Difference sets, divisible difference families and codes over Galois rings of characteristic 2^{n}

Mieko Yamada
Faculty of Mathematics and Physics
Institute of Science and Engineering
Kanazawa University

IMS Workshop, 2011

Galois rings $G R\left(2^{n}, s\right)$
Let $f(x) \in \boldsymbol{Z} / 2^{n} \boldsymbol{Z}[x]$ be a primitive basic irreducible polynomial of degree s and ξ be a root of $f(x)$.
The ring $\boldsymbol{Z} / 2^{n} \boldsymbol{Z}[x] /(f(x))$ is called a Galois ring of characteristic 2^{n} with the extension degree s and is denoted by $\operatorname{GR}\left(2^{n}, s\right)$.

- $\boldsymbol{Z} / 2^{n} \boldsymbol{Z}(\xi) \cong G R\left(2^{n}, s\right)=\mathcal{R}_{n}$.
- A unique maximal ideal $\mathfrak{p}_{n}=2 \mathcal{R}_{n}$.
- Every ideal of \mathcal{R}_{n} is $\mathfrak{p}_{n}^{l}=2^{l} \mathcal{R}_{n}, 1 \leq l \leq n-1$.
- $\mathcal{R}_{n}^{\times}=\mathcal{R}_{n}-\mathfrak{p}_{n}$ is the unit group of \mathcal{R}_{n}.

Any element of α of $G R\left(2^{n}, s\right)$ is uniquely represented as

$$
\alpha=\alpha_{0}+2 \alpha_{1}+\cdots+2^{n-1} \alpha_{n-1}, \quad \alpha_{i} \in \mathcal{T}_{n} \quad(0 \leq i \leq n-1)
$$

where $\mathcal{T}_{n}=\left\{0,1, \xi, \cdots, \xi^{2^{s}-2}\right\}$ as a set of complete representatives of $G R\left(2^{n}, s\right) / \mathfrak{p}_{n}$.

The unit group \mathcal{R}_{n}^{\times}of $G R\left(2^{n}, s\right)$ is a direct product of a cyclic group $\langle\xi\rangle$ and $\mathcal{E}=\left\{1+2 a \mid a \in \mathcal{R}_{n-1}\right\}$. An arbitrary element α of \mathcal{R}_{n}^{\times}is uniquely represented as

$$
\alpha=\xi^{t} e=\xi^{t}(1+2 a), a \in G R\left(2^{n-1}, s\right), e \in \mathcal{E}
$$

$\left(2^{(n+1) s}, 2^{\frac{(n+1) s}{2}-1}\left(2^{\frac{(n+1) s}{2}}-1\right), 2^{\frac{(n+1) s}{2}-1}\left(2^{\frac{(n+1) s}{2}-1}-1\right)\right.$ differ-

ence sets

We prove the following theorem.
Theorem 1. For every odd integer n and every extension degree s, there exists a difference set D_{n+1} with parameters

$$
v=2^{(n+1) s}, k=2^{\frac{(n+1) s}{2}-1}\left(2^{\frac{(n+1) s}{2}}-1\right), \lambda=2^{\frac{(n+1) s}{2}-1}\left(2^{\frac{(n+1) s}{2}-1}-1\right)
$$

over a Galois ring $G R\left(2^{n+1}, s\right)$.
This difference set D_{n+1} is embedded in the ideal part of a difference set D_{n+3} over $G R\left(2^{n+3}, s\right)$. It means that there exists an infinite family of difference sets with the embedding system over Galois rings.

