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Galois rings GR(2n, s)
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Let f(x) ∈ Z/2nZ[x] be a primitive basic irreducible polynomial of degree s
and ξ be a root of f(x).
The ring Z/2nZ[x]/(f(x)) is called a Galois ring of characteristic 2n with the
extension degree s and is denoted by GR(2n, s).

• Z/2nZ(ξ) ∼= GR(2n, s) = Rn.

• A unique maximal ideal pn = 2Rn.

• Every ideal of Rn is pl
n = 2lRn, 1 ≤ l ≤ n− 1.

• R×n = Rn − pn is the unit group of Rn.
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Any element of α of GR(2n, s) is uniquely represented as

α = α0 + 2α1 + · · ·+ 2n−1αn−1, αi ∈ Tn (0 ≤ i ≤ n− 1)

where Tn = {0, 1, ξ, · · · , ξ2s−2} as a set of complete representatives of
GR(2n, s)/pn.

The unit group R×n of GR(2n, s) is a direct product of a cyclic group 〈ξ〉 and
E = {1 + 2a|a ∈ Rn−1}. An arbitrary element α of R×n is uniquely
represented as

α = ξte = ξt(1 + 2a), a ∈ GR(2n−1, s), e ∈ E .
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We prove the following theorem.¶ ³
Theorem 1. For every odd integer n and every extension degree s, there exists a
difference set Dn+1 with parameters

v = 2(n+1)s, k = 2
(n+1)s

2
−1(2

(n+1)s
2 − 1), λ = 2

(n+1)s
2

−1(2
(n+1)s
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over a Galois ring GR(2n+1, s).
This difference set Dn+1 is embedded in the ideal part of a difference set Dn+3

over GR(2n+3, s). It means that there exists an infinite family of difference sets
with the embedding system over Galois rings.

µ ´



A new operation
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We define a new operation,

α ∗ β = α + β + 2αβ

for α, β ∈ Rn.¶ ³
Theorem 2. Let g1 = 1, g2, · · · , gs be a free Z/2nZ-basis. Let µ : Rn →
GF (2s) be the map defined by µ(α) ≡ α (mod 2) and b be an element of Rn

such that x2 +x = µ(b) has no solution in GF (2s). ThenRn is an abelian group
with respect to the operation ∗,

Rn = 〈−1〉 ∗ 〈2b〉 ∗
s∏

j=2

〈gj〉

where |〈−1〉| = 2, |〈2b〉| = 2n−1 and |〈gj〉| = 2n, 2 ≤ j ≤ s.
µ ´



The subsets of Rn and Rn−l(1 ≤ l ≤ n−1
2

) for s even
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In what follows. we assume that n ≡ 1 (mod 2). We define the subsets as
follows.

• Aeven =
2n−2−1⋃

m=0

〈−1〉 ∗
s∏

j=2

〈gj〉 ∗ (2b)∗m, Aeven ⊂ Rn.

• Aeven
l =

2n−2l−2−1⋃

m=0

〈−1〉 ∗
s∏

j=2

〈gj〉 ∗ 〈2b∗2
(n−1−2l)〉 ∗ (2b)∗m

Aeven
l ⊂ Rn−l, for 1 ≤ l ≤ n−3

2 .

• B =
s−1∏

j=2

〈gj〉 ∗ 〈−1〉 ∗ 〈g∗2s 〉 ∗ 〈2b〉, B ⊂ Rn+1
2

.



The subsets of Rn and Rn−l(1 ≤ l ≤ n−1
2

) for s odd
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For odd extension, we can choose at least 1 free-Z/2nZ-base, say for
instance gs, which satisfies 2n−1 ∈ 〈−1〉 ∗∏s−1

j=2〈gj〉 ∗ 〈2b〉. We define the
subsets as follows.

• Aodd =
2n−1−1⋃

m=0

〈−1〉 ∗
s−1∏

j=2

〈gj〉 ∗ 〈2b〉 ∗ (gs)∗m, Aodd ⊂ Rn.

• Aodd
l =

2n−2l−1−1⋃

m=0

〈−1〉 ∗
s−1∏

j=2

〈gj〉 ∗ 〈2b〉 ∗ 〈g∗2n−2l

s 〉 ∗ g∗ms ,

Aodd
l ⊂ Rn−l, for 1 ≤ l ≤ n−3

2 .

• B =
s−1∏

j=2

〈gj〉 ∗ 〈−1〉 ∗ 〈g∗2s 〉 ∗ 〈2b〉, B ⊂ Rn+1
2

.



