Difference sets, divisible difference families and codes over Galois rings of characteristic 2^n

Mieko Yamada Faculty of Mathematics and Physics Institute of Science and Engineering Kanazawa University

IMS Workshop, 2011

Galois rings $GR(2^n, s)$

Let $f(x) \in \mathbb{Z}/2^n \mathbb{Z}[x]$ be a primitive basic irreducible polynomial of degree sand ξ be a root of f(x). The ring $\mathbb{Z}/2^n \mathbb{Z}[x]/(f(x))$ is called a Galois ring of characteristic 2^n with the extension degree s and is denoted by $GR(2^n, s)$.

- $\mathbf{Z}/2^n \mathbf{Z}(\xi) \cong GR(2^n, s) = \mathcal{R}_n.$
- A unique maximal ideal $\mathfrak{p}_n = 2\mathcal{R}_n$.
- Every ideal of \mathcal{R}_n is $\mathfrak{p}_n^l = 2^l \mathcal{R}_n, 1 \leq l \leq n-1$.
- $\mathcal{R}_n^{\times} = \mathcal{R}_n \mathfrak{p}_n$ is the unit group of \mathcal{R}_n .

Any element of α of $GR(2^n, s)$ is uniquely represented as

$$\alpha = \alpha_0 + 2\alpha_1 + \dots + 2^{n-1}\alpha_{n-1}, \quad \alpha_i \in \mathcal{T}_n \quad (0 \le i \le n-1)$$

where $T_n = \{0, 1, \xi, \cdots, \xi^{2^s-2}\}$ as a set of complete representatives of $GR(2^n, s)/\mathfrak{p}_n$.

The unit group \mathcal{R}_n^{\times} of $GR(2^n, s)$ is a direct product of a cyclic group $\langle \xi \rangle$ and $\mathcal{E} = \{1 + 2a | a \in \mathcal{R}_{n-1}\}$. An arbitrary element α of \mathcal{R}_n^{\times} is uniquely represented as

$$\alpha = \xi^t e = \xi^t (1+2a), \ a \in GR(2^{n-1}, s), e \in \mathcal{E}.$$

$$(2^{(n+1)s}, 2^{\frac{(n+1)s}{2}-1}(2^{\frac{(n+1)s}{2}}-1), 2^{\frac{(n+1)s}{2}-1}(2^{\frac{(n+1)s}{2}-1}-1)$$
 differ-

ence sets

We prove the following theorem.

Theorem 1. For every odd integer n and every extension degree s, there exists a difference set D_{n+1} with parameters

$$v = 2^{(n+1)s}, k = 2^{\frac{(n+1)s}{2}-1} \left(2^{\frac{(n+1)s}{2}} - 1\right), \lambda = 2^{\frac{(n+1)s}{2}-1} \left(2^{\frac{(n+1)s}{2}-1} - 1\right)$$

over a Galois ring $GR(2^{n+1},s)$.

This difference set D_{n+1} is embedded in the ideal part of a difference set D_{n+3} over $GR(2^{n+3}, s)$. It means that there exists an infinite family of difference sets with the embedding system over Galois rings.

A new operation

We define a new operation,

 $\alpha*\beta=\alpha+\beta+2\alpha\beta$

for $\alpha, \beta \in \mathcal{R}_n$.

Theorem 2. Let $g_1 = 1, g_2, \dots, g_s$ be a free $\mathbb{Z}/2^n \mathbb{Z}$ -basis. Let $\mu : \mathcal{R}_n \to GF(2^s)$ be the map defined by $\mu(\alpha) \equiv \alpha \pmod{2}$ and b be an element of \mathcal{R}_n such that $x^2 + x = \mu(b)$ has no solution in $GF(2^s)$. Then \mathcal{R}_n is an abelian group with respect to the operation *,

 $\mathcal{R}_n = \langle -1 \rangle * \langle 2b \rangle * \prod_{j=2} \langle g_j \rangle$

where $|\langle -1 \rangle| = 2$, $|\langle 2b \rangle| = 2^{n-1}$ and $|\langle g_j \rangle| = 2^n$, $2 \le j \le s$.

