the smallest positive integer  r such that  | p(g)| q p g
o(g) divides  pr  1. 



Case II:  Question B - p  5

Lemma For any  g  X  Y,  p(g) and  p(g1) are two 
di j i bi i X Ydisjoint orbits in  X  Y.

Theorem There do not exist disjoint subsets X Y  K  {1}Theorem There do not exist disjoint subsets X, Y  K {1}
such that  [1  2(X  Y)] [1  2(X  Y)](1)  25.

P f A th i t h X d YProof Assume there exists such  X and  Y.  
We know that  |X|  4 and  |Y |  2.
T k X Y B h l | ( )| 2 d hTake any  g  X  Y.  By the lemma,  |p(g)|  2 and hence  
o(g) divides  52  1.
B t thi |K| di id 52 1 Thi t di t fBut this means  |K| divides  52  1.  This contradicts one of 
our previous result.



Case II:  Question B - p  5

Corollary No proper  CW(5w, 25) exists.



Case I:  A Classical Construction

Theorem Let  L    G be a group of order  2mu such that  
( ) 2 d G i f do()  2 and  G is a group of order mu.  

Suppose there exists an  (m, 2u, n, )-relative difference set
D  X  Y in L relative to   N where N is a normalD  X  Y in  L relative to    N where  N is a normal 
subgroup of  G of order  u and  X, Y are subsets of  G. 
Then  A  X  Y is a proper  W(G, n).  p p ( )

By the classical geometric construction, for any divisor  w of  
1 th i t ( 2 1 2 ( 2 )/ ) l tip  1,  there exists a  (p2  p  1, w, p2, (p2  p)/w)-relative 

difference set in the cyclic group of order  (p2  p  1)w.

h f dd h i C (( 2 1) /2 2)Thus for odd  p,  there exists a proper  CW((p2  p  1)w/2, p2)
where  w is a divisor of  p  1 such that  w  2 (mod 4).

In particular, there exists a proper  CW(31, 5).



Case I:  Basic Results

Let  G be a finite cyclic group of order  v with  gcd(v, p)  1.
Suppose  A  X  Y is a  CW(v, p2) where  X and  Y are 
disjoint subsets of K.

(i) X(p)  X and  Y(p)  Y.

(ii) |X|  and  |Y |  .

In particular if p 5 {|X| |Y |} {15 10}

)( 2
2
1 pp  )( 2

2
1 pp 

In particular ,  if  p  5,  {|X|, |Y |}  {15, 10}.



Case I:  Our Strategy

Our aim is to determine all the proper  CW(v, p2),  in 
i l CW( 25) ( b bl i h h h l fparticular,  CW(v, 25) (probably with the help of a 

computer).

To do so, we first need to limit the possible choices of  v.

There is a very rough result given by Ang Arasu Ma andThere is a very rough result given by Ang, Arasu, Ma and 
Strasslerd, 2008.

Lemma v divides the least common multiple of  p  1,  
p2  1,  ...,  pu  1 where  u  (p2  p)/2.

The possible choices of  v is too much even for  p  5.



Case I:  Our Strategy

In order to reduce the possible choices of  v,  we need to work 
h bi i | ( )| f X Yon the orbit sizes  |p(g)| for  g  X  Y.

For example we can show that there are at least twoFor example, we can show that there are at least two 
"irreducible" orbits of the largest size.  With this result, the 
statement of the previous lemma can be refined to:p

Lemma v divides the least common multiple of  p  1,  
2 1 u 1 h ( 2 )/2p2  1,  ...,  pu  1 where  u  (p2  p)/2.

We have also obtained some better bounds on | (g)| ButWe have also obtained some better bounds on  |p(g)|.  But 
those results are too technical to be stated here.



CW(v, 25)

By a computer search, we have found proper  CW(v, 25) for  
31 62 124 71 142 33v  31, 62, 124, 71, 142, 33.

Let  G be a cyclic group of order  v  {31, 62, 124, 71, 142, 
33}.  If  A  Z[G] is a  CW(v, 4), then there exist  g  G and  
t an integer relatively prime to  v such that either  gA(t) or  

gA(t) is equal to the one of the A listedgA(t) is equal to the one of the  Ai listed.

v  31: With a  G such that  o(a)  31,
A 1  ( )  ( 2)  ( 3)  ( 6)  ( 11)A1  1  5(a)  5(a2)  5(a3)  5(a6)  5(a11) 

 5(a4)  5(a16)  5(a17);
A 1   ( )   ( 2)   ( 3)   ( 8)   ( 17)A2  1  5(a)  5(a2)  5(a3)  5(a8)  5(a17) 

 5(a11)  5(a12)  5(a16).



