Two results on planar functions

Alexander Pott
(Gohar Kyureghyan, Yue Zhou, Ferruh Özbudak)
Otto-von-Guericke-University Magdeburg

Basic definitions (part 1)

$F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{n}$ is quadratic if

$$
F(x+a)-F(x)-F(a)+F(0)
$$

is linear for all a.
Example. $F(x)=x^{2}$ for any $p, F(x)=x^{4}$ for $p=3$:

$$
(x+a)^{4}-x^{4}-a^{4}=x^{3} a-a^{3} x
$$

Basic definitions (part 1)

$F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{n}$ is quadratic if

$$
F(x+a)-F(x)-F(a)+F(0)
$$

is linear for all a.
Example. $F(x)=x^{2}$ for any $p, F(x)=x^{4}$ for $p=3$:

$$
(x+a)^{4}-x^{4}-a^{4}=x^{3} a-a^{3} x
$$

$F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{n}$ is planar or perfect nonlinear $(P N)$ if

$$
F(x+a)-F(x)
$$

is a permutation for all $a \neq 0$.
Example. $F(x)=x^{2}, p$ odd:

$$
(x+a)^{2}-x^{2}=2 x a+a^{2}
$$

Basic definitions (part 2)

Remark. No planar functions $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$:

$$
F(x+a)+F(x)=F((x+a)+a)+F(x+a)
$$

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is almost perfect nonlinear $(A P N)$ if

$$
F(x+a)-F(x)
$$

is $2--1$ for all $a \neq 0$.
Important remark. Quadratic is not invariant under equivalence.

Examples on \mathbb{F}_{p}^{n}

APN: many power mappings, for instance $x^{2^{k}+1}$ (quadratic, GoLD) and $x^{2^{2 k}-2^{k}+1}$ (non quadratic, KASAMI): $\operatorname{gcd}(n, k)=1$.

PN: many power mappings, for instance x^{2} or $x^{p^{k}+1}$:
$n / \operatorname{gcd}(n, k)$ odd (quadratic).

Examples on \mathbb{F}_{p}^{n}

APN: many power mappings, for instance $x^{2^{k}+1}$ (quadratic, GoLD) and $x^{2^{2 k}-2^{k}+1}$ (non quadratic, KASAMI): $\operatorname{gcd}(n, k)=1$.

PN: many power mappings, for instance x^{2} or $x^{p^{k}+1}$: $n / \operatorname{gcd}(n, k)$ odd (quadratic).

Proof method. (quadratic) Check kernel of $F(x+a)-F(x)-F(a)+F(0)$, for instance for $x^{p^{k}+1}$:

$$
(x+a)^{p^{k}+1}-x^{p^{k}+1}-a^{p^{\kappa}+1}=x^{p^{k}} a+a^{p^{k}} x=a^{p^{k}} \cdot\left(y^{p^{k}}+y\right)
$$

Condition: $y^{p^{k}-1}=-1$.

What is known and what we want to know

	quadratic	not quadratic
APN		
PN		

What is known and what we want to know

	quadratic	not quadratic
APN	very many	
PN		

- Edel, Kyureghyan, P. (2006), then many authors, for instance Budaghyan, Carlet, Leander, Bracken, Markin, McGuire

What is known and what we want to know

	quadratic	not quadratic
APN	very many	
PN	many	

- Edel, Kyureghyan, P. (2006), then many authors, for instance Budaghyan, Carlet, Leander, Bracken, Markin, McGuire
- Albert, Dixon(classical), Bierbrauer, Zha, Kyureghyan, Wang, G. Weng (more recent)

What is known and what we want to know

	quadratic	not quadratic
APN	very many	
PN	many	only 1

- Edel, Kyureghyan, P. (2006), then many authors, for instance Budaghyan, Carlet, Leander, Bracken, Markin, McGuire
- Albert, Dixon(classical), Bierbrauer, Zha, Kyureghyan, Wang, G. Weng (more recent)
- Coulter, Matthews (1998)

