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Strongly Regular Graphs

A strongly regular graph srg (v , k , λ, µ) is a graph with v vertices
that is regular of valency k and that has the following properties:

I For any two adjacent vertices x , y , there are exactly λ vertices
adjacent to both x and y .

I For any two nonadjacent vertices x , y , there are exactly µ
vertices adjacent to both x and y .

Classical examples of strongly regular graphs include the Paley
graphs. Let q = 4t + 1 be a prime power. The Paley graph P(q) is
the graph with the finite field Fq as vertex set, where two vertices
are adjacent when they differ by a (nonzero) square. It is strongly
regular with parameters (4t + 1, 2t, t − 1, t).



Theorem. For a simple graph Γ of order v , not complete or
edgeless, with adjacency matrix A, the following are equivalent:

I Γ is strongly regular with parameters (v , k, λ, µ) for certain
integers k , λ, µ,

I A2 = kI + λA+ µ(J − I − A) for certain real numbers k, λ, µ,

I A has precisely two distinct restricted eigenvalues.

Strongly regular graphs are closely related to two-weight codes,
two-intersection sets in finite geometry, and partial difference sets.
See the survey papers by Calderbank and Kantor (1986) and S. L.
Ma (1994).



Cyclotomy

Let q = pf be a prime power, and let γ be a fixed primitive
element of Fq. Let N > 1 be a divisor of q − 1. We define the Nth
cyclotomic classes C0,C1, . . . ,CN−1 by

Ci = {γjN+i | 0 ≤ j ≤ q − 1

N
− 1},

where 0 ≤ i ≤ N − 1.

Let ψ be the additive character of Fq defined by

ψ(x) = ξ
Traceq/p(x)
p . The Nth cyclotomic periods (aka Gauss

periods) are defined by

ηi =
∑
x∈Ci

ψ(x),

where 0 ≤ i ≤ N − 1.



Cyclotomic Strongly Regular Graphs

Let D ⊂ Fpf be such that −D = D and 0 ̸∈ D.

Γ := Cay(Fpf ,D)

The vertex set of Γ is Fpf , and two vertices are joined by an edge if
their difference belongs to D. The subset D is usually called the
“connection” set of Γ.

When D = C0 is a subgroup of the multiplicative group F∗
pf

of Fpf ,

and if Γ = Cay(Fpf ,C0) is strongly regular, then we speak of a
cyclotomic strongly regular graph.



Let D ⊂ Fpf be such that −D = D and 0 ̸∈ D. The restricted
eigenvalues of Cay(Fpf ,D) are exactly

ψa(D) :=
∑
d∈D

ψa(d),

where ψa run through all nontrivial additive characters of Fpf .

There is a nonabelian (but central) version of this result, usually
attributed to Babai (1979), Diaconis and Shahshanhani (1981).

Theorem. Let G be a finite group and D ⊂ G be such that
{d−1 | d ∈ D} = D and 1 ̸∈ D. Assume that D is stable under
conjugation (that is, D is a union of conjugacy classes of G ). Then
the restricted eigenvalues of Cay(G ,D) are given by

λχ =
1

χ(1)

∑
d∈D

χ(d),

where χ range over all nontrivial irreducible characters of G .
Moroever, the multiplicity of λχ is χ(1)2.



Problem. Assume that −C0 = C0. Determine for which p, f ,N
the Cayley graph Cay(Fq,C0) is strongly regular. Equivalently,
determine for which p, f ,N the Nth cyclotomic periods ηi ,
0 ≤ i ≤ N − 1, take only TWO distinct values.



An old theorem, due to Stickelberger (around 1890), gives us a
sufficient condition that ensures |{ηa : 0 ≤ a ≤ N − 1}| = 2.

Theorem. (uniform cyclotomy or pure Gauss sums)
Let p be a prime, N ≥ 2, q = p2ts , where s ≥ 1, N|(pt + 1) and t
is the smallest such positive integer. Then the cyclotomic periods
are given by
Case A. If s, p, pt+1

N are all odd, then

ηN/2 =
√
q −

√
q + 1

N
, ηi = −

1 +
√
q

N
, for all i ̸= N

2
.

Case B. In all the other cases,

η0 = −(−1)s
√
q+

(−1)s
√
q − 1

N
, ηi =

(−1)s
√
q − 1

N
, for all i ̸= 0.



