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Galois rings GR(2", s)

Let f(x) € Z /2" Z|x] be a primitive basic irreducible polynomial of degree s
and & be a root of f(x).

Thering Z /2" Z|x]/(f(x)) is called a Galois ring of characteristic 2" with the
extension degree s and is denoted by GR(2", s).

o Z/2"Z (&) 2 GR(2",s) = Ry.
e A unique maximal ideal p,, = 2R,,.
e Everyideal of R,, is pﬁl — QZRn, 1<li<n-—1.

o R* =R, — b, is the unit group of R,,.

n
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Any element of a of GR(2", s) is uniquely represented as
a=ap+20m+ - +2" oy, €T, 0<i<n-—1)

where 7, = {0,1,&, - -- ,528_2} as a set of complete representatives of
GR(2",s)/pn.

The unit group R.* of GR(2", s) is a direct product of a cyclic group (£) and

E ={1+ 2ala € R,—1}. An arbitrary element o of RS is uniquely
represented as

a=¢e=¢(142a), ac GR(2" !, s5),e c&.
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ence sets

We prove the following theorem.

~

Theorem 1. For every odd integer n and every extension degree s, there exists a
difference set D,, 11 with parameters

(n+1)s (n+1)s (n+1)s (n+1)s
v=20F0s Lo % 12 % —1)A=2"=3 Y2 =z !

(2 - 1)

over a Galois ring GR(2", s).

This difference set D,, 11 is embedded in the ideal part of a difference set D,, 3
over GR(2”+3, s). It means that there exists an infinite family of difference sets
with the embedding system over Galois rings.

N /
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A new operation

We define a new operation,

axf=a+ 0+ 2a8

fora, 0 € R,,.

-

~

Theorem 2. Let gy = 1,992, - ,gs be a free Z/2"Z-basis. Let u : R, —
G F'(2°) be the map defined by p(a) = a (mod 2) and b be an element of R,
such that 22 + 2 = 1(b) has no solution in GF'(2%). Then R, is an abelian group
with respect to the operation ,

S

R = (—1) * (2b) | [{g;)

J=2

where |(—1)| =2, [(20)] =2""'and |{g;)] =2",2<j <s.
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The subsets of R, and R,,_;(1 < < 2-1) for s even

In what follows. we assume that n = 1 (mod 2). We define the subsets as
follows.

2n—2-1 S
o A% = | ] (=1)«][(gy) * (2b)"", A% C R,
m=0 71=2
2n—2l—2_1 S ( |
even %2 (n— 1—21 «M,
o A= | (=1 g @) 5 (20)
m=0 71=2
AP C Ry, for1<l<73
s—1
o B=|[(gj)*(=1)*(g%%) * (2b), B C Rusr.
j=2
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The subsets of R, and R, _;(1 <1 < 1) for s odd

For odd extension, we can choose at least 1 free- Z/Q”Z-base, say for

instance g, which satisfies 271 € (—1) x IT;- 2(gj> (2b). We define the
subsets as follows.

an—1_1 s—1
o ACM — U (=1) * | | {gj) * (20) = (gs)*"™, A°Y CR,.
m=0 71=2
gn—2—=1_1 s—1
0 QM —21 *Mm
® "Aldd — U <_1> * <g]> * <2b> <952 > *Js
m=0 7=2
A?dd CRyy, forl1 << ”T_S
s—1
o B=|[(gj)*(~1)*(g%%) +(2b), B C Russ.
j=2
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The subsets of R, and pfﬁl(l << nT_l)

¢ Dpx = {(1+20)&a € A®eN(A%Y) ¢t =0,1,---,25 — 2},
DR;<+1 C R?’L—|—1
Dy { (1 + 20)E v € AP (A9) ¢ =0,1,---,2° — 2},
l
¢ Do he =127 (1+2a)t|a € B,t=0,1,---,25 — 2}.

n+1

n—1

D_(n-1y2 C
R/ Pni

< U Dy U D, (n-1)/2 is a difference set.

n—|—1

8/31



The cardinalities of the subsets

. DR:;H] = 2ns—1H(25 — 1),
« Dy |= o(n=l)s=l(9s _ 1),
o | D (n_l)/2‘ _ 2(n—|—1)s/2—1(28 o 1)
pn—l—l
n s (n+1)s
Thus we have | D), 11| = oty 12 T 1) = k.
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The additive character Ag of R4+

Lemma 1. The additive character of /R, 1 is given by
Tn
)\5(00 — an—l——'—ll(ﬁa)'

where 1), 1 is the trace function and 3 € R,,11, and (an+1 is a primitive
27+ 1st root of unity.
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A necessary and sufficient condition

n—3
The subset D), 11 = DR;:H U2 D U D p(n=1)/2 of Rp+1
Is a difference set with parameters

