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Basic definitions (part 1)
F : F n

p → F n
p is quadratic if

F (x + a)− F (x)− F (a) + F (0)

is linear for all a.
Example. F (x) = x2 for any p, F (x) = x4 for p = 3:

(x + a)4 − x4 − a4 = x3a− a3x .

F : F n
p → F n

p is planar or perfect nonlinear (PN ) if

F (x + a)− F (x)

is a permutation for all a 6= 0.
Example. F (x) = x2, p odd:

(x + a)2 − x2 = 2xa + a2
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Basic definitions (part 2)

Remark. No planar functions F : F n
2 → F n

2 :

F (x + a) + F (x) = F ((x + a) + a) + F (x + a)

F : F n
2 → F n

2 is almost perfect nonlinear (APN ) if

F (x + a)− F (x)

is 2−−1 for all a 6= 0.

Important remark. Quadratic is not invariant under
equivalence.
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Examples on F n
p

APN: many power mappings, for instance x2k+1 (quadratic,
GOLD) and x22k−2k+1 (non quadratic, KASAMI): gcd(n, k) = 1.

PN: many power mappings, for instance x2 or xpk+1:
n/gcd(n, k) odd (quadratic).

Proof method. (quadratic) Check kernel of
F (x + a)− F (x)− F (a) + F (0), for instance for xpk+1:

(x + a)pk+1 − xpk+1 − apk+1 = xpk
a + apk

x = apk · (ypk
+ y)

Condition: ypk−1 = −1.
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What is known and what we want to know

quadratic not quadratic
APN

very many only a few, one sporadic

PN

many only 1

I EDEL, KYUREGHYAN, P. (2006), then many authors, for
instance BUDAGHYAN, CARLET, LEANDER, BRACKEN,
MARKIN, MCGUIRE

I ALBERT, DIXON(classical), BIERBRAUER, ZHA,
KYUREGHYAN, WANG, G. WENG (more recent)

I COULTER, MATTHEWS (1998)
I WELCH, KASAMI (classical), EDEL, P. (2009)

quadratic not quadratic
APN exponentially many many
PN very many more than 1?
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Permutation APN if n even

I F quadratic: no permutation.
I There is only one permutation APN known! It has n = 6

and is equivalent to a quadratic function. Remember:
Quadratic is not invariant under equivalence.

I BROWNING, DILLON, MCQUISTAN, WOLFE 2010
I Are there more?
I Related to rowspace (code) of 1 · · · 1

· · · x · · ·
· · · F (x) · · ·


x∈F n

2

.
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The graph of a planar function F : Fq → Fq

The graph
GF := {(x ,F (x)) : x ∈ Fq}

and its shifts (translates)

GF + (a,b) := {(x + a,F (x) + b) : x ∈ Fq}.

F planar, then
] GF ∩ [GF + (a,b)] = 1,

F APN, then
] GF ∩ [GF + (a,b)] = 0/2

for all a,b ∈ F n
p , a 6= 0.

All the information is in the graph.
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Projective plane

Let G,H be groups. F : G→ H is planar if F (x + a)− F (x) is
bijective G to H.

I points: elements in G × H
I lines: GF + (a,b)

This is a projective plane (minus one parallel class and line at
infinity) if and only if F is planar.

F (x) = x2: Desarguesian plane.

Replace GF by any subset of any group?
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Semifields

I F quadratic planar function on Fq with F (0) = 0, then

x ∗ y :=
F (x + y)− F (x)− F (y)

2

defines a pre-semifield (field without associativity of
multiplication and without identity).

I Additive structure of a semifield: elementary-abelian.
I New multiplication (with identity): x · y := x ′ ∗ y ′ with

a ∗ x ′ = x , a ∗ y ′ = y , then (a ∗ a) · y = y (semifield: field
without associativity).

I Any commutative pre-semifield ∗ defines planar function

F (x) := x ∗ x .
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Isomorphism

I Semifield planes: Translation planes plus.

Question. Isomorphism of the plane on the level of
semifields/planar functions?

Hope. Planes are isomorphic if and only if the planar functions
are equivalent or isomorphic.
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Equivalence for planar functions/semifields

I Functions F and F ′ are equivalent if a linear mapping L
maps GF to GF ′ + (a,b) (equivalence concept for
difference sets!)

I Semifields with multiplication ∗ and � are isotopic if

L(x) ∗M(y) = N (x � y)

for linear bijective mappings L,M,N on F n
p .

Theorem. Semifield planes are isotopic if and only if the planes
are isomorphic (ALBERT).

Theorem. For n odd, planar functions on F n
p are isomorphic if

and only if the functions are equivalent COULTER, HENDERSON.
If n is even, there are counterexamples ZHOU, P., POLVERINO,
MARINO.
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Relative difference sets

Isotopism does not preserve commutativity! But planar
functions only exist for commutative semifields!