A new operation

We define a new operation,

$$
\alpha * \beta=\alpha+\beta+2 \alpha \beta
$$

for $\alpha, \beta \in \mathcal{R}_{n}$.
Theorem 2. Let $g_{1}=1, g_{2}, \cdots, g_{s}$ be a free $\boldsymbol{Z} / 2^{n} \boldsymbol{Z}$-basis. Let $\mu: \mathcal{R}_{n} \rightarrow$ $G F\left(2^{s}\right)$ be the map defined by $\mu(\alpha) \equiv \alpha(\bmod 2)$ and b be an element of \mathcal{R}_{n} such that $x^{2}+x=\mu(b)$ has no solution in $G F\left(2^{s}\right)$. Then \mathcal{R}_{n} is an abelian group with respect to the operation $*$,

$$
\mathcal{R}_{n}=\langle-1\rangle *\langle 2 b\rangle * \prod_{j=2}^{s}\left\langle g_{j}\right\rangle
$$

where $|\langle-1\rangle|=2, \quad|\langle 2 b\rangle|=2^{n-1}$ and $\left|\left\langle g_{j}\right\rangle\right|=2^{n}, 2 \leq j \leq s$.

The subsets of \mathcal{R}_{n} and $\mathcal{R}_{n-l}\left(1 \leq l \leq \frac{n-1}{2}\right)$ for s even

In what follows. we assume that $n \equiv 1(\bmod 2)$. We define the subsets as follows.

- $A^{\text {even }}=\bigcup_{m=0}^{2^{n-2}-1}\langle-1\rangle * \prod_{j=2}^{s}\left\langle g_{j}\right\rangle *(2 b)^{* m}, \quad A^{\text {even }} \subset \mathcal{R}_{n}$.

$\mathcal{A}_{l}^{\text {even }} \subset \mathcal{R}_{n-l}$, for $1 \leq l \leq \frac{n-3}{2}$.
- $B=\prod_{j=2}^{s-1}\left\langle g_{j}\right\rangle *\langle-1\rangle *\left\langle g_{s}^{* 2}\right\rangle *\langle 2 b\rangle, \quad B \subset \mathcal{R}_{\frac{n+1}{2}}$.

The subsets of \mathcal{R}_{n} and $\mathcal{R}_{n-l}\left(1 \leq l \leq \frac{n-1}{2}\right)$ for s odd
For odd extension, we can choose at least 1 free- $Z / 2^{n} Z$-base, say for instance g_{s}, which satisfies $2^{n-1} \in\langle-1\rangle * \prod_{j=2}^{s-1}\left\langle g_{j}\right\rangle *\langle 2 b\rangle$. We define the subsets as follows.

- $A^{\text {odd }}=\bigcup_{m=0}^{2^{n-1}-1}\langle-1\rangle * \prod_{j=2}^{s-1}\left\langle g_{j}\right\rangle *\langle 2 b\rangle *\left(g_{s}\right)^{* m}, \quad A^{\text {odd }} \subset \mathcal{R}_{n}$.
- $\mathcal{A}_{l}^{\text {odd }}=\bigcup_{m=0}^{2^{n-2 l-1}-1}\langle-1\rangle * \prod_{j=2}^{s-1}\left\langle g_{j}\right\rangle *\langle 2 b\rangle *\left\langle g_{s}^{* 2^{n-2 l}}\right\rangle * g_{s}^{* m}$,
$\mathcal{A}_{l}^{\text {odd }} \subset \mathcal{R}_{n-l}$, for $1 \leq l \leq \frac{n-3}{2}$.
- $B=\prod_{j=2}^{s-1}\left\langle g_{j}\right\rangle *\langle-1\rangle *\left\langle g_{s}^{* 2}\right\rangle *\langle 2 b\rangle, \quad B \subset \mathcal{R}_{\frac{n+1}{2}}$.

The subsets of $\mathcal{R}_{n+1}^{\times}$and $\mathfrak{p}_{n+1}^{l}\left(1 \leq l \leq \frac{n-1}{2}\right)$