The subsets of \mathcal{R}_n and $\mathcal{R}_{n-l}(1 \le l \le \frac{n-1}{2})$ for s even

In what follows. we assume that $n \equiv 1 \pmod{2}$. We define the subsets as follows.

•
$$A^{\text{even}} = \bigcup_{m=0}^{2^{n-2}-1} \langle -1 \rangle * \prod_{j=2}^{s} \langle g_j \rangle * (2b)^{*m}, \quad A^{\text{even}} \subset \mathcal{R}_n.$$

•
$$\mathcal{A}_l^{\text{even}} = \bigcup_{m=0}^{2^{n-2l-2}-1} \langle -1 \rangle * \prod_{j=2}^s \langle g_j \rangle * \langle 2b^{*2^{(n-1-2l)}} \rangle * (2b)^{*m}$$

$$\mathcal{A}_l^{\mathsf{even}} \subset \mathcal{R}_{n-l}, \text{ for } 1 \leq l \leq \frac{n-3}{2}.$$

•
$$B = \prod_{j=2}^{s-1} \langle g_j \rangle * \langle -1 \rangle * \langle g_s^{*2} \rangle * \langle 2b \rangle, \quad B \subset \mathcal{R}_{\frac{n+1}{2}}.$$

The subsets of \mathcal{R}_n and $\mathcal{R}_{n-l}(1 \le l \le \frac{n-1}{2})$ for s odd

For odd extension, we can choose at least 1 free- $Z/2^n Z$ -base, say for instance g_s , which satisfies $2^{n-1} \in \langle -1 \rangle * \prod_{j=2}^{s-1} \langle g_j \rangle * \langle 2b \rangle$. We define the subsets as follows.

•
$$A^{\text{odd}} = \bigcup_{m=0}^{2^{n-1}-1} \langle -1 \rangle * \prod_{j=2}^{s-1} \langle g_j \rangle * \langle 2b \rangle * (g_s)^{*m}, \quad A^{\text{odd}} \subset \mathcal{R}_n.$$

•
$$\mathcal{A}_l^{\text{odd}} = \bigcup_{m=0}^{2^{n-2l-1}-1} \langle -1 \rangle * \prod_{j=2}^{s-1} \langle g_j \rangle * \langle 2b \rangle * \langle g_s^{*2^{n-2l}} \rangle * g_s^{*m},$$

$$\mathcal{A}_l^{\mathsf{odd}} \subset \mathcal{R}_{n-l}$$
, for $1 \leq l \leq \frac{n-3}{2}$.

•
$$B = \prod_{j=2}^{s-1} \langle g_j \rangle * \langle -1 \rangle * \langle g_s^{*2} \rangle * \langle 2b \rangle, \quad B \subset \mathcal{R}_{\frac{n+1}{2}}.$$

The subsets of $\mathcal{R}_{n+1}^{\times}$ and $\mathfrak{p}_{n+1}^{l}(1 \leq l \leq \frac{n-1}{2})$

•
$$D_{\mathcal{R}_{n+1}^{\times}} = \{(1+2\alpha)\xi^t | \alpha \in A^{\text{even}}(A^{\text{odd}}), t = 0, 1, \cdots, 2^s - 2\},$$

 $D_{\mathcal{R}_{n+1}^{\times}} \subset \mathcal{R}_{n+1}^{\times}.$

•
$$D_{\mathfrak{p}_{n+1}^l} = \{2^l(1+2\alpha)\xi^t | \alpha \in \mathcal{A}_l^{\mathsf{even}}(\mathcal{A}_l^{\mathsf{odd}}), t = 0, 1, \cdots, 2^s - 2\},\ 1 \le l \le \frac{n-3}{2}, \quad D_{\mathfrak{p}_{n+1}^l} \subset \mathfrak{p}_{n+1}^l.$$

•
$$D_{\mathfrak{p}_{n+1}^{(n-1)/2}} = \{2^{\frac{n-1}{2}}(1+2\alpha)\xi^t | \alpha \in \mathbf{B}, t=0,1,\cdots,2^s-2\}.$$

