
II. Exponentially Growing Cell Populations

1 Models

We consider an exponentially growing cell populations modeled as a multi-type branch-
ing process in which type i cells are those with i ≥ 0 mutations and we let Zi(t) be
the number of type i cells at time t. Type i cells give birth at rate ai and die at rate
bi, where the growth rate λi = ai− bi > 0. Thinking of cancer we will usually restrict
our attention to the case in which i → λi is increasing. To take care of mutations we
suppose that individuals of type i in addition give birth at rate ui+1 to individuals
of type i + 1. This is slightly different than the approach of having mutations with
probability ui+1 at birth, which translates into a mutation rate of aiui+1, and this
must be kept in mind when comparing results.

The continuous time formulation seems natural for a population of cells with
asynchronous reproduction. However, in order to make connection with other results
that have been published, we will also consider the discrete time branching processes,
which have the advantage that they easier to simulate. In the model of Bozic et
al. (2010), at each time step a cell of type j ≥ 1 either divides into two cells which
occurs with probability bj, or dies with probability dj where dj = (1 − s)j/2 and
bj = 1 − dj. In addition at every division, the new daughter cells can acquire an
additional mutation with probability u. In comparing with continuous time, we have
to remember that in discrete time the initial exponentially growing population consist
of 1’s not 0’s. This change of notation is somewhat annoying but it allows us to more
easily compare with the results in Bozic et al. (2010).

To compute the transition probability of this Markov chain, let Nj(t) be the
number of cells of type j. If we let Bj be the number of births, Dj be the number
of deaths and Mj be the number of mutations from cells of type j then their joint
distribution is multinomial:

P [(Bj, Dj, Mj) = (n1, n2, n3)] =
Nj(t)!

n1!n2!n3!
(bj(1− u))n1dn2

j (bju)n3

for n1 + n2 + n3 = Nj(t) and 0 otherwise. Given these variables the size of the next
generation is:

Nj(t + 1) = Nj(t) + Bj −Dj + Mj−1
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2 Branching process results

Continuous time. The number of type-0 cells, Z0(t), is a branching process. Since
each initial individual gives rise to an independent copy of the branching process we
will suppose throughout this section that Z0(0) = 1. We begin by computing the
extinction probability,

ρ = P (Z0(t) = 0 for some t ≥ 0).

By considering what happened on the first jump

ρ =
b0

a0 + b0

· 1 +
a0

a0 + b0

· ρ2

Rearranging gives a0ρ
2 − (a0 + b0)ρ + b0 = 0. Since 1 is a root, the quadratic factors

as (ρ− 1)(a0ρ− b0) = 0, and

ρ =

{
b0/a0 if a0 > b0

1 if a0 ≤ b0

(1)

To compute the generating function F (x, t) = ExZ0(t), we begin by noting that

Lemma 1. ∂F/∂t = −(a0 + b0)F + a0F
2 + b0.

Proof. If h is small then the probability of more than one event in [0, h] is O(h2),
the probability of a birth is ∼ a0h, of a death is ∼ b0h. In the second case we have
no particles so the generating function of Z0(t + h) will be ≡ 1. In the first case we
have two particles at time h who give rise to two independent copies of the branching
process so the generating function of Z0(t + h) will be F (x, t)2. Combining these
observations:

F (x, t + h) = a0hF (x, t)2 + b0h · 1 + (1− (a0 + b0)h)F (x, t) + O(h2)

A little algebra converts this into

F (x, t + h)− F (x, t)

h
= a0F (x, t)2 + b0 − (a0 + b0)F (x, t) + O(h)

Letting h → 0 gives the desired result.

On page 109 of Athreya and Ney (1972), or in formula (5) of Iwasa, Nowak, and
Michor (2006) we find the solution:

F (x, t) =
b0(x− 1)− e−λ0t(a0x− b0)

a0(x− 1)− e−λ0t(a0x− b0)
(2)
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which readers skilled at calculus and having sufficient patience can check. Subtracting
this from 1 gives

1− F (x, t) =
λ0(x− 1)

a0(x− 1)− e−λ0t(a0x− b0)
(3)

Setting x = 0, we have

P (Z0(t) = 0) =
b0 − b0e

−λ0t

a0 − b0e−λ0t

P (Z0(t) > 0) = 1− F (0, t) =
λ0

a0 − b0e−λ0t
(4)

Theorem 1. Suppose a0 > b0. As t → ∞, e−λ0tZ0(t) → W0 which has Laplace
transform

Ee−θW0 =
b0

a0

+

(
1− b0

a0

)
1− b0/a0

1− b0/a0 + θ
(5)

Hence if δ0 is a pointmass at 0,

W0 =d
b0

a0

δ0 +
λ0

a0

exponential(λ0/a0) (6)

where the exponential(r) distribution has density re−rt and mean 1/r.