- $D_{\mathcal{R}_{n+1}^{\times}}=\left\{(1+2 \alpha) \xi^{t} \mid \alpha \in A^{\text {even }}\left(A^{\text {odd }}\right), t=0,1, \cdots, 2^{s}-2\right\}$,

$$
D_{\mathcal{R}_{n+1}^{\times}} \subset \mathcal{R}_{n+1}^{\times} .
$$

- $D_{\mathfrak{p}_{n+1}^{l}}=\left\{2^{l}(1+2 \alpha) \xi^{t} \mid \alpha \in \mathcal{A}_{l}^{\text {even }}\left(\mathcal{A}_{l}^{\text {odd }}\right), t=0,1, \cdots, 2^{s}-2\right\}$, $1 \leq l \leq \frac{n-3}{2}, \quad D_{\mathfrak{p}_{n+1}^{l}} \subset \mathfrak{p}_{n+1}^{l}$.
- $D_{\mathfrak{p}_{n+1}^{(n-1) / 2}}=\left\{\left.2^{\frac{n-1}{2}}(1+2 \alpha) \xi^{t} \right\rvert\, \alpha \in B, t=0,1, \cdots, 2^{s}-2\right\}$.

$$
D_{\mathcal{R}_{n+1}^{(n-1) / 2}} \subset \mathfrak{p}_{n+1}^{\frac{n-1}{2}}
$$

$$
D_{n+1}=D_{\mathcal{R}_{n+1}^{\times}} \bigcup_{l=1}^{\frac{n-3}{2}} D_{\mathfrak{p}_{n+1}^{l}} \bigcup D_{\mathfrak{p}_{n+1}^{(n-1) / 2}} \text { is a difference set. }
$$

The cardinalities of the subsets

- $\left|D_{\mathcal{R}_{n+1}^{\times}}\right|=2^{n s-1}\left(2^{s}-1\right)$.
- $\left|D_{\mathfrak{p}_{n+1}^{l}}\right|=2^{(n-l) s-l}\left(2^{s}-1\right)$.
- $\left|D_{\mathfrak{p}_{n+1}^{(n-1) / 2}}\right|=2^{(n+1) s / 2-1}\left(2^{s}-1\right)$.

Thus we have $\left|D_{n+1}\right|=2^{\frac{(n+1) s}{2}-1}\left(2^{\frac{(n+1) s}{2}}-1\right)=k$.

The additive character λ_{β} of \mathcal{R}_{n+1}

Lemma 1. The additive character of \mathcal{R}_{n+1} is given by

$$
\lambda_{\beta}(\alpha)=\zeta_{2^{n+1}}^{T_{n+1}(\beta \alpha)}
$$

where T_{n+1} is the trace function and $\beta \in \mathcal{R}_{n+1}$, and $\zeta_{2^{n+1}}$ is a primitive 2^{n+1} st root of unity.

A necessary and sufficient condition

The subset $D_{n+1}=D_{\mathcal{R}_{n+1}^{\times}} \bigcup_{l=1}^{\frac{n-3}{2}} D_{\mathfrak{p}_{n+1}^{l}} \cup D_{\mathfrak{p}_{n+1}^{(n-1) / 2}}$ of \mathcal{R}_{n+1}
is a difference set with parameters

$$
v=2^{(n+1) s}, k=2^{\frac{(n+1) s}{2}-1}\left(2^{\frac{(n+1) s}{2}}-1\right), \lambda=2^{\frac{(n+1) s}{2}-1}\left(2^{\frac{(n+1) s}{2}-1}-1\right)
$$

if and only if the element $\mathcal{D}_{n+1}=\sum_{\alpha \in D_{n+1}} \alpha$ of the group ring $Z \mathcal{R}_{n+1}$ satisfies

$$
\begin{aligned}
\lambda_{0}\left(\mathcal{D}_{n+1}\right) & =2^{\frac{(n+1) s}{2}-1}\left(2^{\frac{(n+1) s}{2}}-1\right)=\left|D_{n+1}\right|, \\
\lambda_{\beta}\left(\mathcal{D}_{n+1}\right) & =\lambda_{\beta}\left(\mathcal{D}_{\mathcal{R}_{n+1}^{\times}}\right)+\sum_{l=1}^{\frac{n-3}{2}} \lambda_{\beta}\left(\mathcal{D}_{\mathfrak{p}_{n+1}^{l}}\right)+\lambda_{\beta}\left(\mathcal{D}_{\mathfrak{p}_{n+1}^{(n-1) / 2}}\right) \\
& =2^{\frac{(n+1) s}{2}-1} u
\end{aligned}
$$

for every additive character $\lambda_{\beta}, \beta \neq 0$ of \mathcal{R}_{n+1}, where u is a unit of a cyclotomic field $\boldsymbol{Q}\left(\zeta_{2^{n+1}}\right)$.