 $D_{\mathcal{R}_{n+1}^{(n-1)/2}} \subset \mathfrak{p}_{n+1}^{\frac{n-1}{2}}$

$$D_{n+1} = D_{\mathcal{R}_{n+1}^{\times}} \bigcup_{l=1}^{\frac{n-3}{2}} D_{\mathfrak{p}_{n+1}^{l}} \bigcup D_{\mathfrak{p}_{n+1}^{(n-1)/2}} \text{ is a difference set.}$$

The cardinalities of the subsets

•
$$|D_{\mathcal{R}_{n+1}^{\times}}| = 2^{ns-1}(2^s - 1).$$

• $|D_{\mathfrak{p}_{n+1}^l}| = 2^{(n-l)s-l}(2^s - 1).$
• $|D_{\mathfrak{p}_{n+1}^{(n-1)/2}}| = 2^{(n+1)s/2-1}(2^s - 1).$

Thus we have $|D_{n+1}| = 2^{\frac{(n+1)s}{2}-1} (2^{\frac{(n+1)s}{2}} - 1) = k.$

The additive character λ_{β} of \mathcal{R}_{n+1}

Lemma 1. The additive character of \mathcal{R}_{n+1} is given by

$$\lambda_{\beta}(\alpha) = \zeta_{2^{n+1}}^{T_{n+1}(\beta\alpha)}.$$

where T_{n+1} is the trace function and $\beta \in \mathcal{R}_{n+1}$, and $\zeta_{2^{n+1}}$ is a primitive 2^{n+1} st root of unity.

A necessary and sufficient condition

The subset $D_{n+1} = D_{\mathcal{R}_{n+1}^{\times}} \bigcup_{l=1}^{\frac{n-3}{2}} D_{\mathfrak{p}_{n+1}^{l}} \bigcup D_{\mathfrak{p}_{n+1}^{(n-1)/2}}$ of \mathcal{R}_{n+1} is a difference set with parameters

$$v = 2^{(n+1)s}, k = 2^{\frac{(n+1)s}{2}-1} \left(2^{\frac{(n+1)s}{2}}-1\right), \lambda = 2^{\frac{(n+1)s}{2}-1} \left(2^{\frac{(n+1)s}{2}-1}-1\right)$$

if and only if the element $\mathcal{D}_{n+1} = \sum_{\alpha \in D_{n+1}} \alpha$ of the group ring $Z\mathcal{R}_{n+1}$ satisfies

$$\lambda_{0}(\mathcal{D}_{n+1}) = 2^{\frac{(n+1)s}{2}-1} \left(2^{\frac{(n+1)s}{2}} - 1\right) = |D_{n+1}|,$$

$$\lambda_{\beta}(\mathcal{D}_{n+1}) = \lambda_{\beta}(\mathcal{D}_{\mathcal{R}_{n+1}^{\times}}) + \sum_{l=1}^{\frac{n-3}{2}} \lambda_{\beta}(\mathcal{D}_{\mathfrak{p}_{n+1}^{l}}) + \lambda_{\beta}(\mathcal{D}_{\mathfrak{p}_{n+1}^{(n-1)/2}})$$

$$= 2^{\frac{(n+1)s}{2}-1} u$$

for every additive character $\lambda_{\beta}, \beta \neq 0$ of \mathcal{R}_{n+1} , where u is a unit of a cyclotomic field $Q(\zeta_{2^{n+1}})$.

The multiplicative character of $\mathcal{R}_{n+1}^{ imes}$

Let $\tilde{\chi}$ be a multiplicative character of $\mathcal{R}_{n+1}^{\times}$ of order 2^m . $|\langle \xi \rangle| = 2^s - 1$. Since $(2^m, 2^s - 1) = 1$, then $\tilde{\chi}(\xi) = 1$.

For $\xi^t(1+2\alpha)$, $\xi^u(1+2\beta) \in \mathcal{R}_{n+1}^{\times}$, we have

 $\tilde{\chi}(\xi^t(1+2\alpha) \cdot \xi^u(1+2\beta)) = \tilde{\chi}((1+2\alpha)(1+2\beta)) = \tilde{\chi}(1+2(\alpha*\beta)).$

Thus the multiplicative character $\tilde{\chi}$ of order 2^m can be regarded as a multiplicative character χ of the group \mathcal{R}_n with respect to the new operation.