What is known and what we want to know

	quadratic	not quadratic
APN	very many	only a few, one sporadic
PN	many	only 1

- Edel, Kyureghyan, P. (2006), then many authors, for instance Budaghyan, Carlet, Leander, Bracken, Markin, McGuire
- Albert, Dixon(classical), Bierbrauer, Zha, Kyureghyan, Wang, G. Weng (more recent)
- Coulter, Matthews (1998)
- Welch, Kasami (classical), Edel, P. (2009)

What is known and what we want to know

	quadratic	not quadratic
APN	very many	only a few, one sporadic
PN	many	only 1

- Edel, Kyureghyan, P. (2006), then many authors, for instance Budaghyan, Carlet, Leander, Bracken, Markin, McGuire
- Albert, Dixon(classical), Bierbrauer, Zha, Kyureghyan, Wang, G. Weng (more recent)
- Coulter, Matthews (1998)
- Welch, Kasami (classical), Edel, P. (2009)

	quadratic	not quadratic
APN	exponentially many	many
PN	very many	more than 1?

Permutation APN if n even

- F quadratic: no permutation.
- There is only one permutation APN known! It has $n=6$ and is equivalent to a quadratic function. Remember: Quadratic is not invariant under equivalence.
- Browning, Dillon, McQuistan, Wolfe 2010
- Are there more?
- Related to rowspace (code) of

$$
\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\cdots & x & \cdots \\
\cdots & F(x) & \cdots
\end{array}\right)_{x \in \mathbb{F}_{2}^{n}} .
$$

The graph of a planar function $F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$

The graph

$$
G_{F}:=\left\{(x, F(x)): x \in \mathbb{F}_{q}\right\}
$$

and its shifts (translates)

$$
G_{F}+(a, b):=\left\{(x+a, F(x)+b): x \in \mathbb{F}_{q}\right\} .
$$

The graph of a planar function $F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$

The graph

$$
G_{F}:=\left\{(x, F(x)): x \in \mathbb{F}_{q}\right\}
$$

and its shifts (translates)

$$
G_{F}+(a, b):=\left\{(x+a, F(x)+b): x \in \mathbb{F}_{q}\right\} .
$$

F planar, then

$$
\sharp G_{F} \cap\left[G_{F}+(a, b)\right]=1,
$$

F APN, then

$$
\sharp G_{F} \cap\left[G_{F}+(a, b)\right]=0 / 2
$$

for all $a, b \in \mathbb{F}_{p}^{n}, a \neq 0$.
All the information is in the graph.

Projective plane

Let G, H be groups. $F: G \rightarrow H$ is planar if $F(x+a)-F(x)$ is bijective G to H.

- points: elements in $G \times H$
- lines: $G_{F}+(a, b)$

This is a projective plane (minus one parallel class and line at infinity) if and only if F is planar.
$F(x)=x^{2}$: Desarguesian plane.
Replace G_{F} by any subset of any group?

Semifields

- F quadratic planar function on \mathbb{F}_{q} with $F(0)=0$, then

$$
x * y:=\frac{F(x+y)-F(x)-F(y)}{2}
$$

defines a pre-semifield (field without associativity of multiplication and without identity).

- Additive structure of a semifield: elementary-abelian.
- New multiplication (with identity): $x \cdot y:=x^{\prime} * y^{\prime}$ with $a * x^{\prime}=x, a * y^{\prime}=y$, then $(a * a) \cdot y=y$ (semifield: field without associativity).
- Any commutative pre-semifield $*$ defines planar function

$$
F(x):=x * x
$$

Isomorphism

- Semifield planes: Translation planes plus.

Question. Isomorphism of the plane on the level of semifields/planar functions?

Hope. Planes are isomorphic if and only if the planar functions are equivalent or isomorphic.