The subsets of R×
n+1 and pl

n+1(1 ≤ l ≤ n−1
2

)
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• DR×n+1
= {(1 + 2α)ξt|α ∈ Aeven(Aodd), t = 0, 1, · · · , 2s − 2},

DR×n+1
⊂ R×n+1.

• Dpl
n+1

= {2l(1 + 2α)ξt|α ∈ Aeven
l (Aodd

l ), t = 0, 1, · · · , 2s − 2},

1 ≤ l ≤ n−3
2 , Dpl

n+1
⊂ pl

n+1.

• D
p
(n−1)/2
n+1

= {2n−1
2 (1 + 2α)ξt|α ∈ B, t = 0, 1, · · · , 2s − 2}.

DR(n−1)/2
n+1

⊂ p
n−1

2
n+1

Dn+1 = DR×n+1

n−3
2⋃

l=1

Dpl
n+1

⋃
D

p
(n−1)/2
n+1

is a difference set.



The cardinalities of the subsets
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• |DR×n+1
| = 2ns−1(2s − 1).

• |Dpl
n+1
| = 2(n−l)s−l(2s − 1).

• |D
p
(n−1)/2
n+1

| = 2(n+1)s/2−1(2s − 1).

Thus we have |Dn+1| = 2
(n+1)s

2
−1(2

(n+1)s
2 − 1) = k.



The additive character λβ of Rn+1
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Lemma 1. The additive character of Rn+1 is given by

λβ(α) = ζ
Tn+1(βα)
2n+1 .

where Tn+1 is the trace function and β ∈ Rn+1, and ζ2n+1 is a primitive
2n+1st root of unity.



A necessary and sufficient condition
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The subset Dn+1 = DR×n+1

⋃n−3
2

l=1 Dpl
n+1

⋃
D

p
(n−1)/2
n+1

of Rn+1

is a difference set with parameters

v = 2(n+1)s, k = 2
(n+1)s

2
−1(2

(n+1)s
2 −1), λ = 2

(n+1)s
2

−1(2
(n+1)s

2
−1−1)

if and only if the element Dn+1 =
∑

α∈Dn+1
α of the group ring ZRn+1

satisfies

λ0(Dn+1) = 2
(n+1)s

2
−1(2

(n+1)s
2 − 1) = |Dn+1|,

λβ(Dn+1) = λβ(DR×n+1
) +

n−3
2∑

l=1

λβ(Dpl
n+1

) + λβ(D
p
(n−1)/2
n+1

)

= 2
(n+1)s

2
−1u

for every additive character λβ, β 6= 0 of Rn+1, where u is a unit of a
cyclotomic field Q(ζ2n+1).



The multiplicative character of R×
n+1
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Let χ̃ be a multiplicative character of R×n+1 of order 2m. |〈ξ〉| = 2s − 1.
Since (2m, 2s − 1) = 1, then χ̃(ξ) = 1.

For ξt(1 + 2α), ξu(1 + 2β) ∈ R×n+1, we have

χ̃(ξt(1+2α) · ξu(1+2β)) = χ̃((1+2α)(1+2β)) = χ̃(1+2(α ∗β)).

Thus the multiplicative character χ̃ of order 2m can be regarded as a
multiplicative character χ of the group Rn with respect to the new operation.



Gauss sums over Rn+1
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For a multiplicative character χ̃ of Rn+1 and an additive character λβ of
Rn+1, we define the Gauss sum over Rn+1.

G(χ̃, λβ) =
∑

α∈Rn+1

χ̃(α)λβ(α).



The determination of λβ(DR×n+1
)
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We define the multiplicative character χ of Rn as follows:
For an even extension,

χ(δ ∗ (2b)∗e) = χ((2b)∗e) = ζe
2n−1 ,

where δ ∈ 〈−1〉 ∗∏s
j=2〈gj〉 ⊂ Aeven and 0 ≤ e ≤ 2n−1 − 1.

For an odd extension,

χ(δ ∗ (gs)∗e) = χ((gs)∗e) = ζe
2n ,

where δ ∈ 〈−1〉 ∗ 〈2b〉 ∗∏s−1
j=2〈gj〉 ⊂ Aodd and 0 ≤ e ≤ 2n−1 − 1.
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We define the multiplicative character χ̃ of Rn+1 by letting
χ̃((1 + 2α)ξt) = χ(α).