Gauss sums over \mathcal{R}_{n+1}

For a multiplicative character $\tilde{\chi}$ of \mathcal{R}_{n+1} and an additive character λ_{β} of \mathcal{R}_{n+1} , we define the Gauss sum over \mathcal{R}_{n+1} .

$$G(\tilde{\chi}, \lambda_{\beta}) = \sum_{\alpha \in \mathcal{R}_{n+1}} \tilde{\chi}(\alpha) \lambda_{\beta}(\alpha).$$

The determination of $\lambda_{\beta}(\mathcal{D}_{\mathcal{R}_{n+1}^{\times}})$

We define the multiplicative character χ of \mathcal{R}_n as follows: For an even extension,

$$\chi(\delta * (2b)^{*e}) = \chi((2b)^{*e}) = \zeta_{2^{n-1}}^{e},$$

where $\delta \in \langle -1 \rangle * \prod_{j=2}^{s} \langle g_j \rangle \subset A^{\text{even}}$ and $0 \le e \le 2^{n-1} - 1$.

For an odd extension,

 $\chi(\delta * (g_s)^{*e}) = \chi((g_s)^{*e}) = \zeta_{2^n}^e,$

where $\delta \in \langle -1 \rangle * \langle 2b \rangle * \prod_{j=2}^{s-1} \langle g_j \rangle \subset A^{\text{odd}}$ and $0 \le e \le 2^{n-1} - 1$.

We define the multiplicative character $\tilde{\chi}$ of \mathcal{R}_{n+1} by letting $\tilde{\chi}((1+2\alpha)\xi^t) = \chi(\alpha)$.

For $\beta \neq 0,$ we have

$$\lambda_{\beta}(\mathcal{D}_{\mathcal{R}_{n+1}^{\times}}) = \frac{1}{2^{n}} \left\{ \sum_{\substack{m=0\\m:\text{odd}}}^{2^{n}-1} G(\tilde{\chi}^{m}, \lambda_{\beta}) \sum_{\substack{j=0\\j=0}}^{2^{n-1}-1} \zeta_{2^{n}}^{-mj} + 2^{n-1} G(\tilde{\chi}^{0}, \lambda_{\beta}) \right\}.$$

Theorem 3. Assume that
$$m$$
 is odd. Then
 $G(\tilde{\chi}^m, \lambda_1) = 2^{\frac{n+1}{2}s} \zeta_{2^n}^x, \quad G(\tilde{\chi}^0, \lambda_1) = 0$
where $\tilde{\chi}^0$ is a trivial character of $\mathcal{R}_{n+1}^{\times}$ and x is some positive integer.

Substituting these values to the equation, we have the following lemma.

Lemma 2.

$$\lambda_{\beta}(\mathcal{D}_{\mathcal{R}_{n+1}^{\times}}) = \begin{cases} \pm 2^{\frac{(n+1)s}{2}-1} & \text{if } \beta \in \mathcal{R}_{n+1}^{\times}, \\ 0 & \text{if } \beta \in \mathfrak{p}_{n+1} - \mathfrak{p}_{n+1}^{n}, \\ -2^{ns-1} & \text{if } \beta \in \mathfrak{p}_{n+1}^{n} - \{0\}. \end{cases}$$

The determination of $\lambda_{\beta}(\mathcal{D}_{\mathfrak{p}_{n+1}^l})$ for $1 \leq l \leq \frac{n-1}{2}$

In what follows, we treat the odd extension.

We also have the following lemmas by using Gauss sums.

Lemma 3. $Put \mathfrak{p} = \mathfrak{p}_{n+1} \text{ and } \mathcal{R}^{\times} = \mathcal{R}_{n+1}^{\times}.$ $\lambda_{\beta}(\mathcal{D}_{\mathfrak{p}^{l}}) = \begin{cases} 0 & \text{if } \beta \in \mathcal{R}^{\times} - \mathfrak{p}^{l}, \\ \pm 2^{\frac{(n+1)s}{2} - 1} & \text{if } \beta \in \mathfrak{p}^{l} - \mathfrak{p}^{l+1}, \\ 0 & \text{if } \beta \in \mathfrak{p}^{l+1} - \mathfrak{p}^{n-l}, \\ -2^{(n-l)s-1} & \text{if } \beta \in \mathfrak{p}^{n-l} - \mathfrak{p}^{n-l+1}, \\ 2^{(n-l)s-1}(2^{s} - 1) & \text{if } \beta \in \mathfrak{p}^{n-l+1} - \{0\}. \end{cases}$ **Lemma 4.** Put $\mathfrak{p} = \mathfrak{p}_{n+1}$ and $\mathcal{R}^{\times} = \mathcal{R}_{n+1}^{\times}$.