The multiplicative character of $\mathcal{R}_{n+1}^{\times}$

Let $\tilde{\chi}$ be a multiplicative character of $\mathcal{R}_{n+1}^{\times}$of order $2^{m} .|\langle\xi\rangle|=2^{s}-1$. Since $\left(2^{m}, 2^{s}-1\right)=1$, then $\tilde{\chi}(\xi)=1$.

For $\xi^{t}(1+2 \alpha), \xi^{u}(1+2 \beta) \in \mathcal{R}_{n+1}^{\times}$, we have

$$
\tilde{\chi}\left(\xi^{t}(1+2 \alpha) \cdot \xi^{u}(1+2 \beta)\right)=\tilde{\chi}((1+2 \alpha)(1+2 \beta))=\tilde{\chi}(1+2(\alpha * \beta)) .
$$

Thus the multiplicative character $\tilde{\chi}$ of order 2^{m} can be regarded as a multiplicative character χ of the group \mathcal{R}_{n} with respect to the new operation.

Gauss sums over \mathcal{R}_{n+1}

For a multiplicative character $\tilde{\chi}$ of \mathcal{R}_{n+1} and an additive character λ_{β} of \mathcal{R}_{n+1}, we define the Gauss sum over \mathcal{R}_{n+1}.

$$
G\left(\tilde{\chi}, \lambda_{\beta}\right)=\sum_{\alpha \in \mathcal{R}_{n+1}} \tilde{\chi}(\alpha) \lambda_{\beta}(\alpha)
$$

The determination of $\lambda_{\beta}\left(\mathcal{D}_{\mathcal{R}_{n+1}}\right)$
We define the multiplicative character χ of \mathcal{R}_{n} as follows:
For an even extension,

$$
\chi\left(\delta *(2 b)^{* e}\right)=\chi\left((2 b)^{* e}\right)=\zeta_{2^{n-1}}^{e},
$$

where $\delta \in\langle-1\rangle * \prod_{j=2}^{s}\left\langle g_{j}\right\rangle \subset A^{\text {even }}$ and $0 \leq e \leq 2^{n-1}-1$.
For an odd extension,

$$
\chi\left(\delta *\left(g_{s}\right)^{* e}\right)=\chi\left(\left(g_{s}\right)^{* e}\right)=\zeta_{2^{n}}^{e},
$$

where $\delta \in\langle-1\rangle *\langle 2 b\rangle * \prod_{j=2}^{s-1}\left\langle g_{j}\right\rangle \subset A^{\text {odd }}$ and $0 \leq e \leq 2^{n-1}-1$.

We define the multiplicative character $\tilde{\chi}$ of \mathcal{R}_{n+1} by letting $\tilde{\chi}\left((1+2 \alpha) \xi^{t}\right)=\chi(\alpha)$.

For $\beta \neq 0$, we have

$$
\lambda_{\beta}\left(\mathcal{D}_{\mathcal{R}_{n+1}^{\times}}\right)=\frac{1}{2^{n}}\left\{\sum_{\substack{m=0 \\ m: 0 d d}}^{2^{n}-1} G\left(\tilde{\chi}^{m}, \lambda_{\beta}\right) \sum_{j=0}^{2^{n-1}-1} \zeta_{2^{n}}^{-m j}+2^{n-1} G\left(\tilde{\chi}^{0}, \lambda_{\beta}\right)\right\}
$$

Theorem 3. Assume that m is odd. Then

$$
G\left(\tilde{\chi}^{m}, \lambda_{1}\right)=2^{\frac{n+1}{2} s} \zeta_{2^{n}}^{x}, \quad G\left(\tilde{\chi}^{0}, \lambda_{1}\right)=0
$$

where $\tilde{\chi}^{0}$ is a trivial character of $\mathcal{R}_{n+1}^{\times}$and x is some positive integer.