Conjecture. (Schmidt and White, 2002) Let Fpf be the finite field

of size pf , N|(pf − 1), and let C0 be the subgroup of Fpf of index
N. Assume that −C0 = C0. If Cay(Fpf ,C0) is an SRG, then one
of the following holds:

I (subfield case) C0 = F∗
pe , where e|f ,

I (semi-primitive case or self-conjugate case) There exists a
positive integer t such that pt ≡ −1 (mod N),

I (exceptional case) Eleven “sporadic” examples.



A Example of De Lange

In some situations, while a single cyclotomic coset does not give
rise to a strongly regular Cayley graph, a union of several
cyclotomic cosets can give rise to an SRG.

Example 1 (De Lange, 1995) Let p = 2, f = 12, N = 45. Then

C0 ∪ C5 ∪ C10

gives rise to an SRG, while C0 does not. (See Munemasa’s talk
also.)

“Example c is interesting: it can be viewed as a graph with vertex
set F3

q for q = 16 such that each vertex has a unique neighbour in
each of the q2 + q + 1 = 273 directions. Probably some
generalization is possible.”



Examples of Ikuta and Munemasa

Example 2 (Ikuta and Munemasa, 2008) Let p = 2, f = 20,
N = 75. Then

C0 ∪ C3 ∪ C6 ∪ C9 ∪ C12

gives rise to an SRG, while C0 does not.

Example 3 (Ikuta and Munemasa, 2008) Let p = 2, f = 21,
N = 49. Then

C0 ∪ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6

gives rise to an SRG, while C0 does not.



New infinite families of SRG

We will generalize each of the above three examples into an
infinite family. Moreover we obtain nine more infinite families of
new SRG by using union of cyclotomic classes.

I p = 2, N = 3m · 5, f = ϕ(N)/2 = 3m−1 · 4.
I p = 2, N = 5m · 3, f = ϕ(N)/2 = 5m−1 · 4.
I p = 2, N = 7m, f = ϕ(N)/2 = 7m−1 · 3.



New infinite families of SRG, continued

I p = 3, p1 = 107, N = pm1 , f = ϕ(N)/2 = 53 · 107m−1.

I p = 5, p1 = 19, N = pm1 , f = ϕ(N)/2 = 9 · 19m−1.

I p = 5, p1 = 499, N = pm1 , f = ϕ(N)/2 = 249 · 499m−1.

I p = 17, p1 = 67, N = pm1 , f = ϕ(N)/2 = 33 · 67m−1.

I p = 41, p1 = 163, N = pm1 , f = ϕ(N)/2 = 81 · 163m−1.

I p = 3, p1 = 5, p2 = 7, N = 5m · 7, f = ϕ(N)/2 = 12 · 5m−1.

I p = 3, p1 = 7, p2 = 5, N = 7m · 5, f = ϕ(N)/2 = 12 · 7m−1.

I p = 3, p1 = 17, p2 = 19, N = 17m · 19,
f = ϕ(N)/2 = 144 · 17m−1.

I p = 3, p1 = 19, p2 = 17, N = 19m · 17,
f = ϕ(N)/2 = 144 · 19m−1.



Gauss sums

Let p be a prime, f a positive integer, and q = pf . Let ξp be a
fixed complex primitive pth root of unity and let Traceq/p be the
trace from Fq to Z/pZ. Define

ψ : Fq → C∗, ψ(x) = ξ
Traceq/p(x)
p ,

which is a nontrivial character of the additive group of Fq. Let

χ : F∗
q → C∗

be a character of F∗
q. We define the Gauss sum by

g(χ) =
∑
a∈F∗

q

χ(a)ψ(a).



Gauss sums can be viewed as the Fourier coefficients in the Fourier
expansion of ψ|F∗

q
in terms of the multiplicative characters of Fq.

That is, for every c ∈ F∗
q,

ψ(c) =
1

q − 1

∑
χ∈F̂∗

q

g(χ̄)χ(c),

where χ̄ = χ−1 and F̂∗
q denotes the character group of F∗

q.



