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The Wright-Fisher Model

One of the earliest models in population genetics, goes back to

Fisher (1921) and Wright (1930).

• The population has fixed size N .

• Generations do not overlap.

• Each member of the population has one parent, chosen at

random from the individuals in the previous generation.

Sample n individuals from generation 0. Let ΨN(m) be the

partition of {1, . . . , n} such that i ∼ j if and only if ith and jth

sampled individuals have the same ancestor in generation −m.

As N → ∞, the processes ΨN = (ΨN(⌊Nt⌋), t ≥ 0) converge to

Kingman’s coalescent.
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Kingman’s Coalescent (Kingman, 1982)

Continuous-time Markov chain on set of partitions of {1, . . . , n}.
Only two lineages merge at a time, each pair of lineages merges

at rate one.

When there are k lineages, the distribution of the time until

the next merger is exponential with rate k(k − 1)/2. Then two

randomly chosen lineages merge.

{1, 2, 3, 4, 5}

{1, 2}, {3, 4, 5}

{1, 2}, {3}, {4, 5}

{1}, {2}, {3}, {4, 5}

{1}, {2}, {3}, {4}, {5}

One time unit in Kingman’s coalescent represents N generations.
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Coalescents with multiple mergers (Λ-coalescents)

Continuous-time Markov chain on set of partitions of {1, . . . , n}.
More than two ancestral lines can merge at a time.

First studied by Pitman (1999) and Sagitov (1999).

Applications of coalescents with multiple mergers:

• Large family sizes, as may occur with some marine species.

(Sagitov, 1999; Möhle-Sagitov, 2001).

• Natural selection (Durrett-Schweinsberg, 2005).

jschwein
Placed Image



Definition of Λ-coalescents

Let π be a partition of {1, . . . , n} into blocks B1, . . . , Bj. Let

p ∈ (0,1]. A p-merger of π is obtained as follows:

• Let ξ1, . . . , ξj be i.i.d. Bernoulli(p).

• Merge the blocks Bi such that ξi = 1.

Coalescents can be described in terms of a finite measure Λ on

[0,1]. Write Λ = aδ0 + Λ0, where Λ0({0}) = 0. Transitions in

the Λ-coalescent are as follows:

• Each pair of blocks merges at rate a.

• Construct a Poisson point process on [0,∞) × (0,1] with

intensity dt × p−2Λ0(dp). If (t, p) is a point of this Poisson

process, then a p-merger occurs at time t.

When there are b blocks, let λb,k denote the rate of a transition

in which k blocks merge into one. Then, for 2 ≤ k ≤ b,

λb,k =

∫ 1

0
pk−2(1 − p)b−k Λ(dp).



Genealogy of Galton-Watson processes

Consider the following population model:

• Population size N in each generation.

• Numbers of offspring ξ1, . . . , ξN of the N individuals are i.i.d.

with P(ξi ≥ k) ∼ Ck−α, where α ≥ 1, and E[ξi] > 1.

• Obtain the next generation by sampling N offspring.

Theorem (Schweinsberg, 2003):

• If α ≥ 2, genealogies converge to Kingman’s coalescent.

• If 1 ≤ α < 2, limit is the Λ-coalescent,

Λ(dx) =
1

Γ(α)Γ(2 − α)
x1−α(1 − x)α−1 dx

is the Beta(2 − α, α) distribution.

The case α = 1 is the Bolthausen-Sznitman (1998) coalescent.

Linked to random recursive trees (Goldschmidt-Martin, 2005)

and Derrida’s GREM (Bovier-Kurkova, 2007).



Idea of the proof (1 < α < 2)

Let µ be the mean of the offspring distribution.

We get a p-merger with p ≥ x if

ξ

ξ + Nµ
≥ x ⇐⇒ ξ ≥ x

1 − x
· Nµ

The probability of such a family in a given generation is

NP

(

ξ ≥ x

1 − x
· Nµ

)

∼ NC

(

x

1 − x
· Nµ

)−α

.

The rate of such mergers in the Beta(2 − α, α)-coalescent is

1

Γ(α)Γ(2 − α)

∫ 1

x
p−1−α(1− p)α−1 dp =

1

αΓ(α)Γ(2 − α)

(

x

1 − x

)−α

.



A population model with selection

Brunet-Derrida-Mueller-Munier (2006, 2007)

• Population has fixed size N .

