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Remark. The catchier part of the title is due to Steve Evans, who
invented it in Oberwolfach in August 2005.
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Outline

General aim:
Study/understand the space-time embedding of ancestral lineages in
spatial models for populations with local density regulation (in particular,
with non-constant local population sizes).

1 Directed percolation

2 Random walk on the cluster
A renewal structure

3 Locally regulated populations (and ancestral lineages)
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Directed percolation

Directed (site) percolation
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p ∈ (0, 1), ω(x , n), x ∈ Zd , n ∈ Z i.i.d. Bernoulli(p).
Interpretation: ω(x , n) = 1: site (x , n) is open, otherwise closed

Let U ⊂ Zd be a finite, Zd -symmetric set with 0 ∈ U

m < n, x , y ∈ Zd : (x ,m)→ (y , n) if there exist x = x0, x1, . . . , xn−m = y
such that xi − xi−1 ∈ U and ω(xi ,m + i) = 1 for i = 1, . . . , n −m and

C0 := {(y , n) : y ∈ Zd , n ≥ 0, (0, 0)→ (y , n)} is the (directed) cluster of
the origin
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Directed percolation

Critical value
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There exists pc ∈ (0, 1) such that

P(|C0| =∞) > 0 iff p > pc .

If p > pc , P(C0 reaches height n | |C0| <∞) ≤ Ce−cn for some
c ,C ∈ (0,∞).

M. Birkner (JGU Mainz) 29th March 2011 5 / 21



Directed percolation

Critical value

−40 −20 0 20 40

0
20

40
60

There exists pc ∈ (0, 1) such that

P(|C0| =∞) > 0 iff p > pc .

If p > pc , P(C0 reaches height n | |C0| <∞) ≤ Ce−cn for some
c ,C ∈ (0,∞).

M. Birkner (JGU Mainz) 29th March 2011 5 / 21



Directed percolation

The discrete time contact process and directed percolation

ηn(x), n ∈ Z+, x ∈ Zd with values in {0, 1}.
Site x is generation n is “inhabited” (or: “infected”) if ηn(x) = 1.

Dynamics: U ⊂ Zd finite, symmetric, p ∈ (0, 1).
Given ηn, independently for x ∈ Zd ,

ηn+1(x) =

{
1 w. prob. p · 1(ηn(y) = 1 for some y ∈ x + U)

0 w. prob. 1− p · 1(ηn(y) = 1 for some y ∈ x + U)

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●
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● ● ● ● ● ● ● ● ● ● ●

ηn(x) = 1 iff (y , 0)→ (x , n) for
some y ∈ Zd with η0(y) = 1.
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Directed percolation

The discrete time contact process
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Self duality: For A,B ⊂ Zd

P(ηn(x) = 0 for all x ∈ B | η0(·) = 1A(·))

= P(ηn(x) = 0 for all x ∈ A | η0(·) = 1B(·))

Stationary process:
For p > pc , there is a (unique extremal) non-trival stationary distribution.
Informally, ηstat0 (x) = 1 iff Zd × {−∞} → (x , 0)
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Directed percolation

The discrete time contact process ...

... as a locally regulated population model

ηn+1(x) =

{
1 w. prob. p · 1(ηn(y) = 1 for some y ∈ x + U)

0 w. prob. 1− p · 1(ηn(y) = 1 for some y ∈ x + U)

Possible interpretation for ancestry:
In generation n + 1, each site x is inhabitable with probability p
If ηn(y) = 1 of some y ∈ x + U, the particle at y in gen. n puts an
offspring at x .
If several y are eligible, one is chosen at random.

Thus, individuals in “sparsely populated” regions have a higher
reproduction probability.
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Directed percolation

An ancestral line in the discrete time contact process

p > pc , (ηstatn (x), x ∈ Zd , n ∈ Z) stationary DCP, assume ηstat0 (0) = 1.

−40 −20 0 20 40

−
60

−
40

−
20

0

Let Xn = position of the ancestor of the individual at the (space-time)
origin n generations ago.

Given ηstat and Xn = x , Xn+1 is uniform on

{y ∈ Zd : y − x ∈ U, ηstat−n−1(y) = 1} ( 6= ∅).
To avoid lots of −-signs later, put ξn(x) := ηstat−n (x), x ∈ Zd , n ∈ Z.