(n—l—l)s (n+1)s (n+1)s 1 (n+1)s

v=20F0s o5 1277 —1),A=2 =z Y2 =z -1

if and only if the element D, 11 = ) | « of the group ring Z'R,+1

aEDn+1
satisfies
(n+1)s (n+1)s
)‘O(DnJrl) = 2 2 1(2 2 = ):’Dn+1‘a
As(Dus1) = As(Drx +Z)\5 i)+ A8(Dyon-172)
(n+1)s

for every additive character Ag, 3 # 0 of R,,41, where u is a unit of a
cyclotomic field Q((on+1).
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The multiplicative character of 1

Let X be a multiplicative character of R,>_ ; of order 2. [(£)| = 2% — 1.
Since (2™,2° — 1) = 1, then x(&) = 1.

For £(1 4 2a), (1 +28) € R, ., we have

X(E (1+20) - £"(1+28)) = X((1+2a)(1+28)) = X(1 +2(ax ).

Thus the multiplicative character 'y of order 2" can be regarded as a
multiplicative character y of the group R,, with respect to the new operation.
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Gauss sums over R, 1

For a multiplicative character x of R,,1.1 and an additive character )\5 of
Rn+1, we define the Gauss sum over R, 1.

G(X:Ag) = Y Xla
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The determination of )\B(DRXH)

We define the multiplicative character y of R,, as follows:
For an even extension,

X (0% (20)7) = x((20)™) = Con1,

where § € (—1) * [[5_5(g;) C A**"and0 <e < 2" — 1.
For an odd extension,

X(0# (g5)™) = x((95)™) = Cam,

where § € (—1) % (2b) * H§;5<9j> C A%¥and 0 <e <27l 1.
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We define the multiplicative character x of /R ,,+1 by letting
X((1+2a)¢") = x(a).

For 3 # 0, we have

1

)‘B(DRX ) = o

n+1 277“

<

.
2" —1

m=0
\ :odd

on—1_1

D GER™MA9) Y G 2GR, Ag)

7=0

N

/
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Theorem 3. Assume that m is odd. Then

~m ntlo o -
G(X 7)‘1) = 2 _2|_ an, G(X()a)\l) =0

where 5{0 IS a trivial character of R;; 11 and x Is some positive integer.

N )
Substituting these values to the equation, we have the following lemma.
\
Lemma 2.
( (n+1)s
+2-2 1 it BERS,
)‘ﬂ(DR;;H) =9q 0 it 0 €pnir1 —Ppats
-1 .

|2 it Bepn,, —{0}.

NS /
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The determination of Ag(D,; )for 1 <[ < 2

n+1

In what follows, we treat the odd extension.
We also have the following lemmas by using Gauss sums.

4 N

Lemma 3. Putp =p,yiand R* =R, ;.
(0 it 5eR*—rp
B it pep —pt,
Ag(Dpi) = 0 it feptt—pnh
_2(n—l)s—1 if 3¢ pn—l - pn—l—|—1’
n—Il)s—1/9s ' n—I[+1
20 Dsmlas 1) it g epn it — {0},
\_ J
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Lemma4. Putp =p,yiand R* =R, ;.
0 f BER orBecp—p'a,
n+1_ n—1 n+1
Ag(D n1) = ¢ P toep2 —pz,
b p oz —QnTHS_l if ﬁepnTH—pnTM,
252 1) i Bep™s — {0},

where w is a unit of a cyclotomic field Q((4).
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The proof of Theorem 1

From Lemmas 1,2 and 3, we obtain for 3 # 0,

A3(Pnt1) = R +Z)‘ﬁ

n+1

) +25(D n-1)/2)

”"'1 n+1
(n+1)s -
p— 2 2 1u

where  is a unit of a cyclotomic field Q((gn+1).
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The table of A\g(D,41)

B Ag(Dyx) Ag(Dyp) Ap(DPy1) Ag(D p—1)
p 2
ntl _ _
R X 4272 571 0 0 0
n—+1
p — p2 0 42 2 71 0 0
n_4;1 _
pl — plt+1 0 0 4o o s—1 0
n—3 n—1
p 2 —p 2 0 0 0 0
n—1 n+1 n+l_ 4
p 2 —p 2 0 0 0 2 2
n—4+1 n—+3 n+ls—1
p 2 —p 2 0 0 0 —2 2
n—+3 n—+5 n—l—lS 1
p 2 —p 2 0 0 0 2 2 (2° — 1)
. . ) .
pn—l p" 0 _9(n—1)s—1 2(n—l)s—1(23 —1) 2%3—1(23 — 1)
+1
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An embedding system of difference sets

We see
n—+1
Dy, .5 D 2DR§+17 ngﬂ_g D) ZDp%—lel, forl <[ < :
n—+1
: — — 2
If we write the subset D, 3 = DR§+3 UDs, Dyg = U, 2 Dpiws’ then

l)qg:) 21)n+q,
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Divisible difference family

Let G be a finite abelian group and /N be a subgroup of (5.
Let { B1, Bs, .., By} be k;-subsets of G, 1 < i < b.