• Each individual has k ≥ 2 offspring.

• The fitness of each offspring is the parent’s fitness plus an

independent random variable with distribution µ.

• Of the kN offspring, the N with the highest fitness survive

to form the next generation.

Also studied by Bérard and Gouéré (2010), Durrett and Mayberry

(2010), Durrett and Remenik (2009).

Conjectures of Brunet-Derrida-Mueller-Munier (2006, 2007):

• If two individuals are chosen from some generation, the num-

ber of generations back to their most recent common ances-

tor is O((logN)3).

• If n individuals are sampled from some generation, their ge-

nealogy is governed by the Bolthausen-Sznitman coalescent.



Branching Brownian motion with absorption

• Begin with some configuration of particles in (0,∞).

• Each particle independently moves according to standard

one-dimensional Brownian motion with drift −µ.

• Each particle splits into two at rate 1.

• Particles are killed if they reach the origin.

Particles represent individuals in a population, and their position

represents the fitness of the individual.

Theorem (Kesten, 1978): Starting with one particle at x > 0,

this process dies out almost surely if µ ≥
√

2. If µ <
√

2, the

number of particles grows exponentially with positive probability.

We take µ = µN =

√

√

√

√2 − 2π2

(logN + 3 log logN)2
.



Theorem (Berestycki-Berestycki-Schweinsberg, 2010): Fix a

time t > 0. Choose n particles at random at time t(logN)3.

Let ΠN(s) be the partition of {1, . . . , n} such that i and j are

in the same block if and only if the ith and jth sampled par-

ticles have the same ancestor at time (t − s/2π)(logN)3. Un-

der suitable initial conditions, the finite-dimensional distributions

of (ΠN(s),0 ≤ s ≤ 2πt) converge as N → ∞ to those of the

Bolthausen-Sznitman coalescent.

Initial conditions are satisfied if O(N) particles are placed in a

relatively stable configuration.

Idea behind the multiple mergers:

• Occasionally, a particle gets very far to the right.

• This particle has a large number of surviving descendants, as

the descendants avoid the barrier at zero.

• This leads to multiple mergers of ancestral lines.



Coalescents with mutations

Assume mutations happen along each lineage at rate θ.

Assume each mutation happens at different site on chromosome.

1: ACGCTAATAGCA

2: ACGCTAATAGCT

3: ACCCTAATAGCA

4: ACCCTAACAGCA

5: ACCCTAACAGCA
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Quantities of Interest

Segregating sites: Sn = number of sites at which not all members

of sample agree. Example: Sn = 3.

Allelic partition: blocks represent groups of individuals that got

the same mutations. Example: Πn = {{1}, {2}, {3}, {4,5}}.
An = number of blocks of Πn (haplotypes). Example: An = 4.

Allele frequency spectrum: Nk,n = number of blocks of size k in

allelic partition. Example: N1,5 = 3, N2,5 = 1.

Site frequency spectrum: Mk,n = number of mutations affecting

k individuals. Example: M1,5 = 1, M2,5 = 1, M3,5 = 1.
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Segregating sites

Kingman’s coalescent:

E[Sn] = θ
n
∑

b=2

b
(b

2

)
−1

= 2θ
n
∑

b=2

1

b − 1
∼ 2θ logn

and (Sn − E[Sn])/
√

Var(Sn) ⇒ N(0,1).

Beta(2−α, α)-coalescent with 1 < α < 2 (Berestycki-Berestycki-
Schweinsberg, 2008):

Sn

n2−α
→p

θα(α − 1)Γ(α)

2 − α
.

• Results extended by Berestycki-Berestycki-Limic (2011).
• Limiting distribution unknown, conjectured to be normal if

and only if α >
√

2 (Delmas, Dhersin, Siri-Jegousse, 2008).

Bolthausen-Sznitman case (Drmota-Iksanov-Möhle-Rösler, 2007):

logn

n
Sn →p θ,

(logn)2

θn

(

Sn − θn

logn
− θn log logn

(logn)2

)

⇒ X,

where E[eitX] = exp
(

−π
2|t| + it log |t|

)

.



Site and allele frequency spectrum (Kingman’s coalescent)

Ewens sampling formula (Ewens, 1972): The probability that

the allelic partition has aj blocks of size j for j = 1, . . . , n is

n!

2θ(1 + 2θ) . . . (n + 2θ)

n
∏

j=1

(

2θ

j

)aj 1

aj!
.