$$\lambda_{\beta}(\mathcal{D}_{\mathfrak{p}^{\frac{n-1}{2}}}) = \begin{cases} 0 & \text{if } \beta \in \mathcal{R}^{\times} \text{ or } \beta \in \mathfrak{p} - \mathfrak{p}^{\frac{n-1}{2}}, \\ 2^{\frac{n+1}{2}s-1}u & \text{if } \beta \in \mathfrak{p}^{\frac{n-1}{2}} - \mathfrak{p}^{\frac{n+1}{2}}, \\ -2^{\frac{n+1}{2}s-1} & \text{if } \beta \in \mathfrak{p}^{\frac{n+1}{2}} - \mathfrak{p}^{\frac{n+3}{2}}, \\ 2^{\frac{n+1}{2}s-1}(2^{s}-1) & \text{if } \beta \in \mathfrak{p}^{\frac{n+3}{2}} - \{0\}, \end{cases}$$

where u is a unit of a cyclotomic field $Q(\zeta_4)$.

The proof of Theorem 1

From Lemmas 1,2 and 3, we obtain for $\beta \neq 0$,

$$\lambda_{\beta}(\mathcal{D}_{n+1}) = \lambda_{\beta}(\mathcal{D}_{\mathcal{R}_{n+1}^{\times}}) + \sum_{l=1}^{\frac{n-3}{2}} \lambda_{\beta}(\mathcal{D}_{\mathfrak{p}_{n+1}^{l}}) + \lambda_{\beta}(\mathcal{D}_{\mathfrak{p}_{n+1}^{(n-1)/2}})$$
$$= 2^{\frac{(n+1)s}{2}-1}u$$

where u is a unit of a cyclotomic field $Q(\zeta_{2^{n+1}})$.

The table of $\lambda_eta(\mathcal{D}_{n+1})$

β	$\lambda_{\beta}(\mathcal{D}_{\mathcal{R}^{\times}})$	$\lambda_{eta}(\mathcal{D}_{\mathfrak{p}})$	$\lambda_{eta}(\mathcal{D}_{\mathfrak{p}^l})$	$\lambda_{\beta}(\mathcal{D}_{\mathfrak{p}}\frac{n-1}{2})$
$\mathcal{R}^{ imes}$	$\pm 2^{\frac{n+1}{2}s-1}$	0	0	0
$\mathfrak{p}-\mathfrak{p}^2$	0	$\pm 2^{\frac{n+1}{2}s-1}$	0	0
			-	:
$\mathfrak{p}^l-\mathfrak{p}^{l+1}$	0	0	$\pm 2^{\frac{n+1}{2}s-1}$	0
-		-	-	:
$\mathfrak{p}\frac{n-3}{2} - \mathfrak{p}\frac{n-1}{2}$	0	0	0	0
$\mathfrak{p}\frac{n-1}{2} - \mathfrak{p}\frac{n+1}{2}$	0	0	0	$2^{\frac{n+1}{2}s-1}u$
$\mathfrak{p}\frac{n+1}{2} - \mathfrak{p}\frac{n+3}{2}$	0	0	0	$-2^{\frac{n+1}{2}s-1}$
$\mathfrak{p}^{\frac{n+3}{2}} - \mathfrak{p}^{\frac{n+3}{2}}$	0	0	0	$2^{\frac{n+1}{2}s-1}(2^s-1)$
		•		- - -
$\mathfrak{p}^{n-l} - \mathfrak{p}^{n-l+1}$	0	0	$-2^{(n-l)s-1}$	$2^{\frac{n+1}{2}s-1}(2^s-1)$
-		-	-	:
$\mathfrak{p}^{n-1}-\mathfrak{p}^n$	0	$-2^{(n-1)s-1}$	$2^{(n-l)s-1}(2^s-1)$	$2^{\frac{n+1}{2}s-1}(2^s-1)$
$\mathfrak{p}^n - \{0\}$	-2^{ns-1}	$2^{(n-1)s-1}(2^s-1)$	$2^{(n-l)s-1}(2^s-1)$	$2^{\frac{n+1}{2}s-1}(2^s-1)$