Note: ξn(x) = 1 iff “(x , n)→ Zd × {+∞}”
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Random walk on the cluster

Directed random walk on the supercritical directed cluster

ω(x , n), x ∈ Zd , n ∈ Z, i.i.d. Bernoulli(p), p > pc

ξn(x) = 1 iff (x , n)→ (y , k) for infinitely many (y , k) (“(x , n)→ +∞”)

Write C := {(y ,m) : ξm(y) = 1}, U(x , n) := (x + U)× {n + 1}

Let X0 = 0 (∈ Zd),

P(Xn+1 = y | ξ, Xn = x ,Xn−1 = xn−1, . . .X1 = x1) =
1(y ∈ U(x , n) ∩ C)

|U(x , n) ∩ C|

(with some arbitrary setting if U(x , n) ∩ C = ∅, we will later consider ξ under

P(· | (0, 0) ∈ C) )

Aim: Understand the long-time behaviour of (Xn). Is it similar to
“ordinary” random walk?

M. Birkner (JGU Mainz) 29th March 2011 10 / 21
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Random walk on the cluster

Remark.
(Xn) is a random walk in space-time random environment (given by ξ).

Random walks in random environments and recently also random walk in
space-time random environments have received considerable attention
(see e.g. Firas Rassoul-Agha’s homepage
http://www.math.utah.edu/~firas/Research/)

As far as we know, none of the general techniques developed so far in this
context is applicable:

(Xn) is not uniformly elliptic.

ξ is complicated: not i.i.d., nor is (ξn(x))n=0,1,... for fixed x a Markov
chain.

The abstract conditions from Dolgopyat, Keller and Liverani (2008)
appear very hard to verify.

The cone-mixing condition from Avena, den Hollander, and Redig
(2010) is violated.

M. Birkner (JGU Mainz) 29th March 2011 11 / 21
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Random walk on the cluster A renewal structure

Ancestor ordering

For x ∈ Zd , n ∈ Z let ω̃(x , n) =
(
ω̃(x , n)[1], ω̃(x , n)[2], . . . , ω̃(x , n)[|U|]

)
an independent uniform permutation of U(x , n) = (x + U)× {n + 1}.

Γk
(x ,n) := set of all k-step (directed) paths

γ =
(
(x0, n), (x1, n + 1), . . . , (xk , n + k)

)
starting at x0 = x whose steps begin at open sites, i.e., ω(xi , n + i) = 1 for
i = 0, 1, . . . , k − 1.

Order Γk
(x ,n) 3 γ, γ

′ =
(
(x = x ′0, n), (x ′1, n + 1), . . . , (x ′k , n + k)

)
:

1 ≤ ` (< k) the minimal value s.th. x` 6= x ′`, then
γ ≺ γ′ if x` has a smaller index than x ′` in ω̃(x`−1, n + `− 1).

A
(1)
(x ,n);k := (spatial) endpoint of the smallest path in Γk

(x ,n) (if Γk
(x,n) 6= ∅)

(first (potential) ancestor k generations ago of site (x , n))

Remarks. 1) Construction measurable w.r.t.
σ
(
ω(y , i), ω̃(y , i) : y ∈ Zd , n ≤ i < n + k

)
2) Discrete time analogue of Neuhauser (1992)

M. Birkner (JGU Mainz) 29th March 2011 12 / 21
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starting at x0 = x whose steps begin at open sites, i.e., ω(xi , n + i) = 1 for
i = 0, 1, . . . , k − 1.

Order Γk
(x ,n) 3 γ, γ

′ =
(
(x = x ′0, n), (x ′1, n + 1), . . . , (x ′k , n + k)

)
:

1 ≤ ` (< k) the minimal value s.th. x` 6= x ′`, then
γ ≺ γ′ if x` has a smaller index than x ′` in ω̃(x`−1, n + `− 1).

A
(1)
(x ,n);k := (spatial) endpoint of the smallest path in Γk

(x ,n) (if Γk
(x,n) 6= ∅)

(first (potential) ancestor k generations ago of site (x , n))

Remarks. 1) Construction measurable w.r.t.
σ
(
ω(y , i), ω̃(y , i) : y ∈ Zd , n ≤ i < n + k

)
2) Discrete time analogue of Neuhauser (1992)
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Random walk on the cluster A renewal structure

Ancestor ordering and regeneration

κ(x , n) := ω̃(x , n)
[

min{i : ξn+1(ω̃(x , n)[i ]) = 1} ∧ |U|
]

(with min ∅ := +∞)

κ(x , n) is uniformly distributed on U(x , n) ∩ C if the latter is not empty
and uniformly distributed on U(x , n) otherwise.

On A0 := {(0, 0) ∈ C}

X0 = 0, Xn+1 := κ(Xn, n), n = 1, 2, . . .

is (a version of) the directed random walk on C, and Xk = A
(1)
(0,0);k if

ξk(A
(1)
(0,0);k) = 1.