Proof. The mean µ(t) = EZ0(t) satisfies µ′(t) = λ0µ(t) so EZ0(t) = eλ0t. From this
we see that e−λ0tZ0(t) is a nonnegative martingale and hence converges to a limit W0.
To compute the Laplace transform Ee−θW0 , we set x = exp(−θe−λ0t) in (??) to get

b0(exp(−θe−λ0t)− 1)− e−λ0t(a0 exp(−θe−λ0t)− b0)

a0(exp(−θe−λ0t)− 1)− e−λ0t(a0 exp(−θe−λ0t)− b0)

As t → ∞, e−λ0t → 0, so exp(−θe−λ0t) → 1, exp(−θe−λ0t) − 1 ∼ −θe−λ0t, and the
above simplifies to

≈ −b0θe
−λ0t − e−λ0tλ0

−a0θe−λ0t − e−λ0tλ0

=
b0θ + λ0

a0θ + λ0

Dividing top and bottom of this by a0 and recalling λ0 = a0 − b0 we have

=
(b0/a0)θ + 1− (b0/a0)

θ + 1− (b0/a0)
=

b0

a0

+

(
1− b0

a0

)
1− (b0/a0)

θ + 1− (b0/a0)

To invert the Laplace transform, we note that if δ0 is the point mass at 0 then
pδ0 + (1− p)exponential(ν) has Laplace transform

p + (1− p)
ν

ν + θ
=

pθ + ν

θ + ν

so p = b0/a0 and ν = 1− (b0/a0).
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If we let Ω0
0 = {Z0(t) = 0 for some t ≥ 0} then (??) implies

P (Ω0
0) = b0/a0 (7)

Since W0 = 0 on Ω0
0, (??) implies that W0 > 0 when the process does not die out.

Letting Ω0
∞ = {Z0(t) > 0 for all t ≥ 0} we have

(e−λ0tZ0(t)|Ω0
∞) → V0 = exponential(λ0/a0) (8)

and hence the Laplace transform

Ee−θV0 =
λ0

λ0 + a0θ
= (1 + (a0/λ0)θ)

−1. (9)

Discrete time. In this case the 1’s are a Galton-Watson process with offspring
distribution p0 = d1, p1 = b1u and p2 = b1(1−u). By thinking about what happens on
the first step when we start from one cell, one can see that the extinction probability
q1 satisfies

q1 = d1 + b1uq1 + b1(1− u)q2
1

Since b1 and d1 are ≈ 1/2 while u is small, e.g., 10−4 we have

q1 ≈ d1 + b1q
2
1

q1 = 1 is a root so factoring (b1ρ− d1)(ρ− 1) we see that

q1 ≈ d1/b1 (10)

Remembering that the new b1 is the old a0 and the new d1 is the old b0 this is the
same as (??). The mean

µ1 = 2b1(1− u) + b1u ≈ 2b1

since u is small. Again Z1(n)/µn is a martingale and hence Z1(n)/µn → W1. Suppose
that Z1(0) = 1. The fact that martingale is L2 bounded implies EW1 = 1. Thus if
we let V1 = (W1|Ω0

∞) then EV1 = 1/q1.
While the mean is easy to calculate, in discrete time we have very little information

about the distribution of W0. Imitating the calculation above we see that the Laplace
transform F (θ, n) = E exp(−θZ0(n)) satisfies

F (θ, n) = b1F (θ, n1)
2 + d1

so if we let G(θ) = limn→∞E exp(−θZ1(n)/µn
1 ) = limn→∞ F (θ/µn

1 , n) then

G(θ) = b1G(θ/µ) + d1
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3 Time to reach size M

While from the point of view of stochastic processes it is natural to start measuring
time when there is one cancer cell, that time is not known in reality. Thus we will shift
our attention to the time at which the cancer is detected, which we will idealize as the
time the total number of cancer cells reaches size M . As a first step in investigating
this quantity we consider TM = min{t : Z0(t) = M}, and then return later to consider
Zi(TM) for i > 0.

To find the distribution of TM , we note that by (??) conditional on nonextinction,
e−λ0tZ0(t) → V0, which is exponential with rate λ0/a0, or informally Z0(t) ≈ eλ0tV0.
From this we see that

P (TM ≤ t) = P (eλ0tV0 ≥ M) = exp(−(λ0/a0)Me−λ0t)

which is the double exponential, or Gumbel distribution. Differentiating we find the
density function

fTM
(t) = exp(−(λ0/a0)Me−λ0t) · λ2

0M

a0

e−λ0t (11)

Clearly TM ≥ 0, however P (TM ≤ 0) = exp(−λ0M/a0) which is small in most of
our applications so it is natural to view the density in (??) as defined on (−∞,∞). To
compute the mean we substitute exp(−λ0t) = a0z/λ0M or t = −(1/λ0) log(a0z/λ0M),
dt = −dz/zλ0 to get

ETM =
λ2

0M

a0

∫ ∞

−∞
te−λ0t exp(−(λ0/a0)Me−λ0t) dt

= − 1

λ0

∫ ∞

0

log(a0z/λ0M)e−z dz

To help see this note that (λ2
0M/a0)e

−λ0t = zλ0. Since
∫∞

0
e−z dz = 1 it follows that

ETM =
1

λ0

log

(
Mλ0

a0

)
− 1

λ0

∫ ∞

0

e−z log z dz (12)

The first term is value of TM if we replace V0 by its mean a0/λ0 and solve

eλ0ta0/λ0 = M

The second term (including the minus sign) is Euler’s constant

γ = 0.5772156649

which is a small correction resulting from the randomness of V0.