Equivalence for planar functions/semifields

- Functions F and F^{\prime} are equivalent if a linear mapping \mathcal{L} maps G_{F} to $G_{F^{\prime}}+(a, b)$ (equivalence concept for difference sets!)
- Semifields with multiplication $*$ and \odot are isotopic if

$$
\mathcal{L}(x) * \mathcal{M}(y)=\mathcal{N}(x \odot y)
$$

for linear bijective mappings $\mathcal{L}, \mathcal{M}, \mathcal{N}$ on \mathbb{F}_{p}^{n}.

Equivalence for planar functions/semifields

- Functions F and F^{\prime} are equivalent if a linear mapping \mathcal{L} maps G_{F} to $G_{F^{\prime}}+(a, b)$ (equivalence concept for difference sets!)
- Semifields with multiplication $*$ and \odot are isotopic if

$$
\mathcal{L}(x) * \mathcal{M}(y)=\mathcal{N}(x \odot y)
$$

for linear bijective mappings $\mathcal{L}, \mathcal{M}, \mathcal{N}$ on \mathbb{F}_{p}^{n}.
Theorem. Semifield planes are isotopic if and only if the planes are isomorphic (AlBERT).

Theorem. For n odd, planar functions on \mathbb{F}_{p}^{n} are isomorphic if and only if the functions are equivalent Coulter, Henderson. If n is even, there are counterexamples Zhou, P., Polverino, Marino.

Relative difference sets

Isotopism does not preserve commutativity! But planar functions only exist for commutative semifields!

Alternative. Γ group of order $m \cdot n, N$ normal subgroup of order $m, R \subset \Gamma,|R|=n$ is a

$$
\begin{gathered}
\left(n, m, n, \frac{n}{m}\right) \text {-relative difference set }(R D S) \text { if } \\
r-r^{\prime}=g, \quad r, r^{\prime} \in R
\end{gathered}
$$

has $\frac{n}{m}$ solutions for $g \in G \backslash N$, and no solution if $g \in N \backslash\{0\}$.
Example. F planar, then G_{F} is an RDS in $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{n}$ relative to $\{0\} \times \mathbb{F}_{p}^{n}$.

Some notes

- Non-commutative semifields give non-abelian RDS's.
- Planar functions (abelian relative difference sets) may be a good way to construct semifields, but perhaps not the best.
- But planar functions or their non-Abelian analogue may be used to construct planes which are not semifield planes Coulter, Matthews 1998:

$$
x^{\frac{3^{k}+1}{2}} \text { on } \mathbb{F}_{3^{n}}
$$

- Interesting: Image sets of planar functions! (see Qiang's talk)

Characteristic 2: Planarity generalization

... almost perfect nonlinear ... NO plane, but semibiplane
Semifields and relative difference sets can be generalized!
Analogue of planar function is RDS in

$$
\mathbb{Z}_{4} \times \ldots, \times \mathbb{Z}_{4}
$$

relative to

$$
\mathbb{Z}_{2} \times \ldots, \times \mathbb{Z}_{2}
$$

Example. $\{(0,0),(0,1),(1,0),(3,3)\} \subset \mathbb{Z}_{4} \times \mathbb{Z}_{4}$.

- Semifields give RDS's.
- There are many commutative ones: KANTOR.

Connections

Planar functions are related to

- almost perfect nonlinear functions
- relative difference sets in \mathbb{Z}_{4}^{n} (semifields)

Connections between these items:

- PN vs. APN: Kyureghyan, Bierbrauer.
- APN vs. semifields: duality (KNUTH cube), non-Abelian difference set analogue (P.), KANTOR for APN?

New functions: Local change

$$
F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{n}, \quad F=\left(\begin{array}{c}
F_{1} \\
\vdots \\
F_{n}
\end{array}\right)
$$

- change one (or more) coordinate functions F_{i}. Budaghyan, Carlet, P., Edel, Dillon if $p=2$.
- Similarly: Permutation polynomials.
- Planar: Zhou, P.

Get away from finite fields

- PN (or planar) and APN are properties just of the additive group of a vector space.
- p odd, then F_{i} are bent: $F_{i}(x+a)-F_{i}(x)=b$ has p^{n-1} solutions.
- Millions of bent functions, try to combine?
- All F_{i} bent does not imply planarity: Also linear combinations must be bent!