An embedding system of difference sets

We see

$$D_{\mathfrak{p}_{n+3}} \supset 2D_{\mathcal{R}_{n+1}^{\times}}, \ D_{\mathfrak{p}_{n+3}^{l}} \supset 2D_{\mathfrak{p}_{n+1}^{l-1}}, \text{ for } 1 \leq l \leq \frac{n+1}{2}.$$

If we write the subset $D_{n+3} = D_{\mathcal{R}_{n+3}^{\times}} \bigcup D_{\mathfrak{P}}$, $D_{\mathfrak{P}} = \bigcup_{l=1}^{\frac{n+1}{2}} D_{\mathfrak{p}_{n+3}^{l}}$, then

 $D_{\mathfrak{P}} \supset 2D_{n+1}.$

Divisible difference family

Let G be a finite abelian group and N be a subgroup of G. Let $\{B_1, B_2, ..., B_b\}$ be k_i -subsets of G, $1 \le i \le b$. Put $\theta_i(d) = |\{(x, y) | xy^{-1} = d, x, y \in B_i\}|$ and $\theta(d) = \sum_{i=1}^b \theta_i(d)$.

A family $\{B_1, B_2, ..., B_b\}$ is called a $(G, N, \{k_1, ..., k_b\}, \mu, \lambda)$ divisible difference family if and only if

$$\theta(d) = \begin{cases} \mu, & \text{ if } d \in N \setminus \{1\}, \\ \lambda, & \text{ if } d \in G \setminus N \end{cases}$$

for $d \neq 1 \in G$.

Difference sets over $GR(2^2.s)$

Denote the absolute trace from \mathbb{F}_{2^s} to \mathbb{F}_2 by tr. Let $E_u = \{ \alpha \in \mathbb{F}_{2^s} | tr(u\alpha) = 0 \}$ for $u \in \mathbb{F}_{2^s}$ such that tr(u) = 0.

$$D = \{a(1+2b) | a \in \mathcal{T}_2, b \in E_u\}$$

is a $(2^{2s}, 2^{s-1}(2^s - 1), 2^{s-1}(2^{s-1} - 1))$ difference set where $\mathcal{T}_2 = \{0, 1, \xi, \cdots, \xi^{2^s - 2}\}.$

Notice that D is a multiplicative subgroup of the unit group $GR(2^2, s)^{\times}$.

Divisible difference family obtained from D

Theorem 4. Let D be a difference set over $GR(2^2, s)$ and $\mathcal{E} = \{1 + 2a | a \in \mathbb{F}_{2^s}\}.$ Let $S = \{1, y\}$ be a complete representaives of $GR(2^2, s)^{\times}/D$ and put $L = D \cap \mathcal{E}.$ We define the subsets $B_1 = (D - 1) \cap D, \quad B_2 = y(D - 1) \cap D.$ Then $\{B_1, B_2\}$ is a $(D, L, \{2^{s-1}(2^{s-1} - 1), 2^{s-1}(2^{s-1} - 1)\}, 2^{s-1}(2^{s-2} - 1), 2^{s-1}(2^{s-1} - 1) - 2^{s-2})$ divisible difference family.

Notice that we construct a symmetric Hadamard matrix of order s^2 from this DDF.

An example of a divisible difference family over ${\cal GR}(2^2,s)$

Let $g(x) = x^3 + 3x^2 + 2x + 3 \in \mathbb{Z}/2^2\mathbb{Z}[x]$ be a basic irreducible polynomial of GR(4,3) and ξ be a root of g(x). Let xyz denote the element $x\xi^2 + y\xi + z \in GR(4,3)$.