Example 1. For a concrete example suppose a0 = 1.02, b = 1, λ0 = 0.02 and set
M = 105. In this case P (TM ≤ 0) = exp(−200/1.02) ≈ 0. The first term in (??) is

1

λ0

log

(
Mλ0

a0

)
= 50 log 1960.78 = 379.05

so the second is an insignificant correction.
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4 Time until the first type 1

Continuous time. Let τ1 be the time of occurrence of the first type 1. Since 1’s are
produced at rate u1Z0(t),

P (τ1 > t|Z0(s), s ≤ t, Ω0
∞) = exp

(
−u1

∫ t

0

Z0(s)ds

)
(13)

τ1 will occur when
∫ t

0
Z0(s) ds is of order 1/u1. A typical choice for u1 = 10−5 or

smaller, so 1/u1 is a large number, and we can use the approximation (Z0(s)|Ω0
∞) ≈

eλ0sV0. Evaluating the integral, taking the expected value, and using (??), we con-
clude that

P (τ1 > t|Ω0
∞) ≈ E exp(−u1V0e

λ0t/λ0)

=
λ0

λ0 + a0u1eλ0t/λ0

=
(
1 + (a0/λ

2
0)u1e

λ0t
)−1

(14)

The median t11/2 of the distribution has λ2
0 = a0u1e

λ0t1
1/2 so

t11/2 ≈
1

λ0

log

(
λ2

0

a0u1

)
(15)

In some cases we regard V0 as a fixed constant. Implicitly assuming that V0 > 0
we write

P (τ1 > t|V0) ≈ exp(−u1V0e
λ0t)/λ0).

If we replace V0 by its mean EV0 = a0/λ0 the tail of the distribution of τ1 is equal to
1/e at

t̄11/e ≈
1

λ0

log

(
λ2

0

a0u1

)
(16)

A second quantity of interest is σ1, the time of occurrence of the first type 1 that
gives rise to a family which does not die out. Since the rate of these successful type
1 mutations is u1λ1/a1, all we have to do is to replace u1 by u1λ1/a1 in either (??)
or (??), so replacing t by s to define the corresponding quantities for σ1

s1
1/2 = s̄1

1/e =
1

λ0

log

(
λ2

0a1

a0u1λ1

)
(17)

Example 2. To help digest these formulas it is useful to have concrete examples. If
the mutation rate u1 = 10−5, b0 = b1 = 1, a0 = 1.02, and a1 = 1.04 then λ0 = 0.02,
λ1 = 0.04 and

t11/2 = t̄11/2 = 50 log

(
4× 10−4

1.02× 10−5

)
= 183.45

s1
1/2 = s̄1

1/e = 50 log

(
4.16× 10−4

4.08× 10−7

)
= 50 log(1019.6) = 346.36
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Discrete time. Specializing the computations in Section 2 of the appendix of
Bozic et al (2010) to j = 1 and noting that the mean number of offspring of type 1 is
b1(2− u), since only the new daughter cell is subject to mutation with probability u,
we see that the average number of type 1 cells grows as

x(n) =
[b1(2− u)]n

1− q1

where n is the number of generations. To convert the number of generations into
clock time, we need to take account of the average time per generation, which they
call T , but for simplicity, we will omit the conversion from the formulas. New type 2
cells with surviving lineages appear at time n + 1 with probability

x(n)b1u(1− q2)

where q2 is the extinction probability computed in (??) with the subscript 1 replaced
by 2. We approximate the generation number σ2 of appearance of the first type 2
cell with a surviving lineage by the time when the sum of the probabilities reaches 1,
that is, when

σ2∑
m=0

[b1(2− u)]m

1− q1

b1u(1− q2) = 1

We are assuming b1(2− u) > 1, so looking backwards from time σ2 the sum is

≈ [b1(2− u)]σ2

1− 1/b1(2− u)
· b1u(1− q2)

1− q1

(18)

A little algebra gives

[b1(2− u)]σ2 ≈ 1− q1

b1u(1− q2)
·
(

1− 1

b1(2− u)

)
which, since σ1 = 0, leads to

σ2 − σ1 ≈
log
(

1−q1

b1u(1−q1)
·
(
1− 1

b1(2−u)

))
log(b1(2− u))

(19)

Reintroducing the mean time per generation T , we have a result that is almost iden-
tical to (S5) in Bozic et al. (2010) with j = 1:

σ2 − σ1 ≈
T log

(
1 + 1−q1

b1u(1−q2)
·
(
1− 1

b1(2−u)

))
log(b1(2− u))