For β 6= 0, we have

λβ(DR×n+1
) =

1
2n





2n−1∑

m=0
m:odd

G(χ̃m, λβ)
2n−1−1∑

j=0

ζ−mj
2n + 2n−1G(χ̃0, λβ)





.
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¶ ³
Theorem 3. Assume that m is odd. Then

G(χ̃m, λ1) = 2
n+1

2
sζx

2n , G(χ̃0, λ1) = 0

where χ̃0 is a trivial character of R×n+1 and x is some positive integer.

µ ´
Substituting these values to the equation, we have the following lemma.¶ ³

Lemma 2.

λβ(DR×n+1
) =




±2

(n+1)s
2

−1 if β ∈ R×n+1,
0 if β ∈ pn+1 − pn

n+1,
−2ns−1 if β ∈ pn

n+1 − {0}.
µ ´



The determination of λβ(Dpl
n+1

) for 1 ≤ l ≤ n−1
2
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In what follows, we treat the odd extension.
We also have the following lemmas by using Gauss sums.¶ ³

Lemma 3. Put p = pn+1 and R× = R×n+1.

λβ(Dpl) =





0 if β ∈ R× − pl,

±2
(n+1)s

2
−1 if β ∈ pl − pl+1,

0 if β ∈ pl+1 − pn−l,

−2(n−l)s−1 if β ∈ pn−l − pn−l+1,

2(n−l)s−1(2s − 1) if β ∈ pn−l+1 − {0}.
µ ´
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¶ ³
Lemma 4. Put p = pn+1 and R× = R×n+1.

λβ(D
p

n−1
2

) =





0 if β ∈ R× or β ∈ p− p
n−1

2 ,

2
n+1

2
s−1u if β ∈ p

n−1
2 − p

n+1
2 ,

−2
n+1

2
s−1 if β ∈ p

n+1
2 − p

n+3
2 ,

2
n+1

2
s−1(2s − 1) if β ∈ p

n+3
2 − {0},

where u is a unit of a cyclotomic field Q(ζ4).
µ ´



The proof of Theorem 1
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From Lemmas 1,2 and 3, we obtain for β 6= 0,

λβ(Dn+1) = λβ(DR×n+1
) +

n−3
2∑

l=1

λβ(Dpl
n+1

) + λβ(D
p
(n−1)/2
n+1

)

= 2
(n+1)s

2
−1u

where u is a unit of a cyclotomic field Q(ζ2n+1).



The table of λβ(Dn+1)
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β λβ(DR× ) λβ(Dp) λβ(D
pl ) λβ(D

p
n−1

2
)

R× ±2
n+1

2 s−1
0 0 0

p − p2 0 ±2
n+1

2 s−1
0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

pl − pl+1 0 0 ±2
n+1

2 s−1
0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

p
n−3

2 − p
n−1

2 0 0 0 0

p
n−1

2 − p
n+1

2 0 0 0 2
n+1

2 s−1
u

p
n+1

2 − p
n+3

2 0 0 0 −2
n+1

2 s−1

p
n+3

2 − p
n+5

2 0 0 0 2
n+1

2 s−1
(2s − 1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

pn−l − pn−l+1 0 0 −2(n−l)s−1 2
n+1

2 s−1
(2s − 1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

pn−1 − pn 0 −2(n−1)s−1 2(n−l)s−1(2s − 1) 2
n+1

2 s−1
(2s − 1)

pn − {0} −2ns−1 2(n−1)s−1(2s − 1) 2(n−l)s−1(2s − 1) 2
n+1

2 s−1
(2s − 1)



An embedding system of difference sets
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We see

Dpn+3 ⊃ 2DR×n+1
, Dpl

n+3
⊃ 2D

pl−1
n+1

, for 1 ≤ l ≤ n + 1
2

.

If we write the subset Dn+3 = DR×n+3

⋃
DP, DP =

⋃n+1
2

l=1 Dpl
n+3

, then

DP ⊃ 2Dn+1.



Divisible difference family
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Let G be a finite abelian group and N be a subgroup of G.
Let {B1, B2, .., Bb} be ki-subsets of G, 1 ≤ i ≤ b.
Put θi(d) = |{(x, y)|xy−1 = d, x, y ∈ Bi}| and
θ(d) =

∑b
i=1 θi(d).

A family {B1, B2, ..., Bb} is called a (G,N, {k1, ..., kb}, µ, λ) divisible
difference family if and only if

θ(d) =
{

µ, if d ∈ N \ {1},
λ, if d ∈ G \N

for d 6= 1 ∈ G.



Difference sets over GR(22.s)
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Denote the absolute trace from F2s to F2 by tr.
Let Eu = {α ∈ F2s |tr(uα) = 0} for u ∈ F2s such that tr(u) = 0.