Substituting these values to the equation, we have the following lemma.

Lemma 2.

$$
\lambda_{\beta}\left(\mathcal{D}_{\mathcal{R}_{n+1}^{\times}}\right)= \begin{cases} \pm 2^{\frac{(n+1) s}{2}-1} & \text { if } \beta \in \mathcal{R}_{n+1}^{\times} \\ 0 & \text { if } \beta \in \mathfrak{p}_{n+1}-\mathfrak{p}_{n+1}^{n} \\ -2^{n s-1} & \text { if } \beta \in \mathfrak{p}_{n+1}^{n}-\{0\}\end{cases}
$$

The determination of $\lambda_{\beta}\left(\mathcal{D}_{\mathfrak{p}_{n+1}^{l}}\right)$ for $1 \leq l \leq \frac{n-1}{2}$
In what follows, we treat the odd extension.
We also have the following lemmas by using Gauss sums.

Lemma 3. Put $\mathfrak{p}=\mathfrak{p}_{n+1}$ and $\mathcal{R}^{\times}=\mathcal{R}_{n+1}^{\times}$.

$$
\lambda_{\beta}\left(\mathcal{D}_{\mathfrak{p}^{l}}\right)= \begin{cases}0 & \text { if } \beta \in \mathcal{R}^{\times}-\mathfrak{p}^{l}, \\ \pm 2^{\frac{(n+1) s}{2}-1} & \text { if } \beta \in \mathfrak{p}^{l}-\mathfrak{p}^{l+1}, \\ 0 & \text { if } \beta \in \mathfrak{p}^{l+1}-\mathfrak{p}^{n-l}, \\ -2^{(n-l) s-1} & \text { if } \beta \in \mathfrak{p}^{n-l}-\mathfrak{p}^{n-l+1}, \\ 2^{(n-l) s-1}\left(2^{s}-1\right) & \text { if } \beta \in \mathfrak{p}^{n-l+1}-\{0\} .\end{cases}
$$

Lemma 4. Put $\mathfrak{p}=\mathfrak{p}_{n+1}$ and $\mathcal{R}^{\times}=\mathcal{R}_{n+1}^{\times}$.

$$
\lambda_{\beta}\left(\mathcal{D}_{\mathfrak{p}^{\frac{n-1}{2}}}\right)= \begin{cases}0 & \text { if } \beta \in \mathcal{R}^{\times} \text {or } \beta \in \mathfrak{p}-\mathfrak{p}^{\frac{n-1}{2}}, \\ 2^{\frac{n+1}{2} s-1} u & \text { if } \beta \in \mathfrak{p}^{\frac{n-1}{2}}-\mathfrak{p}^{\frac{n+1}{2}}, \\ -2^{\frac{n+1}{2} s-1} & \text { if } \beta \in \mathfrak{p}^{\frac{n+1}{2}}-\mathfrak{p}^{\frac{n+3}{2}}, \\ 2^{\frac{n+1}{2} s-1}\left(2^{s}-1\right) & \text { if } \beta \in \mathfrak{p}^{\frac{n+3}{2}}-\{0\},\end{cases}
$$

where u is a unit of a cyclotomic field $\boldsymbol{Q}\left(\zeta_{4}\right)$.

The proof of Theorem 1

From Lemmas 1,2 and 3, we obtain for $\beta \neq 0$,

$$
\begin{aligned}
\lambda_{\beta}\left(\mathcal{D}_{n+1}\right) & =\lambda_{\beta}\left(\mathcal{D}_{\mathcal{R}_{n+1}^{\times}}\right)+\sum_{l=1}^{\frac{n-3}{2}} \lambda_{\beta}\left(\mathcal{D}_{\mathfrak{p}_{n+1}^{l}}\right)+\lambda_{\beta}\left(\mathcal{D}_{\mathfrak{p}_{n+1}^{(n-1) / 2}}\right) \\
& =2^{\frac{(n+1) s}{2}-1} u
\end{aligned}
$$

where u is a unit of a cyclotomic field $\boldsymbol{Q}\left(\zeta_{2^{n+1}}\right)$.