It is not clear where the 1 comes from but it does not do much to the right-hand side,
and it disappears from their subsequent calculations.
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To connect with the continuous time formula in (??) we note that the growth rate
of the initial population of cells λ0 = b1(2− u)− 1, so ignoring the −u,

b1 =
1 + λ0

2
, d1 = 1− b1 =

1− λ0

2
, and 1− q1 =

b1 − d1

b1

=
λ0

b1

To relate (??) to (??) it is useful to first revisit (??). Substituting the new notation
and letting u1 = b1u, since mutation onlu occurs at birth, the sum becomes

≈ (1 + λ0)
σ2

λ0

· u1(1− q2)

λ0/b1

Setting the last quantity equal to 1, and recalling σ1 = 0, leads to

σ2 − σ1 ≈
log
(

λ2
0

b1u1(1−q1)

)
log(1 + λ0)

Using log(1 + λ0) ≈ λ0 and 1− q2 = λ1/b2 gives

σ2 − σ1 ≈
1

λ0

log

(
λ2

0b2

b1u1λ1

)
(20)

which after converting the bi’s to ai−1’s is (??).

Example 3. To have a discrete time example similar to Example ?? suppose b1 =
0.51, d1 = 0.49, b2 = 0.52, d2 = 0.48, and u = 2 × 10−5 (since the mutation rate is
u1 = b1u). In this case q1 = 0.49/0.51 and q2 = 0.48/0.52. Using 1 − /b1(2 − u) ≈
1− 1/1.02 = 0.0196, and 1/ log(1.02) = 50.49 then (??) we have

1− q1

b1u(1− q2)
·
(

1− 1

b1(2− u)

)
=

(0.02)(0.52)

(0.51)2(2× 10−5)(0.04)
· 0.0196 = 980.02

σ2 − σ1 ≈ 50.59 log(980.02) = 347.75

which is almost the same as the answer 50 log(1019.6) = 364.35 in Example ??. The
difference arises from approximations such as log(1+λ0) ≈ λ0 and 1−1/(1+λ0) ≈ λ0.
The factor of two difference in the overall birth rate does not matter because we have
adjusted the mutation rate.

Limit Theorems. Our next goal is to find the limiting behavior of τ1. For sim-
plicity we consider only continuous time. Since the median is where the distribution
function crosses 1/2, (??) implies

P (τ1 > t11/2 + t|Ω0
∞) ≈ (1 + eλ0t)−1

and it follows that
P (τ1 > t11/2 + x/λ0|Ω0

∞) → (1 + ex)−1 (21)
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Figure 1: Results of 200 runs of the system with a0 = 1.02, a1 = 1.04, a2 = 1.06,
bi = 1.0, and u = 10−5. Smooth curves are the limit results for τi, i = 1, 2, 3.

For a comparison with simulation see Figure ??. The results for fixed V0 are similar
but the limit distributions is slightly different.

P (τ1 > t̄11/e + t|V0) ≈ exp(−eλ0t)

and it follows that
P (τ1 > t11/2 + x/λ0|V0) → exp(−ex)

The results for σ1 come from changing the value of u1 → u1λ2/a2.
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5 Mutation before detection?

Iwasa, Nowak, and Michor (2006) were interested in the probability that a mutation
conferring resistance to a particular treatment would occur before a cancer was de-
tected. To formulate this a math problem, let TM = min{t : Z0(t) = M}. Using
the calculation in (??), and noting that on the nonextinction event Ω0

∞, we have
Z0(t) ∼ V0e

λ0t implies Z0(TM − s) ≈ Me−λ0s, we find

P (τ1 > TM |Z0(s), s ≤ TM , Ω0
∞) = exp

(
−u1

∫ TM

0

Z0(t) dt

)
≈ exp

(
−Mu1

∫ ∞

0

e−λ0s ds

)
= exp (−Mu1/λ0) (22)

This answers our math question, but since the mutation to type 1 might die out, the
biologically relevant question is to compute the probability that Z1(TM) > 0. To do
this we note that mutations to type-1 occur at rate u1Me−λ0s and by (??) will not
die out by time TM with probability λ1/(a1 − b1e

−λ1s). The number of mutations to
type-1 that survive to time TM is Poisson with mean

µ(M) = Mu1

∫ ∞

0

e−λ0s λ1

a1 − b1e−λ1s
ds (23)

and it follows that
P (Z1(TM) = 0|Ω0

∞) = exp(−µ(M))

The integral in (??) cannot be evaluated exactly but it is useful to change variables
t = exp(−λ0s), dt = −λ0 exp(−λ0s) ds to rewrite it as

µ(M) =
Mu1

λ0

∫ 1

0

λ1

a1 − b1tλ1/λ0
dt (24)

Logic tells us that P (τ1 > TM ||Ω0
∞) ≤ P (Z1(TM) = 0|Ω0

∞), so it is comforting to note
that the integrand in (??) is ≤ 1.

To get an upper bound we note that Z1(TM) = 0 implies σ1 > TM and type 1
mutations live forever with probability λ1/a1, so using the reasoning that led to (??)