D = {a(1 + 2b)|a ∈ T2, b ∈ Eu}

is a (22s, 2s−1(2s − 1), 2s−1(2s−1 − 1) difference set
where T2 = {0, 1, ξ, · · · , ξ2s−2}.

Notice that D is a multiplicative subgroup of the unit group GR(22, s)×.



Divisible difference family obtained from D
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¶ ³
Theorem 4. Let D be a difference set over GR(22, s) and
E = {1 + 2a|a ∈ F2s}.
Let S = {1, y} be a complete representaives of GR(22, s)×/D and
put L = D ∩ E .

We define the subsets

B1 = (D − 1) ∩D, B2 = y(D − 1) ∩D.

Then {B1, B2} is a (D, L, {2s−1(2s−1−1), 2s−1(2s−1−1)}, 2s−1(2s−2−
1), 2s−1(2s−1 − 1)− 2s−2) divisible difference family.

µ ´
Notice that we construct a symmetric Hadamard matrix of order s2 from this
DDF.



An example of a divisible difference family over GR(22, s)
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Let g(x) = x3 + 3x2 + 2x + 3 ∈ Z/22Z[x] be a basic irreducible
polynomial of GR(4, 3) and ξ be a root of g(x). Let xyz denote the element
xξ2 + yξ + z ∈ GR(4, 3).

B1 = {103, 232, 322, 112, 211, 111, 231, 121, 300, 332, 212, 331} and

B2 = {233, 322, 332, 113, 213, 121, 010, 333, 103, 300, 112, 030}
forms a (D, L, {12, 12}, 8, 10)-DDF.



Defintion of codes over Galois rings GR(2n, s)
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Denote Z/2nZ by Z2n .

Definition 1. An additive subgroup C of ZN
2n is called a linear code of length

N over Z2n .

Definition 2. • The Lee weight of the vector x = (x1, x2, · · · , xN ) is

defined by wL(x) =
N∑

i=1

min {xi, 2n − xi}

• The Lee distance dL(x, y) is given by dL(x, y) = wL(x− y).

• The minimum Lee weight of the code C is min
c∈C
c6=0

(wL(c)).

• The vector x ∗ y = (x1y1, x2y2, ..., xNyN ) is a componentwise
product of the vectors x and y.



Reed-Muller codes over Galois rings GR(2n, s)
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We put q = 2n and N = 2s − 1.

Definition 3. We let

G =
(

1 1 1 1 · · · 1
0 1 ξ ξ2 · · · ξN−1

)
=




1
g1

g2
...

gs




where each element in the second row of G is assumed to be an s-tuples over
Zq, and gi, 1 ≤ i ≤ s is the row vector and 1 is the all one vector.
The rth order Reed-Muller code ZqRM(r, s) of length 2s is the code
generated by all tuples of the form

gi1
1 ∗ gi2

2 ∗ · · · ∗ gis
s

such that ij = 0, 1,
∑s

j=1 ij ≤ r and g0
j = 1.



Properties of Reed-Muller code ZqRM(r, s)
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We have the following results easily.¶ ³

•
∣∣∣ZqRM(r, s)

∣∣∣= qk, k =
r∑

l=0

(
s
l

)

• ZqRM(r, s) ⊂ ZqRM(r + 1, s), r < s

• For q = 2,　 Z2RM(r, s) = RM(r, s)

• If q ≤ 2s, then ZqRM(r, s)⊥ = ZqRM(s− r − 1, s)

µ ´



An embedding system of ZqRM(r, s)
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¶ ³

Theorem 5. ZqRM(r, s)

=
⋃

e0,e1,··· ,ek−1∈Z2

(
2Z q

2
RM(r, s)+e01+e1g1 + · · ·+emgs +es+1g1 ∗g2 +

· · ·+ ek−1gs`r+1 ∗ gs`r+2 ∗ · · · ∗ gs

)

µ ´
Z q

2
RM(r, s) is embedded in the ideal part of ZqRM(r, s).



The minimum weights of ZqRM(r, s)
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¶ ³
Theorem 6. The minimum Hamming weight of ZqRM(r, s) is 2s−r.

Theorem 7. Assume that q ≥ 8. The minimum Lee weight of ZqRM(1, s) is 2s

except for q = 8 and s = 3. The vector 1 and −1 have Lee weight of 2s. The
minimum Lee weight of Z8RM(1, 3) is 6.

µ ´
Theorem 7 is proved by the estimate of the character sum over GR(2n, s).
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Thank you for your attention.