Relationship between Gauss sums and cyclotomic periods

ηa =
∑
c∈Ca

ψ(c) =
1

N

∑
x∈F∗

q

ψ(γaxN)

=
1

N

∑
x∈F∗

q

1

q − 1

∑
χ∈F̂∗

q

g(χ̄)χ(γaxN)

=
1

(q − 1)N

∑
χ∈F̂∗

q

g(χ̄)χ(γa)
∑
x∈F∗

q

χ(xN)

=
1

N

∑
χ∈C⊥

0

g(χ̄)χ(γa)

where C⊥
0 is the subgroup of F̂∗

q consisting of all χ which are trivial
on C0 (i.e., the unique subgroup of order N). This shows that
cyclotomic periods are linear combinations of Gauss sums, with
coefficients being (complex) Nth roots of unity.



Pure Gauss sums

Theorem (Stickelberger, 1890)
Let p be a prime, and m > 2 be an integer. Suppose that there is
a positive integer t such that pt ≡ −1 (mod m), with t chosen
minimal. Let χ be a character of order m of F∗

pf
for some positive

integer f . Then f = 2ts for some positive integer s, and

p−f /2g(χ) =

{
(−1)s−1, if p = 2,

(−1)s−1+ (pt+1)s
m , if p > 2.



Index 2 Gauss sums

The index 2 case ([(Z/NZ)∗ : ⟨p⟩] = 2) was studied by Baumert,
McEliece, Mykkeltveit (1970’s), Van der Vlugt (1995), Langevin
(1997), Mbodj (1998), Meijer and Van der Vlugt (2003), and more
recently by Yang and Xia (2010). We give a sample theorem below.



Theorem (Langevin, 1997)
Let N = pm1 , where p1 is a prime such that p1 > 3 and p1 ≡ 3
(mod 4). Let p be a prime such that [(Z/NZ)∗ : ⟨p⟩] = 2 (that is,
f := ordN(p) = ϕ(N)/2) and let q = pf . Let χ be a multiplicative
character of order N of Fq, and h be the class number of
Q(

√
−p1). Then the Gauss sum g(χ) over Fq is determined up to

complex conjugation by

g(χ) =
b + c

√
−p1

2
ph0 ,

where

1. h0 =
f−h
2 ,

2. b, c ̸≡ 0 (mod p),

3. b2 + p1c
2 = 4ph,

4. bph0 ≡ −2 (mod p1).



Constructions of SRG by using union of cyclotomic classes

Construction 1. N = pm1

Assume that N = pm1 (here m ≥ 1, p1 > 3 is a prime such that
p1 ≡ 3 (mod 4)), p is a prime such that gcd(N, p) = 1, and
f := ordN(p) = ϕ(N)/2. Let q = pf , and as before let
C0,C1, . . . ,CN−1 be the N-th cyclotomic classes of Fq.

Note that −Ci = Ci for all 0 ≤ i ≤ N − 1 since either 2N|(q − 1)
or q is even. Define

D = ∪pm−1
1 −1

i=0 Ci

Using D as connection set, we construct the Cayley graph
Cay(Fq,D).



Theorem. The Cayley graph Cay(Fq,D) is a regular graph of
valency |D|, and it has at most three distinct restricted eigenvalues.

Sketch of Proof. Let χ be a multiplicative character of Fq of
order N. By the above theorem of Langevin, we have

g(χ̄) =
b + c

√
−p1

2
ph0 , b, c ̸≡ 0 (mod p),

where h0 =
f−h
2 and h is the class number of Q(

√
−p1),

b2 + p1c
2 = 4ph, and bph0 ≡ −2 (mod p1).



The restricted eigenvalues of Cay(Fq,D) can be computed:

ψ(γaD) =

{
ph0b
2 − ph0b

2p1
− 1

p1
,

±ph0c
2 − ph0b

2p1
− 1

p1
,

where 0 ≤ a ≤ N − 1. So Cay(Fq,D) has at most three distinct
restricted eigenvalues.

Corollary. Using the above notation, Cay(Fq,D) is a strongly
regular graph if and only if b, c ∈ {1,−1}.



Therefore the problem of finding SRG using the above corollary
becomes finding primes p, p1 and integer m ≥ 1 such that
N := pm1 , ordN(p) = ϕ(N)/2, and

4ph = 1 + p1,

where h is the class number of Q(
√
−p1).

As an example, choose p = 2, p1 = 7, N = pm1 . One can check
easily that ord72(2) = 21 = ϕ(72)/2. By induction we have that
ordN(2) = ϕ(7m)/2 for all m ≥ 2. The class number h of Q(

√
−7)

is equal to 1. Therefore we indeed have 1+p1
4 = ph in this case.