The table of $\lambda_{\beta}\left(\mathcal{D}_{n+1}\right)$

β	$\lambda_{\beta}\left(\mathcal{D}_{\mathcal{R}} \times\right.$)	$\lambda_{\beta}\left(\mathcal{D}_{\mathfrak{p}}\right)$	$\lambda_{\beta}\left(\mathcal{D}_{\mathfrak{p} l}\right)$	$\lambda_{\beta}\left(\mathcal{D}{ }_{p} \frac{n-1}{2}\right)$
\mathcal{R}^{\times}	$\pm 2^{\frac{n+1}{2} s-1}$	0	0	0
		$\pm 2^{\frac{n+1}{2} s-1}$	0	0
	:	:		
$\mathfrak{p}^{l}-\mathfrak{p}^{l+1}$	0	0	$\pm 2^{\frac{n+1}{2} s-1}$	0
	:	:		
$\mathfrak{p}^{\frac{n-3}{2}}-\mathfrak{p}^{\frac{n-1}{2}}$	0	0	0	0
$\mathfrak{p}^{\frac{n-1}{2}}-\mathfrak{p}^{\frac{n+1}{2}}$	0	0	0	$2^{\frac{n+1}{2} s-1} u$
$\mathfrak{p}^{\frac{n+1}{2}}-\mathfrak{p}^{\frac{n+3}{2}}$	0	0	0	$-2^{\frac{n+1}{2} s-1}$
$\mathfrak{p}^{\frac{n+3}{2}}-\mathfrak{p}^{\frac{n+5}{2}}$	0	0	0	$2^{\frac{n+1}{2} s-1}\left(2^{s}-1\right)$
.	.	.		
$p^{n-l}-p^{n-l+1}$	0	0	$-2^{(n-l) s-1}$	$2^{\frac{n+1}{2} s-1}\left(2^{s}-1\right)$
	.	.		
	.	-		
$\mathfrak{p}^{n-1}-\mathfrak{p}^{n}$	0	$-2^{(n-1) s-1}$	$2^{(n-l) s-1}\left(2^{s}-1\right)$	$2^{\frac{n+1}{2} s-1}\left(2^{s}-1\right)$
$\mathfrak{p}^{n}-\{0\}$	$-2^{n s-1}$	$2^{(n-1) s-1}\left(2^{s}-1\right)$	$2^{(n-l) s-1}\left(2^{s}-1\right)$	$2^{\frac{n+1}{2} s-1}\left(2^{s}-1\right)$

An embedding system of difference sets

We see

$$
D_{\mathfrak{p}_{n+3}} \supset 2 D_{\mathcal{R}_{n+1}^{\times}}, D_{\mathfrak{p}_{n+3}^{l}} \supset 2 D_{\mathfrak{p}_{n+1}^{l-1}}, \text { for } 1 \leq l \leq \frac{n+1}{2}
$$

If we write the subset $D_{n+3}=D_{\mathcal{R}_{n+3}^{\times}} \bigcup D_{\mathfrak{P}}, D_{\mathfrak{P}}=\bigcup_{l=1}^{\frac{n+1}{2}} D_{\mathfrak{p}_{n+3}^{l}}$, then

$$
D_{\mathfrak{R}} \supset 2 D_{n+1}
$$

Divisible difference family

Let G be a finite abelian group and N be a subgroup of G.
Let $\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$ be k_{i}-subsets of $G, 1 \leq i \leq b$.
Put $\theta_{i}(d)=\left|\left\{(x, y) \mid x y^{-1}=d, x, y \in B_{i}\right\}\right|$ and
$\theta(d)=\sum_{i=1}^{b} \theta_{i}(d)$.
A family $\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$ is called a $\left(G, N,\left\{k_{1}, \ldots, k_{b}\right\}, \mu, \lambda\right)$ divisible difference family if and only if

$$
\theta(d)= \begin{cases}\mu, & \text { if } d \in N \backslash\{1\}, \\ \lambda, & \text { if } d \in G \backslash N\end{cases}
$$

for $d \neq 1 \in G$.