P (Z1(TM) = 0|Ω0
∞) ≤ P (σ1 > TM |Ω0

∞) = exp(−Mu1λ1/a1λ0) (25)

an inequality which can also be derived bynoting that λ1/a1 is a lower bound on the
integrand.

Example 4. Leder et al. (2011) compute the probability of pre-existing resistance in
chronic myeloid leukemia. They choose M = 105 cells as the threshold for detection,
and on the basis of in vitro studies set a0 = 0.008, b0 = 0.003, and λ = 0.005 with
time measured in years. They are interested in particular nucleotide substitutions, so
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they set the mutation rate per birth at 10−7, or at rate u = 0.008 · 10−7 = 8× 10−10.
In the case of the mutation T315I, which changes Threonine to Isoleucine at position
315, the growth parameters are a1 = 0.0088 and b1 = 0.003, so λ1 = 0.0058. In this
case Mu1/λ0 = 105 · 0.008 · 10−7/0.005 = 0.016, and λ1/a1 = 0.659, se we have

P (τ1 ≤ TM |Ω0
∞) = 1− e−0.016 = 0.015873

P (σ1 ≤ TM |Ω∞) = 1− e−0.010544 = 0.01049

P (Z1(TM) > 0|Ω∞) = 0.01263

where the last answer comes from evaluating the integral in (??) numerically. The
mutation with the lowest growth rate that they consider is L248R, which changes
Leucine to Argnine at position 248. It has growth parameters a1 = 0.0061 and
b1 = 0.003, so λ1 = 0.0031, λ1/a1 = 0.581 and the results in this case are

P (τ1 ≤ TM |Ω0
∞) = 1− e−0.016 = 0.015873

P (σ1 ≤ TM |Ω∞) = 1− e−0.008131 = 0.00810

P (Z1(TM) > 0|Ω∞) = 0.01198
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6 Properties of the Gamma Function

The Gamma function is defined for α > 0 by

Γ(α) =

∫ ∞

0

tα−1e−t dt (26)

This quantity with 0 < α < 1 will show up in the constants of our limit theorems, so
we record some of its properties now. Integrating by parts

Γ(α + 1) =

∫ ∞

0

tαe−t dt =

∫ ∞

0

αtα−1e−t dt = αΓ(α) (27)

Since Γ(1) = 1 it follows that if n is an integer Γ(n) = (n − 1)!. Among the many
formulas for Γ, the most useful for us is Euler’s reflection formula

Γ(α)Γ(1− α) =
π

sin(πα)
(28)

Taking α = 1/2 we see that implies Γ(1/2) =
√

π. Letting α → 0 and using Γ(1−α) →
1

Γ(α) ∼ π

sin(πα)
∼ 1

α
(29)

where we have used sin x ∼ x as x → 0.
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7 Growth of Z1(t)

In this section we will examine the growth of the type 1’s under the assumption that
Z∗

0(t) = V0e
λ0t for t ∈ (−∞,∞). Here the star is to remind us that we have extended

Z0 to negative times.

Theorem 2. If we assume Z∗
0(t) = V0e

λ0t then as t →∞, e−λ1tZ∗
1(t) → V1 where V1 is

the sum of the points in a Poisson process with mean measure µ(x,∞) = cµ,1u1V0x
−α

where α = λ0/λ1,

cµ,1 =
1

a1

(
a1

λ1

)α

Γ(α) (30)

Here and what follows constants like cµ,1 will depend on the branching process pa-
rameters ai and bi, but not on the mutation rates ui.

Proof. Mutations to type 1 occur at times of a Poisson process with rate u1V0e
λ0s.

Theorem ?? implies a mutation at time s will grow to size ≈ eλ1(t−s)W1 by time t,
where W1 has distribution

W1 =d
b1

a1

δ0 +
λ1

a1

exponential(λ1/a1)

To add up the contributions, we associate with each point si in the Poisson process
an independent random variable yi with the same distribution as W1. This gives us
a Poisson process which on (−∞,∞)× (0,∞) (we ignore the points with yi = 0) has
intensity

u1V0e
λ0s · (λ1/a1)

2e−(λ1/a1)y

Here, one the two factors of λ1/a1 comes from P (W1 > 0), the other from the expo-
nential density function.

A point (s, y) makes a contribution e−λ1sy to limt→∞ e−λ1tZ∗
1(t). Points with

e−λ1sy > x will contribute more than x to the limit. The number of such points is
Poisson distributed with mean∫ ∞

−∞
u1V0e

λ0s λ1

a1

e−(λ1/a1)xeλ1s

ds

where one factor of λ1/a1 has disappeared since we are looking at the tail of the
distribution. Changing variables

λ1

a1

xeλ1s = t,
λ1

a1

xλ1e
λ1sds = dt

and noticing s = (1/λ1) log(ta1/xλ1) implies e(λ0−λ1)s = (a1t/λ1x)(λ0/λ1)−1 the integral
above becomes

= u1V0

∫ ∞

0

(
a1t

λ1x

)(λ0/λ1)−1

e−t dt

λ1x

=
u1V0

a1

(
a1

λ1

)λ0/λ1

x−λ0/λ1

∫ ∞

0

t(λ0/λ1)−1e−t dt

13



which completes the proof.