CW(v, 25)

v  62: With , a  G such that  o()  2 and  o(a)  31,
A3  1  5(a)  5(a2)  5(a3)  5(a6)  5(a11) 

 5(a4)  5(a16)  5(a17);
2 3 8 17A4  1  5(a)  5(a2)  5(a3)  5(a8)  5(a17) 

 5(a11)  5(a12)  5(a16);
A 1 (1 ) ( ) (1 ) ( 11)  ( 6)  ( 8)A5  1  (1  )5(a)  (1  )5(a11)  5(a6)  5(a8)  

 5(a3)  5(a12);
A 1  (1  ) (a) (1 ) (a16)   (a6)   (a8)A6  1  (1  )5(a)  (1  )5(a16)  5(a6)  5(a8)  

 5(a3)  5(a12);
A  1  (1  ) (a)  (1  ) (a17)   (a4)   (a12)A7  1  (1  )5(a)  (1 )5(a )  5(a )  5(a )  

 5(a8)  5(a16);
A8  1  (1  )5(a)  (1  )5(a11)  5(a4)  5(a12)A8 1  (1  )5(a) (1 )5(a )  5(a )  5(a )  

 5(a8)  5(a16);



CW(v, 25)

A9  1  (1  )5(a)  (1  )5(a2)  
 ( 6)  ( 11)  ( 12)  ( 16) 5(a6)  5(a11)  5(a12)  5(a16);

A10  1  (1  )5(a)  (1  )5(a17) 
  ( 6)   ( 11)   ( 12)   ( 16) 5(a6)  5(a11)  5(a12)  5(a16).

v  124: With , a  G such that o()  4 and o(a)  31,v 124: With , a  G such that  o() 4 and  o(a) 31,
A11  1  (1  )5(a)  (1  )5(a11)  

 35(a6)  25(a8)  35(a3)  25(a12); 5( )  5( )  5( )  5( );
A12  1  (1  )5(a)  (1  )5(a17)  

 35(a4)  25(a12)  35(a8)  25(a16).



CW(v, 25)

v  71: With b  G such that  o(b)  71,
A13  5(b)  5(b2)  5(b7)  5(b22)  5(b42);
A14  5(b)  5(b3)  5(b18)  5(b2)  5(b21);
A15  5(b)  5(b3)  5(b42)  5(b11)  5(b18);
A16  5(b)  5(b3)  5(b13)  5(b14)  5(b22).

v  142: With , b  G such that  o()  2 and  o(b)  71,
A15  5(b)  5(b3)  5(b42)  5(b11)  5(b18);
A16  5(b)  5(b3)  5(b13)  5(b14)  5(b22).



CW(v, 25)

v  33: With , c  G such that  o()  3 and  o(c)  11,
A17 (1    2)5(c)  (  2)5(c2)

 5(c)  5(c)  5(c2).



Conclusion

We are still in the process of refining some of our works on  
CW( 25) i h l i l i 5CW(v, 25) with  v relatively prime to  5.  

However, we believe that there are no other proper  
CW(v, 25) besides those we have listed in the previous slides.



Open Problems

1. We have solutions to the equation

in cyclic groups with p  5 13 17 and 29

    2
1)1()1(1)1(1   ppZZ

in cyclic groups with  p  5,  13,  17 and  29.

Are there other solutions for large  p?

Note that solutions to the equation in cyclic groups can 
give us ternary "almost perfect" sequences.

2. Find solutions of the equation in other groups, say, 
abelian groups.g p



Open Problems

3. Prove or disprove that the equation

[1  2(X  Y)] [1  2(X  Y)](1)  p2

has no solution in cyclic groups.has no solution in cyclic groups.

4. Find solutions of the equation in other groups.

Note that solutions of the two equations in Questions 1
and 3 can be used to construct group weighing matrices of 
weight  p2.



Open Problems

5. Determine all proper  CW(v, 49).

6. Determine all proper  W(G, p2),  where  G is abelian, for 
small values of psmall values of  p.

7. Apart from the classical construction of proper p p p
CW((p2  p  1)w/2, p2) where  w is a divisor of  p  1
such that  w  2 (mod 4).  Are there other (infinite) 
f ili f CW( 2)?families of proper  CW(v, p2)? 