Difference sets over $G R\left(2^{2} . s\right)$

Denote the absolute trace from $\mathbb{F}_{2^{s}}$ to \mathbb{F}_{2} by $t r$. Let $E_{u}=\left\{\alpha \in \mathbb{F}_{2^{s}} \mid \operatorname{tr}(u \alpha)=0\right\}$ for $u \in \mathbb{F}_{2^{s}}$ such that $\operatorname{tr}(u)=0$.

$$
D=\left\{a(1+2 b) \mid a \in \mathcal{T}_{2}, b \in E_{u}\right\}
$$

is a $\left(2^{2 s}, 2^{s-1}\left(2^{s}-1\right), 2^{s-1}\left(2^{s-1}-1\right)\right.$ difference set where $\mathcal{T}_{2}=\left\{0,1, \xi, \cdots, \xi^{2^{s}-2}\right\}$.

Notice that D is a multiplicative subgroup of the unit group $G R\left(2^{2}, s\right)^{\times}$.

Divisible difference family obtained from D

Theorem 4. Let D be a difference set over $G R\left(2^{2}, s\right)$ and $\mathcal{E}=\left\{1+2 a \mid a \in \mathbb{F}_{2^{s}}\right\}$.
Let $S=\{1, y\}$ be a complete representaives of $G R\left(2^{2}, s\right)^{\times} / D$ and put $L=D \cap \mathcal{E}$.

We define the subsets

$$
B_{1}=(D-1) \cap D, \quad B_{2}=y(D-1) \cap D .
$$

Then $\left\{B_{1}, B_{2}\right\}$ is a $\left(D, L,\left\{2^{s-1}\left(2^{s-1}-1\right), 2^{s-1}\left(2^{s-1}-1\right)\right\}, 2^{s-1}\left(2^{s-2}-\right.\right.$
1), $\left.2^{s-1}\left(2^{s-1}-1\right)-2^{s-2}\right)$ divisible difference family.

Notice that we construct a symmetric Hadamard matrix of order s^{2} from this DDF.

An example of a divisible difference family over $G R\left(2^{2}, s\right)$

Let $g(x)=x^{3}+3 x^{2}+2 x+3 \in \boldsymbol{Z} / 2^{2} \boldsymbol{Z}[x]$ be a basic irreducible polynomial of $G R(4,3)$ and ξ be a root of $g(x)$. Let $x y z$ denote the element $x \xi^{2}+y \xi+z \in G R(4,3)$.

$$
\begin{aligned}
& B_{1}=\{103,232,322,112,211,111,231,121,300,332,212,331\} \text { and } \\
& B_{2}=\{233,322,332,113,213,121,010,333,103,300,112,030\}
\end{aligned}
$$

forms a ($D, L,\{12,12\}, 8,10)$-DDF.

Defintion of codes over Galois rings $G R\left(2^{n}, s\right)$

Denote $\boldsymbol{Z} / 2^{n} \boldsymbol{Z}$ by $\boldsymbol{Z}_{2^{n}}$.
Definition 1. An additive subgroup C of $Z_{2^{n}}^{N}$ is called a linear code of length N over $\boldsymbol{Z}_{2}{ }^{n}$.