7.1 Laplace transform proof of Theorem ??.

The previous proof is useful for the insights it gives into the limit V1, but to analyze
the size of later waves using mathematical induction, it is convenient to approach
things using Laplace transforms.

Theorem 3. If we assume Z∗
0(t) = V0e

λ0t for t ∈ (−∞,∞) then e−λ1tZ∗
1(t) → V1 as

t →∞ where V1 has E(e−θV1|V0) = exp(−ch,1u1V0θ
α) with

ch,1 = cµ,1Γ(1− α) =
1

a1

(
a1

λ1

)α

Γ(α)Γ(1− α) (31)

If V0 is exponential(λ0/a0) then E exp(−θV1) = (1 + ch,1u1(a0/λ0)θ
α)−1.

Using the identity Γ(1 + α) = αΓ(α) from (??) one can see that this is the same as
the constant ch,1 defined at the bottom of page 43 in Durrett and Moseley (2010).

Proof. The second conclusion follows from the first and (??). Let Z̃1(t) be the number
of 1’s at time t in the branching process with Z0(0) = 0, Z1(0) = 1, and let φ̃1,t(θ) =

Ee−θZ̃1(t).

Lemma 2. E
(
e−θZ∗1 (t)|V0

)
= exp

(
−u1

∫ t

−∞ V0e
λ0s(1− φ̃1,t−s(θ)) ds

)
Proof. We begin with the corresponding formula in discrete time:

E
(
e−θZ∗1 (n)

∣∣Z0(m), m ≤ n
)

=
n−1∏

m=−∞

∞∑
km=0

e−u1Z0(m) (u1Z0(m))km

km!
φ̃1,n−m−1(θ)

km

=
n−1∏

m=−∞

exp
(
−u1Z0(m)(1− φ̃1,n−m−1(θ))

)
= exp

(
−u1

n−1∑
m=−∞

Z0(m)(1− φ̃1,n−m−1(θ))

)

Breaking up the time-axis into intervals of length h and letting h → 0 and using
Z∗

0(s) = V0e
λ0s gives the result in continuous time.

Replacing θ by θe−λ1t in Lemma ?? and letting t →∞

E
(
e−θV1|V0

)
= lim

t→∞
exp

(
−u1V0

∫ t

−∞
eλ0s(1− φ̃1,t−s(θe

−λ1t)) ds

)
(32)

14



To calculate the limit, we note that by (??)

Z̃1(t− s)e−λ1(t−s) ⇒ b1

a1

δ0 +
λ1

a1

exponential(λ1/a1)

so multiplying by e−λ1s and taking the Laplace transform, we have

1− φ̃t−s(θe
−λ1t) → λ1

a1

∫ ∞

0

(1− e−θx)(λ1/a1)e
λ1se−xeλ1sλ1/a1dx (33)

Using this in (??) and interchanging the order of integration

E
(
e−θV1|V0

)
= exp (−u1V0h(θ)) (34)

where

h(θ) = (λ2
1/a

2
1)

∫ ∞

0

(1− e−θx)

[∫ ∞

−∞
eλ0seλ1se−xeλ1sλ1/a1ds

]
dx. (35)

Changing variables u = xeλ1sλ1/a1, eλ1sds = a1 du/(λ2
1x), the inside integral

=

∫ ∞

0

a1

xλ2
1

(
a1u

λ1x

)λ0/λ1

e−u du

Inserting this in (??) and recalling α = λ0/λ1, we have

h(θ) =
1

a1

(
a1

λ1

)α ∫ ∞

0

(1− e−θx)x−α−1 dx

∫ ∞

0

uαe−u du

Comparing with (??) and remembering Γ(α + 1) = αΓ(α) (integrate by parts) gives

h(θ) = cµ,1

∫ ∞

0

(1− e−θx)αx−α−1 dx (36)

Changing variables x = y/θ, dx = dy/θ we have

h(θ) = cµ,1θ
α

∫ ∞

0

(1− e−y)αy−α−1 dy

Integrating by parts it follows that

h(θ) = cµ,1θ
α

∫ ∞

0

e−yy−α dy = cµ,1Γ(1− α)θα = ch,1θ
α (37)

which completes the proof of the theorem.
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Theorems ?? and ?? results show that e−λ1tZ∗
1(t) → V1 so the two descriptions

of the limit must coincide. To begin to check this, we note that if S is the sum of
Poisson mean λ number of independent random variables with distribution µ then

Ee−θS =
∞∑

k=0

e−λ λk

k!

(∫
e−θxµ(dx)

)k

= exp

(
−λ + λ

∫
e−θxµ(dx)

)
= exp

(
−
∫

(1− e−θ)λµ(dx)

)
Let B = cµ,1αu1V0, λε =

∫∞
ε

Bx−α dx and µε have density λ−1
ε Bx−α on (ε,∞). If

Sε is the sum of Poisson mean λε number of independent random variables with
distribution µε then

Ee−θSε = exp

(
−
∫ ∞

ε

(1− e−θ)Bx−α dx

)
Letting ε → 0 we see that if V1 is the sum of the points in a Poisson process with
mean measure µ(x,∞) = Bx−α then the V1 defined in Theorem ?? has

Ee−θV1 = exp

(
−
∫ ∞

0

(1− e−θx)Bx−α−1 dx

)
Combining (??) and (??) we see that the two V1’s have the same distribution.