We obtain a strongly regular Cayley graph Cay(Fq,D), with

v = q = 23·7
m−1

, k = v−1
7 , and with restricted eigenvalues

r = 2h0+2−1
7 , s = −3·2h0−1

7 .



As another example, choose p = 3, p1 = 107, N = pm1 . One can
check that ord1072(3) = 5671 = ϕ(1072)/2. By induction we have
that ordN(3) = ϕ(107m)/2 for all m ≥ 2. The class number h of
Q(

√
−107) is equal to 3. Therefore we indeed have 1+p1

4 = ph in
this case. We obtain a strongly regular Cayley graph Cay(Fq,D),

with v = q = 353·107
m−1

, k = v−1
107 , and with restrictedeigenvalues

r = 53·3h0−1
107 , s = −54·3h0−1

107 .



Construction 2. N = pm1 p2

We assume that N = pm1 p2 (m ≥ 1), p1, p2 are primes such that
{p1 (mod 4), p2 (mod 4)} = {1, 3}, p is a prime such that
gcd(p,N) = 1 and ordpm1 (p) = ϕ(pm1 ) and ordp2(p) = ϕ(p2). It

follows that f := ordN(p) = ϕ(N)/2. Let q = pf , and as before let
C0,C1, . . . ,CN−1 be the N-th cyclotomic classes of Fq.

Note that we have −Ci = Ci for all 0 ≤ i ≤ N − 1 since either
2N|(q − 1) or q is even. Define

D = ∪pm−1
1 −1

i=0 Cip2 .

Using D as connection set, we construct the Cayley graph
Cay(Fq,D).



Theorem. The Cayley graph Cay(Fq,D) is a regular graph of
valency |D|, and it has at most five distinct restricted eigenvalues.

Let χ1 be a character of order pm1 and let χ2 be a character of
order p2 of F∗

q. Then using the evaluations of index 2 Gauss sums
(a theorem by Mbodj from FFTA, 1998), we have

g(χ̄1χ̄2) =
b + c

√
−p1p2
2

ph0 ,

where h0 =
f−h
2 (h is the class number of Q(

√
−p1p2)), b, c ̸≡ 0

(mod p), b2 + p1p2c
2 = 4ph, and bph0 ≡ 2 (mod p1p2).

Corollary. Using the above notation, Cay(Fq,D) is a strongly
regular graph if and only if b, c ∈ {1,−1}, h is even and

p1 = 2ph/2 + (−1)
p1−1

2 b, p2 = 2ph/2 − (−1)
p1−1

2 b.



Example. Let p = 2, p1 = 3, p2 = 5, N = 3m · 5, with m ≥ 1.
One can easily prove by induction that
f := ordN(2) = ϕ(N)/2 = 4 · 3m−1 for all m ≥ 1. The class
number h of Q(

√
−15) is equal to 2. Since 1 + p1p2 = 4ph, we

have b, c ∈ {1,−1}. From bp(p1−1)/2·(p2−1)/2 ≡ 2ph/2

(mod p1p2), we get b = 1. The conditions in the above Corollary
are all satisfied. Therefore we obtain a strongly regular Cayley
graph Cay(Fq,D), with

v = q = 24·3
m−1

, k =
v − 1

15
= 163

m−1−1+163
m−1−2+ · · ·+16+1,

and with restricted eigenvalues r = 2h0+3−1
15 , s = −7·2h0−1

15 , where

h0 =
f−h
2 = 2 · 3m−1 − 1.



Difference Sets

Let G be a multiplicatively written group of order v , and D a
k-subset of G . We say that D is a (v , k, λ) difference set if the
list of “differences” xy−1, x , y ∈ D, x ̸= y contains each
non-identity element of G precisely λ times.

A difference set D in G is said to be Hadamard if the parameters
of D are (4n − 1, 2n − 1, n − 1) or (4n − 1, 2n, n).

A difference set D in a finite group G is called skew Hadamard (or
antisymmetric) if G is the disjoint union of D, D(−1), and {1},
where D(−1) = {d−1 | d ∈ D}.



A classical example: the Paley-Hadamard difference set (1933).

Let q = 4n − 1 be a prime power. Then the set D of nonzero
squares of Fq is a skew Hadamard difference set in the additive
group of Fq.