Definition 2. - The Lee weight of the vector $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ is defined by $w_{L}(\boldsymbol{x})=\sum_{i=1}^{N} \min \left\{x_{i}, 2^{n}-x_{i}\right\}$

- The Lee distance $d_{L}(\boldsymbol{x}, \boldsymbol{y})$ is given by $d_{L}(\boldsymbol{x}, \boldsymbol{y})=w_{L}(\boldsymbol{x}-\boldsymbol{y})$.
- The minimum Lee weight of the code C is $\min _{\substack{c \in C \\ \boldsymbol{c} \neq 0}}\left(w_{L}(\boldsymbol{c})\right)$.
- The vector $\boldsymbol{x} * \boldsymbol{y}=\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{N} y_{N}\right)$ is a componentwise product of the vectors \boldsymbol{x} and \boldsymbol{y}.

Reed-Muller codes over Galois rings $G R\left(2^{n}, s\right)$

We put $q=2^{n}$ and $N=2^{s}-1$.
Definition 3. We let

$$
G=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & \xi & \xi^{2} & \cdots & \xi^{N-1}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{1} \\
g_{1} \\
g_{2} \\
\vdots \\
\boldsymbol{g}_{s}
\end{array}\right)
$$

where each element in the second row of G is assumed to be an s-tuples over Z_{q}, and $\boldsymbol{g}_{\boldsymbol{i}}, 1 \leq i \leq s$ is the row vector and $\mathbf{1}$ is the all one vector.
The rth order Reed-Muller code $Z_{q} R M(r, s)$ of length 2^{s} is the code generated by all tuples of the form

$$
\boldsymbol{g}_{1}^{i_{1}} * \boldsymbol{g}_{2}^{i_{2}} * \cdots * \boldsymbol{g}_{s}^{i_{s}}
$$

such that $i_{j}=0,1, \sum_{j=1}^{s} i_{j} \leq r$ and $\boldsymbol{g}_{j}^{0}=\mathbf{1}$.

Properties of Reed-Muller code $Z_{q} R M(r, s)$

We have the following results easily.

- $\left|Z_{q} R M(r, s)\right|=q^{k}, k=\sum_{l=0}^{r}\binom{s}{l}$
- $Z_{q} R M(r, s) \subset Z_{q} R M(r+1, s), r<s$
- For $q=2, \quad Z_{2} R M(r, s)=R M(r, s)$
- If $q \leq 2^{s}$, then $Z_{q} R M(r, s)^{\perp}=Z_{q} R M(s-r-1, s)$

An embedding system of $Z_{q} R M(r, s)$

Theorem 5. $Z_{q} R M(r, s)$

$$
\begin{aligned}
& =\bigcup_{e_{0}, e_{1}, \cdots, e_{k-1} \in Z_{2}}\left(2 Z_{\frac{q}{2}} R M(r, s)+e_{0} \mathbf{1}+e_{1} \boldsymbol{g}_{\mathbf{1}}+\cdots+e_{m} \boldsymbol{g}_{\boldsymbol{s}}+e_{s+1} \boldsymbol{g}_{\mathbf{1}} * \boldsymbol{g}_{\mathbf{2}}+\right. \\
& \left.\cdots+e_{k-1} \boldsymbol{g}_{\boldsymbol{s}-\boldsymbol{r}+\mathbf{1}} * \boldsymbol{g}_{\boldsymbol{s}-\boldsymbol{r}+\mathbf{2}} * \cdots * \boldsymbol{g}_{\boldsymbol{s}}\right)
\end{aligned}
$$

$Z_{\frac{q}{2}} R M(r, s)$ is embedded in the ideal part of $Z_{q} R M(r, s)$.

The minimum weights of $Z_{q} R M(r, s)$

Theorem 6. The minimum Hamming weight of $Z_{q} R M(r, s)$ is 2^{s-r}.

Theorem 7. Assume that $q \geq 8$. The minimum Lee weight of $Z_{q} R M(1, s)$ is 2^{s} except for $q=8$ and $s=3$. The vector 1 and -1 have Lee weight of 2^{s}. The minimum Lee weight of $Z_{8} R M(1,3)$ is 6 .

Theorem 7 is proved by the estimate of the character sum over $G R\left(2^{n}, s\right)$.

Thank you for your attention.