While the proof of Theorem ?? is fresh in the reader’s mind we will prove:

Theorem 4. As M →∞, Z∗
1(TM)/(Mu1)

λ1/λ0 converges to U1 in distribution where

E(exp(−θU1)) = exp(−ch,1u1θ
λ0/λ1)

and cµ,1 is the constant in (??).

Proof. Working backward from TM , assuming deterministic growth of type-0 cells at
rate eλ0s, and using the proof of Lemma ??, we can show

E exp

(
− θZ∗

1(TM)

(Mu1)λ1/λ0

)
≈ exp

(
−u1

∫ 0

−∞
Meλ0s(1− φ̃−s(θ(Mu1)

−λ1/λ0)) ds

)
We are interested in finding

lim
M→∞

exp

[
−u1

∫ 0

−∞
Meλ0s(1− φ̃−s(θ(Mu1)

−λ1/λ0)) ds

]

16



First, we make the change of variables s = t− 1
λ0

log(Mu1).

= lim
M→∞

exp

[
−u1

∫ 1
λ0

log(Mu1)

−∞
eλ0t(1− φ̃ 1

λ0
log(Mu1)−t(θ(Mu1)

−λ1/λ0)) dt

]

Taking the limit as M →∞ is essentially the same calculation as (??).

= exp

[
−u1

∫ ∞

−∞
eλ0t λ1

a1

∫ ∞

0

(1− e−θx)(λ1/a1)e
λ1te−xeλ1tλ1/a1 dx dt

]
We conclude by recognizing this double integral as h(θ) defined in (??) and computed
in (??).

7.2 Power law tail?

To demonstrate the usefulness of having two descriptions of the limit, we will now
show

Theorem 5. Suppose Z0(t) = V0e
λ0t for t ∈ (−∞,∞) then

P (V1 > x|V0) ∼ cµ,1u1V0x
−α

If V0 is exponential(λ0/a0) then P (V1 > x) ∼ cµ,1u1(a0/λ0)x
−α.

Proof. The second result follows from the first by taking expected value. It is clear
from Theorem ?? that

P (V1 > x|V0) ≥ cµ,1u1V0x
−α.

To show that V1 has a power law tail, we note that as θ → 0,

1− E(e−θV1|V0) ∼ cµ,1Γ(1− α)u1V0θ
α (38)

and then use a Tauberian theorem from Feller Volume II (pages 442–446). Let

ω(λ) =

∫ ∞

0

e−λxdU(x)

Lemma 3. If L is slowly varying and U has an ultimately monotone derivative u,
then ω(λ) ∼ λ−ρL(1/λ) if and only if u(x) ∼ xρ−1L(x)/Γ(ρ).

To use this result we note that if φ(θ) is the Laplace transform of the probability
distribution F , then integrating by parts gives∫ ∞

0

e−θxdF (x) = (e−θx)(F (x)− 1)
∣∣∞
0
− θ

∫ ∞

0

e−θx(1− F (x)) dx

17



so we have

1− φ(θ) = θ

∫ ∞

0

e−θx(1− F (x)) dx

Using (??), it follows that (1 − φ(θ))/θ ∼ cθα−1. Apply Lemma ?? with ω(θ) =
(1− φ(θ))/θ, u(x) = 1− F (x) which is decreasing and ρ = 1− α we conclude

1− F (x) ∼ c

Γ(1− α)
x−λ0/λ1

which proves the desired results.

The result in Theorem ?? was discovered by Iwasa, Noawk, and Michor (2006)
using simulation. The next graph gives part e of their Figure 3.

While the simulation result may be convincing, the power law tail is due to the
extension to (−∞, 0) If we truncate the integral in the proof of Theorem ?? at 0 then
the calculation at the end gives∫ ∞

0

u1V0e
λ0s λ1

a1

e−(λ1/a1)xeλ1s

ds

=
u1V0

a1

(
a1

λ1

)λ0/λ1

x−λ0/λ1

∫ ∞

λ1x/a1

t(λ0/λ1)−1e−t dt

so when λ1x/a1 is large the tail decays exponentially with a power law correction.

Insert results for mean
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8 Growth of Zk(t) and τk for k ≥ 2

Let αk = λk−1/λk. Generalizing (??) we define

ch,k =
1

ak

(
ak

λk

)αk

Γ(αk)Γ(1− αk) (39)

Let cθ,0 = a0/λ0, µ0 = 1 and inductively define for k ≥ 1 cθ,k = cθ,k−1c
λ0/λk−1

h,k and

µk = µk−1u
λ0/λk−1

k =
k∏

j=1

u
λ0/λj−1

j .