A compromise

Decomposition

$$
\mathbb{F}_{p^{2 m}}=\mathbb{F}_{p^{m}} \times \mathbb{F}_{p^{m}}
$$

used in bent functions, APN (Carlet), PN (Bierbrauer):

$$
F(x)=\binom{F_{1}(x)}{F_{2}(x)}
$$

where $F_{1}, F_{2}: \mathbb{F}_{p^{m}} \rightarrow \mathbb{F}_{p^{m}}$.
Choices for F_{1}, F_{2} :

- F_{1}, F_{2} : Projections from planar functions
- $\left(x, F_{1}(x)\right)$ is a $\left(p^{2 m}, p^{m}, p^{2 m}, p^{m}\right)$-relative difference set.

Our (P., ZHOU) contribution

Theorem. Let m, k be positive integers, such that $\frac{m}{\operatorname{gcd}(m, k)}$ is odd. Define $x \circ_{k} y=x^{p^{k}} y+y^{p^{k}} x$. For elements $a, b \in \mathbb{F}_{p^{2 m}}$, define

$$
F(a, b):=\left(a \circ_{k} a+u\left(b \circ_{k} b\right)^{\sigma}, 2 a b\right),
$$

where u is a non-square element in $\mathbb{F}_{p^{m}}$ and $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{p^{m}}\right)$. Then F is planar.

An interesting note

Theorem. Let $\psi: \mathbb{F}_{p^{m}} \rightarrow \mathbb{F}_{p^{m}}$ be any permutation, and let $\varphi_{1}, \varphi_{2}: \mathbb{F}_{p^{m}} \rightarrow \mathbb{F}_{p^{m}}$ be arbitrary functions. Then the mapping

$$
\begin{aligned}
f: & \mathbb{F}_{p^{m}}^{2}
\end{aligned} \rightarrow \begin{array}{cc}
\mathbb{F}_{p^{m}}^{2} \\
\binom{x}{y} & \mapsto
\end{array}\binom{x^{2}+\varphi_{1}(y)}{2 x \cdot \psi(y)+\varphi_{2}(y)} .
$$

is planar if and only if

$$
\begin{aligned}
g: \mathbb{F}_{p^{m}} & \rightarrow \\
y & \mapsto-u^{2} \cdot \psi^{2}(y)+u \cdot w \cdot \psi(y)+\varphi_{1}(y)+u \cdot \varphi_{2}(y)
\end{aligned}
$$

is planar for all $u, w \in \mathbb{F}_{p^{m}}$.
Proof uses character theory (Gaussian sums).

$x^{q^{2}+q}+u x^{2}$ on $\mathbb{F}_{q^{3}}, q \equiv 1 \bmod 3$

- Planar monomials: Do not expect more examples.
- Binomials: May be useful in the "subfield" construction.
- Related to the existence of nontrivial solution of

$$
x^{q^{2}-1}+x^{q-1}+2 u y^{3(q-1)}
$$

- No planar function if $q \not \equiv 1 \bmod 3$

Theorem and Conjecture (P., Kyureghyan, Özbudak

G subgroup of \mathbb{F}_{q}^{3} of order $q^{2}+q+1, H<G,|H|=\frac{1}{3}|G|$.
Theorem. $F_{u}=x^{q^{2}-1}+x^{q-1}+2 u y^{3(q-1)}$ is planar if
$\alpha \in-(G \backslash H)$ or $u \in \frac{1}{2}(G \backslash H)$.
Conjecture. That's all.
We also determined for many u the number of solutions of $x^{q^{2}-1}+x^{q-1}+2 u y^{3(q-1)}$

Conclusions

- Planar functions are related to APN functions and to semifields of even characteristic. Is there a nice connection between semifields and APN functions?
- Find families of planar/APN functions using
- KANTOR for semifields of even characteristic.
- subfields
- coordinate functions
- ???
- Characterize monomials/binomials which are planar/APN.
- Find more nonquadratic examples.