 $B_1 = \{103, 232, 322, 112, 211, 111, 231, 121, 300, 332, 212, 331\} \text{ and} \\ B_2 = \{233, 322, 332, 113, 213, 121, 010, 333, 103, 300, 112, 030\}$

forms a $(D, L, \{12, 12\}, 8, 10)$ -DDF.

Definition of codes over Galois rings $GR(2^n, s)$

Denote ${old Z}/2^n {old Z}$ by ${old Z}_{2^n}.$

Definition 1. An additive subgroup C of $\mathbb{Z}_{2^n}^N$ is called a linear code of length N over \mathbb{Z}_{2^n} .

Definition 2. • The Lee weight of the vector $\boldsymbol{x} = (x_1, x_2, \cdots, x_N)$ is defined by $w_L(\boldsymbol{x}) = \sum_{i=1}^N \min \{x_i, 2^n - x_i\}$

- The Lee distance $d_L(\boldsymbol{x}, \boldsymbol{y})$ is given by $d_L(\boldsymbol{x}, \boldsymbol{y}) = w_L(\boldsymbol{x} \boldsymbol{y}).$
- The minimum Lee weight of the code C is $\min_{\substack{c \in C \\ c \neq 0}} (w_L(c)).$
- The vector $\boldsymbol{x} * \boldsymbol{y} = (x_1y_1, x_2y_2, ..., x_Ny_N)$ is a componentwise product of the vectors \boldsymbol{x} and \boldsymbol{y} .

Reed-Muller codes over Galois rings $GR(2^n, s)$

We put $q = 2^n$ and $N = 2^s - 1$.

Definition 3. We let

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & \xi & \xi^2 & \cdots & \xi^{N-1} \end{pmatrix} = \begin{pmatrix} 1 \\ g_1 \\ g_2 \\ \vdots \\ g_s \end{pmatrix}$$

where each element in the second row of G is assumed to be an s-tuples over Z_q , and g_i , $1 \le i \le s$ is the row vector and 1 is the all one vector. The rth order Reed-Muller code $Z_q RM(r, s)$ of length 2^s is the code generated by all tuples of the form

$$oldsymbol{g}_1^{i_1} st oldsymbol{g}_2^{i_2} st \cdots st oldsymbol{g}_s^{i_s}$$

such that $i_j = 0, 1$, $\sum_{j=1}^s i_j \leq r$ and $\boldsymbol{g}_j^0 = \boldsymbol{1}$.

Properties of Reed-Muller code $Z_q RM(r, s)$

We have the following results easily.

•
$$\left| Z_q RM(r,s) \right| = q^k, \ k = \sum_{l=0}^r \begin{pmatrix} s \\ l \end{pmatrix}$$

- $Z_q RM(r,s) \subset Z_q RM(r+1,s), \ r < s$
- For q=2, $Z_2RM(r,s)=RM(r,s)$
- If $q \leq 2^s$, then $Z_q RM(r,s)^{\perp} = Z_q RM(s-r-1,s)$

An embedding system of $Z_q RM(r, s)$

Theorem 5.
$$Z_q RM(r, s)$$

$$= \bigcup_{e_0, e_1, \cdots, e_{k-1} \in Z_2} \left(2Z_{\frac{q}{2}} RM(r, s) + e_0 \mathbf{1} + e_1 g_1 + \cdots + e_m g_s + e_{s+1} g_1 * g_2 + \cdots + e_{k-1} g_{s-r+1} * g_{s-r+2} * \cdots * g_s \right)$$

 $Z_{\frac{q}{2}}RM(r,s)$ is embedded in the ideal part of $Z_{q}RM(r,s)$.

The minimum weights of $Z_q RM(r,s)$

Theorem 6. The minimum Hamming weight of $Z_q RM(r,s)$ is 2^{s-r} .

Theorem 7. Assume that $q \ge 8$. The minimum Lee weight of $Z_q RM(1, s)$ is 2^s except for q = 8 and s = 3. The vector 1 and -1 have Lee weight of 2^s . The minimum Lee weight of $Z_8 RM(1, 3)$ is 6.

Theorem 7 is proved by the estimate of the character sum over $GR(2^n, s)$.

Thank you for your attention.