Put 9;(d) = |{(x,y)|zy ! =d,z,y € B;}| and

0(d) = 27—, 0i(d).

A family { B1, Bs, ..., By} iscalled a (G, N,{k1, ..., kp }, p, \) divisible
difference family if and only if

. ifde N\ {1},
H(d):{ /)f ifd € G\ N

ford #1 € G.
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Difference sets over GR(2?%.5s)

Denote the absolute trace from [Fos to [F9 by tr.
Let £y, = {a € Fas|tr(ua) = 0} for u € Fas such that tr(u) = 0.

D =A{a(l1+2b)|lacT be E,}

isa (225,2571(2% — 1),257 (2571 — 1) difference set
where 75 = {0, 1,¢,--- , &2 72}

Notice that D is a multiplicative subgroup of the unit group GR(22, s)*.
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Divisible difference family obtained from D

KTheorem 4. Let D be a difference set over GR(22, s) and h
E={1+ 2ala € Fas}.
Let S = {1, y} be a complete representaives of GR(22,5)* /D and
putL =DNE.

We define the subsets
B = (D—l)ﬂD, Bgzy(D—l)ﬂD.

Then {B1, Bs}isa (D, L, {2571 (2571 —1),257 (2571 —1)}, 2571 (2572 —
1),2571(2571 — 1) — 2572) divisible difference family.

/

Notice that we construct a symmetric Hadamard matrix of order s? from this
DDF.
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An example of a divisible difference family over GR(2%, s)

Let g(z) = 2% + 32% + 22 + 3 € Z/2? Z[x] be a basic irreducible
polynomial of GR(4, 3) and £ be a root of g(x). Let xyz denote the element
&2 + yé+ 2z € GR(4,3).

B; = {103,232,322,112,211,111,231, 121, 300, 332, 212, 331} and
B, = {233,322,332,113,213,121,010, 333,103,300, 112, 030}

formsa (D, L,{12,12},8,10)-DDF.
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Defintion of codes over Galois rings G R(2", s)

Denote Z /2" Z by Zon.

Definition 1. An additive subgroup C of Zé\fz Is called a linear code of length
N over Zon.

Definition 2. e The Lee weight of the vector x = (x1,x2, -+ ,xN) is

N
defined by wy,(x) = Z min {x;, 2" — z;}
i=1

e The Lee distance dy (@, y) is given by dr(x,y) = wr(x — y).

e The minimum Lee weight of the code C'is mi(r}(wL(c)).
cc

c#0

e The vector x x y = (xlyl, T2Y2, .-, :UNyN) IS a componentwise
product of the vectors x and y.
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Reed-Muller codes over Galois rings G R(2", s)

We putg =2"and N = 2° — 1.

Definition 3. We let

(1)
1 1 .- 1 gl
£ g fsN—1>: ’
\ 9. )

where each element in the second row of (- is assumed to be an s-tuples over
Z,,and g;,1 <1 < sis the row vector and 1 is the all one vector.

The rth order Reed-Muller code Z, RM (r, s) of length 2% is the code
generated by all tuples of the form

21 19 7
gy xgy *---%xg;

. . 0 .
suchthati; = 0,1, 5 ;i; <randg; = 1.
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Properties of Reed-Muller code Z,RM (r, s)

We have the following results easily.

/
~ [ s
N ’ZQRM(’I“,S)|: q*. k= Z ( l )
=0
e Zy,RM(r,s) C ZgRM(r+1,s), r<s
e Forq=2,0 ZyRM(r,s) = RM(r,s)
o If g < 2% then Z,RM (r,8)* = Z,RM(s —r — 1,5)
N
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An embedding system of Z,RM(r, s)

e )
Theorem 5. Z,RM(r, s)
— U (QZ%RM(T, S)—|—€01‘|‘€191‘|‘""|‘€mgs T€s+1g91*g2 +

€0,€61, " 7ek—1EZ2

T Ck—19s—r+1 ¥ Gs—p2 ¥ 0k gs)
S J

Z1RM(r, s) is embedded in the ideal part of Z, RM (r, s).
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The minimum weights of Z,RM (r, s)

-

N

Theorem 6. The minimum Hamming weight of Z, RM (r, s) is 2°7".

Theorem 7. Assume that ¢ > 8. The minimum Lee weight of Z,RM (1, s) is 2°
except for ¢ = 8 and s = 3. The vector 1 and —1 have Lee weight of 2°. The

minimum Lee weight of ZgRM (1, 3) is 6.

/

Theorem 7 is proved by the estimate of the character sum over GR(2", s).
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Thank you for your attention.
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