Alternative. Γ group of order m · n , N normal subgroup of
order m, R ⊂ Γ, |R| = n is a

(n,m,n,
n
m

) -relative difference set (RDS ) if

r − r ′ = g, r , r ′ ∈ R

has n
m solutions for g ∈ G \ N, and no solution if g ∈ N \ {0}.

Example. F planar, then GF is an RDS in F n
p × F n

p relative to
{0} × F n

p .
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Some notes

I Non-commutative semifields give non-abelian RDS’s.
I Planar functions (abelian relative difference sets) may be a

good way to construct semifields, but perhaps not the best.
I But planar functions or their non-Abelian analogue may be

used to construct planes which are not semifield planes
COULTER, MATTHEWS 1998:

x
3k +1

2 on F3n

I Interesting: Image sets of planar functions! (see Qiang’s
talk)

No. 13



Characteristic 2: Planarity generalization

... almost perfect nonlinear ... NO plane, but semibiplane

Semifields and relative difference sets can be generalized!

Analogue of planar function is RDS in

Z4 × . . . ,×Z4

relative to
Z2 × . . . ,×Z2.

Example. {(0,0), (0,1), (1,0), (3,3)} ⊂ Z4 × Z4.

I Semifields give RDS’s.
I There are many commutative ones: KANTOR.
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Connections

Planar functions are related to
I almost perfect nonlinear functions
I relative difference sets in Z n

4 (semifields)
Connections between these items:

I PN vs. APN: KYUREGHYAN, BIERBRAUER.
I APN vs. semifields: duality (KNUTH cube), non-Abelian

difference set analogue (P.), KANTOR for APN?
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New functions: Local change

F : F n
p → F n

p , F =

F1
...

Fn


I change one (or more) coordinate functions Fi .

BUDAGHYAN, CARLET, P., EDEL, DILLON if p = 2.
I Similarly: Permutation polynomials.
I Planar: ZHOU, P.
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Get away from finite fields

I PN (or planar) and APN are properties just of the additive
group of a vector space.

I p odd, then Fi are bent: Fi(x + a)− Fi(x) = b has pn−1

solutions.
I Millions of bent functions, try to combine?
I All Fi bent does not imply planarity: Also linear

combinations must be bent!
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A compromise

Decomposition
Fp2m = Fpm × Fpm

used in bent functions, APN (CARLET), PN (BIERBRAUER):

F (x) =

(
F1(x)
F2(x)

)
,

where F1,F2 : Fpm → Fpm .

Choices for F1,F2:
I F1,F2: Projections from planar functions
I (x ,F1(x)) is a (p2m,pm,p2m,pm)-relative difference set.
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Our (P., ZHOU) contribution

Theorem. Let m, k be positive integers, such that m
gcd(m,k) is

odd. Define x ◦k y = xpk
y + ypk

x . For elements a,b ∈ Fp2m ,
define

F (a,b) := (a ◦k a + u(b ◦k b)σ,2ab),

where u is a non-square element in Fpm and σ ∈ Aut(Fpm ).
Then F is planar.
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An interesting note

Theorem. Let ψ : Fpm → Fpm be any permutation, and let
ϕ1, ϕ2 : Fpm → Fpm be arbitrary functions. Then the mapping

f : F 2
pm → F 2

pm(
x
y

)
7→

(
x2 + ϕ1(y)

2x · ψ(y) + ϕ2(y)

)
is planar if and only if

g : Fpm → Fpm

y 7→ −u2 · ψ2(y) + u · w · ψ(y) + ϕ1(y) + u · ϕ2(y)

is planar for all u,w ∈ Fpm .

Proof uses character theory (Gaussian sums).
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xq2+q + ux2 on Fq3, q ≡ 1 mod 3

I Planar monomials: Do not expect more examples.
I Binomials: May be useful in the “subfield” construction.
I Related to the existence of nontrivial solution of

xq2−1 + xq−1 + 2uy3(q−1)

I No planar function if q 6≡ 1 mod 3
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Theorem and Conjecture (P., KYUREGHYAN,
ÖZBUDAK

G subgroup of F 3
q of order q2 + q + 1, H < G, |H| = 1

3 |G|.

Theorem. Fu = xq2−1 + xq−1 + 2uy3(q−1) is planar if
α ∈ −(G \ H) or u ∈ 1

2(G \ H).

Conjecture. That’s all.

We also determined for many u the number of solutions of
xq2−1 + xq−1 + 2uy3(q−1)
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Conclusions

I Planar functions are related to APN functions and to
semifields of even characteristic. Is there a nice connection
between semifields and APN functions?

I Find families of planar/APN functions using
I KANTOR for semifields of even characteristic.
I subfields
I coordinate functions
I ???

I Characterize monomials/binomials which are planar/APN.
I Find more nonquadratic examples.
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