A generalization using commutative semifields:

Theorem. (Weng, Qiu, Wang and X. 2007) Let (S ,+, ∗) be a
commutative semifield of order q, where q is a prime power. Then
D := {x ∗ x | x ∈ S} \ {0} is a skew Hadamard difference set in
(S ,+) if q ≡ 3 (mod 4), and D is a Paley type PDS if q ≡ 1 (mod
4).



As before, let q = pf , where p is a prime and f a positive integer.
Let γ be a fixed primitive element of Fq and N|(q − 1) with
N > 1. Let C0 = ⟨γN⟩.

The case where N = 4. In this case C0 is a difference set in
(Fq,+) if q = 4t2 + 1, where t is odd.

The case where N = 8. In this case C0 is a difference set in
(Fq,+) if q = 8t2 + 1 = 64u2 + 9, where t and u are both odd.



Conjecture. Let C0 be defined as above. If C0 is a difference set
in (Fq,+), then N is necessarily 2, 4, or 8.

Remarks. (1) This conjecture has been verified up to N = 20.

(2) The truth of the above conjecture implies that the only
flag-transitive projective planes are the Desarguesian ones.



If one uses a union of cyclotomic classes, instead of just one single
class, the only new family of difference sets found in this way is the
Hall sextic difference sets.

The case where N = 6. Let C0 be defined as above, and
Ci = γiC0, 1 ≤ i ≤ 5. Then C0 ∪ C1 ∪ C3 is a difference set in
(Fq,+) if q = 4x2 + 27 is congruent to 1 modulo 6.

One of the reasons that very few difference sets have been
discovered by using unions of cyclotomic classes is that the
investigations often relied on the so-called cyclotomic numbers and
these numbers are in general very difficult to compute if N is large.



Skew Hadamard Difference Sets from Unions of
Cyclotomic Classes

N = 2pm1 , p1 is prime, m ≥ 1

Theorem. (Feng and X. 2011) Let p be a prime, N > 1 and
gcd(p,N) = 1. Assume that f := ordN(p) = ϕ(N)/2 (that is, we
are in the index 2 case), and N = 2pm1 , with p1 ≡ 7 (mod 8). Let
q = pf and Ci be the same as defined before. Let I be any subset
of Z/NZ such that

{i (mod pm1 ) | i ∈ I} = Z/pm1 Z, and D = ∪i∈ICi .

Then D is a skew Hadamard difference set in (Fq,+) if p ≡ 3
(mod 4) and D is a Paley type PDS if p ≡ 1 (mod 4).



Examples

Let p1 = 7, N = 14, p = 11. Then it is routine to check that
ordN(p) = 3 = ϕ(N)/2. Let Ci , 0 ≤ i ≤ 13, be the cyclotomic
classes of order 14 of F113 .

(1) Take I = {0, 1, 2, 3, 4, 5, 6}. Then by the above theorem,
D = C0 ∪ C1 ∪ · · · ∪ C6 is a skew Hadamard difference set in
(F113 ,+). Let Dev(D) denote the symmetric design developed
from the difference set D. One can use a computer to find that
Aut(Dev(D)) has size 5 · 113 · 19.

(2) Take I = {0, 1, 3, 4, 5, 6, 9}. Then
D ′ = C0 ∪ C1 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C9 is also a skew Hadamard
difference set in (F113 ,+). One finds by using a computer that
Aut(Dev(D ′)) has size 3 · 5 · 113 · 19.



The automorphism group of the Paley design has size
3 · 5 · 7 · 113 · 19. So the three difference sets D, D ′ and the Paley
difference set in (F113 ,+) are pairwise inequivalent.

Based on some computational evidence, we conjecture that
Aut(Dev(D)), with D = ∪i∈ICi as given in the statement of the
theorem, is generated by the following three types of elements: (i)
translations by elements of Fq, (ii) multiplications by elements in
C0, and (iii) σip, p

i I = I , where σp is the Frobenius automorphism
of the finite field Fpf .



The case where N = 2pm1 , p1 is a prime congruent to 3
modulo 8:

This case is more complicated. We have a similar construction
when m = 1. For details, please see the preprint “Cyclotomic
constructions of skew Hadamard difference sets” arXiv:

1101.2994v1.



Thank you for your attention!