Site frequency spectrum: E[Mk,n] = 2θ/k.

Allele frequency spectrum: E[Nk,n] ∼ 2θ/k.



Site and allele frequency spectrum (Beta coalescent)

Theorem (Berestycki-Berestycki-Schweinsberg, 2007): For the

Beta(2 − α, α)-coalescent with 1 < α < 2, we have

Mk,n

Sn
→p

(2 − α)Γ(k + α − 2)

Γ(α − 1)k!
= ak

and Nk,n/An →p ak.

We have a1 = 2−α and ak ∼ Ckα−3. Smaller α means more low

frequency mutants.

Original proof used connections with CSBPs.

Results improved by Berestycki-Berestycki-Limic (2011).

Theorem (Basdevant-Goldschmidt, 2008) For the Bolthausen-

Sznitman coalescent,

logn

n
N1,n →p θ,

(logn)2

n
Nk,n →p

θ

k(k − 1)
, k ≥ 2.



Example 1: Pacific Oyster

Data on 141 Pacific Oysters from British Columbia.

Data from Boom, Boulding, and Beckenbach (1994).

Analyzed by Eldon-Wakeley (2006), Sargsyan-Wakeley (2008).

There were 48 segregating sites.

M1,n = 29, M2,n = 12, M3,n = 4, M6,n = 2, and M67,n = 1.

Predictions with Kingman’s Coalescent: to estimate θ, set

48 = 2θ̂
140
∑

j=1

1

j
,

which gives θ̂ ≈ 4.35. Then predict Mk,n = 2θ̂/k.

Predictions with beta coalescent: predict Mk,n = 48ak. Choose

the α that gives the best fit to the data.



Comparision of predictions from Kingman’s coalescent and from

the beta coalescent with α = 1.35.

Site Frequency Spectrum

k Observed Kingman beta
1 29 8.7 31.2
2 12 4.3 5.5
3 4 2.9 2.5
4 0 2.2 1.4
5 0 1.7 1.0
6 2 1.4 0.7
7+ 1 26.7 5.7

Neither fit is good. The fit from the beta coalescent is better.



Example 2: Atlantic Cod

Data on 1278 Atlantic Cod, segment 250 base pairs long.

Data from Arnason (2004), analyzed by Birkner and Blath (2007)

and Birkner, Blath, and Steinrücken (2011).

There were 59 haplotypes (blocks of allelic partition).

Estimate α = 1.43 for the beta coalescent.

Allele Frequency Spectrum

k Observed Kingman beta
1 32 7.6 33.6
2 7 3.8 7.2
3 6 2.5 3.4
4 2 1.9 2.1
5 3 1.5 1.4
6 1 1.3 1.0
7 1 1.1 0.8
8+ 7 39.2 9.3

Statistical analysis in Birkner and Blath (2007) allows one to

reject the Kingman’s coalescent hypothesis.



Limitations to this analysis

1. Violations of assumptions. Example: Atlantic Cod data had

only 39 segregating sites, but 59 haplotypes.

2. It seems that

Mk,n

Sn
= ak + O

(

1

logn

)

,

so the ak are not precise for finite values of n (Durrett,

Huerta-Sanchez).

3. Different coalescent processes can lead to similar values for

the site frequency spectrum and allele frequency spectrum. It

is difficult to distinguish the effects of selection, large family

sizes, changing population size.



Block sizes of exchangeable random partitions

Let Π be an exchangeable random partition of N.

Let Πn be the restriction of Π to {1, . . . , n}.
Let Nn be the number of blocks of Πn, and let Nk,n be the

number of blocks of size k.

Theorem (Karlin, 1967; Gnedin-Hansen-Pitman, 2007; Schweins-

berg, 2010): Suppose 1 < α < 2. If Nn/n2−α →p c > 0, then

Nk,n

Nn
→p ak =

(2 − α)Γ(k + α − 2)

Γ(α − 1)k!
.

Example (Schweinsberg, 2010): Suppose the population size

in generation −t is ⌈Nt−γ⌉, where γ > 0. Genealogy is a time-

changed Kingman’s coalescent with merger rate r(t) = tγ. Let

α = (2 + γ)/(1 + γ). Then

Nn

n2−α
→p

θ2α−1(α − 1)2−απ

sin(π(2 − α))
.

Thus, Nn,k/Nn →p ak.