Regeneration times:
T0 = 0, Y0 = 0,
T1 = min{n > 0 : ξn(A

(1)
(0,0;n)) = 1}, Y1 = A

(1)
(0,0);n,

then T2 = min{n > 0 : ξT1+n(A
(1)
(Y1,T1);n

) = 1}, etc.
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Random walk on the cluster A renewal structure

Proposition(
(Yi − Yi−1,Ti − Ti−1)

)
i≥1 is i.i.d. under P(· | A0), Y1 is symmetrically

distributed. There exist C , c ∈ (0,∞), such that

P(||Y1|| > n | A0), P(τ1 > n | A0) ≤ Ce−cn for n ∈ N.

Remark
Regeneration structure and proof analogous to Kuczek (1989) and
adaptation by Neuhauser (1992):
For tails of T1 − T0 use “restart” argument (to remove conditioning on A0)

and the fact that finite clusters are small,
i.i.d. property follows from the fact that the ancestor ordering construction
uses disjoint time-slices.
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Random walk on the cluster A renewal structure

LLN and annealed CLT for directed walk on the cluster

Corollary

P
(1

n
Xn → 0

∣∣∣ω) = 1 for P( · | A0)-a.a. ω, and

lim
n→∞

P
( 1√

n
Xn ≤ x

∣∣∣A0

)
= Φ(x) for x ∈ Rd ,

with Φ the distribution function of a non-trivial d-dimensional normal law.
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Random walk on the cluster A renewal structure

Two walks on the same cluster

(Xn), (X ′n) two independent directed walks on the same supercritical
directed cluster (i.e. using the same ω’s, but independent ω̃’s resp. ω̃′.)

Hopeful theorem in progress ...

lim
n→∞

P
( 1√

n
Xn ≤ x ,

1√
n

Xn ≤ x ′
∣∣∣A0

)
= Φ(x)Φ(x ′) for x , x ′ ∈ Rd ,

which implies P
( 1√

n
Xn ≤ x

∣∣∣ω)→ Φ(x) in L2
(
P(· | A0)

)
.

Remarks
1) Quantitative strengthening may allow an a.s. CLT for (Xn)
2) Variation where (Xn) and (X ′n) coalesce upon meeting is of (great)
interest in mathematical population genetics
3) (Some) analogous arguments for the continuous-time case by
Neuhauser (1992) and Valesin (2010).
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Locally regulated populations (and ancestral lineages)

A spatial logistic model

Particles “live” in Zd in discrete generations,
ηn(x) = # particles at x ∈ Zd in generation n.

Given ηn,

each particle at x has Poisson
(
m −

∑
z λz−xηn(z))

)
+

offspring,
m > 1, λz ≥ 0, λ0 > 0, finite range.

Children take an independent random walk step to y with probability py−x ,
pxy = py−x symmetric, aperiodic finite range random walk kernel on Zd .

Given ηn,

ηn+1(y) ∼ Poi
(∑

x

py−xηn(x)
(

m −
∑

z λz−xηn(z)
)
+

)
, independent
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Locally regulated populations (and ancestral lineages)

Survival and complete convergence

Theorem (B. & Depperschmidt, 2007)

Assume m ∈ (1, 3), 0 < λ0 � 1, λz � λ0 for z 6= 0.

(ηn) survives for all time globally and locally with positive probability for
any non-trivial initial condition η0.

Given survival, ηn converges in distribution to its unique non-trivial
equilibrium.

Starting from any two initial conditions η0, η′0, copies (ηn), (η′n) can be
coupled such that if both survive, ηn(x) = η′n(x) in a space-time cone.

Proof uses that corresponding deterministic system

ζn+1(y) =
∑
x

py−xζn(x)
(

m −
∑

z λz−xζn(z)
)
+

has unique non-triv. fixed point
plus coarse-graining, lots of comparisons with directed percolation.
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Locally regulated populations (and ancestral lineages)

Coupling
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Locally regulated populations (and ancestral lineages)

Coupling
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Locally regulated populations (and ancestral lineages)

Ancestral lines

Given stationary (ηstatn (x), n ∈ Z, x ∈ Zd), cond. on ηstat0 (0) > 0, sample
an individual from space-time origin (0, 0) (uniformly)

Let (Xn) position of her ancestor n generations ago:

Given ηstat and Xn = x , Xn+1 = y w. prob.

px−yη
stat
−n−1(y)

(
m −

∑
z λz−yη

stat
−n−1(z)

)
+∑

y ′ px−y ′ηstat−n−1(y ′)
(

m −
∑

z λz−y ′ηstat−n−1(z)
)
+

Hopeful theorem in progress ...

If m ∈ (1, 3), 0 < λ0 � 1, λz � λ0 for z 6= 0, there is a regeneration
construction for (Xn).
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Locally regulated populations (and ancestral lineages)

Thank you for your attention!

M. Birkner (JGU Mainz) 29th March 2011 21 / 21


	Directed percolation
	Random walk on the cluster
	A renewal structure

	Locally regulated populations (and ancestral lineages)