Theorem 6. Suppose Z∗
0(t) = V0 for t ∈ (−∞,∞) where V0 is exponential(λ0/a0).

Then e−λktZ∗
k(t) → Vk a.s. with

Ee−θVk =
(
1 + cθ,kµkθ

λ0/λk
)−1

(40)

and hence P (Vk > x) ∼ cV,kµkx
−λ0/λk , where cV,k = cθ,k/Γ(1− λ0/λk).

Proof. The result for P (Vk > x) follows from (??) and Lemma ??. We will prove the
formula for Ee−θVk by induction. When k = 1, cθ,1 = ch,1a0/λ0. so this follows from
Theorem ??. Suppose now that k ≥ 2. Let Fk−1

t be the σ-field generated by Z∗
j (s) for

j ≤ k − 1 and s ≤ t. Let Z̃k(t) be the number of type k’s at time t in the branching

process with Z̃k(0) = 1 and Z̃j(0) = 0 for j ≤ k − 1, and let φ̃k,t(θ) = Ee−θZ̃k(t). The
reasoning that led to Lemma ?? implies

E(e−θZ∗k(t)|Fk−1
t ) = exp

(
−uk

∫ t

−∞
Z∗

k−1(s)(1− φ̃k,t−s(θ)) ds

)
Replacing Z∗

k−1(s) by eλk−1sVk−1, θ by θe−λkt, and letting t →∞

E
(
e−θVk |Fk−1

∞
)

= lim
t→∞

exp

(
−ukVk−1

∫ t

−∞
eλk−1s(1− φ̃k,t−s(θe

−λkt)) ds

)
(41)

At this point the calculation is the same as the one in the proof of Theorem ?? with
1 and 0 replaced by k and k − 1 respectively. Combining (??) and (??) we conclude
that

E
(
e−θVk |Fk−1

∞
)

= exp
(
−ukVk−1ch,kθ

λk−1/λk
)

(42)

Taking expected value and using the result for k − 1

Ee−θVk =
(
1 + cθ,k−1µk−1(ukch,kθ

λk−1/λk)λ0/λk−1
)−1

=
(
1 + cθ,kµkθ

λ0/λk
)−1

which proves the result.
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Our next topic is the waiting time for the first type k + 1:

P (τk+1 > t|Fk
t ) = exp

(
−
∫ t

0

Z∗
k(s) ds

)
≈ exp(−uk+1Vke

λkt/λk)

Taking expected value and using Theorem ??

P (τk+1 > t|Ω0
∞) =

(
1 + cθ,kµk(uk+1e

λkt/λk)
λ0/λk

)−1

Using the definition of µk+1 the median tk+1
1/2 is defined by

cθ,kµk+1 exp(λ0t
k+1
1/2 )λ

−λ0/λk

k = 1

and solving gives

tk+1
1/2 =

1

λ0

log

(
λ

λ0/λk

k

cθ,kµk+1

)
(43)

As in the case of τ1

P (τk+1 > tk+1
1/2 + x/λ0) ≈ (1 + ex)−1

When k = 0, cθ,0 = a0/λ0 and we have the result in (??)

t11/2 =
1

λ0

log

(
λ2

0

a0u1

)
To complete the picture, we need to relate tk+1

1/2 to tk1/2. To do this we use the recursions
introduced before Theorem ?? to get

tk+1
1/2 =

1

λk

log λk +
1

λ0

log

(
1

cθ,k−1c
λ0/λk−1

h,k µku
λ0/λk

k+1

)

=
1

λk

log

(
λk

uk+1

)
+

1

λk−1

log

(
1

ch,kλk−1

)
+

1

λ0

log

(
λ

λ0/λk−1

k−1

cθ,k−1µk

)
Using (??) we have

tk+1
1/2 − tk1/2 =

1

λk

log

(
λ2

k

akuk+1

)
+

1

λk−1

log

(
ak

λk−1Γ(αk)Γ(1− αk)

)
(44)

If we are waiting for σk+1 the time of the first successful type k +1 mutation then we
need to replace uk+1 by uk+1λk+1/ak+1 and the recursion for its median becomes

sk+1
1/2 − sk

1/2 =
1

λk

log

(
λ2

kak+1

akuk+1λk+1

)
+

1

λk−1

log

(
ak

λk−1Γ(αk)Γ(1− αk)

)
(45)
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Discrete time. In contrast (S5) in Bozic et al. (2010) says

σj+1 − σj =
log
(
1 +

1−qj

bju(1−qj+1)
·
(
1− 1

bj(2−u)

))
log[bj(2− u)]

≈ 1

λj

log

(
λ2

jbj+1

bjuj+1λj+1

)
(46)

where in the second step we have used the reasoning that led to (??). The authors
do not explain the reasoning that led to this formula, but comparing with (??) the
formula implies that that when we shift time to σj we do not reduce the problem for
waiting for σ1. This is not correct. The initial wave is started by one cell while in
later waves the first successful type k mutation will soon be followed by others.

We have dj = (1− s)j/2 and bj = 1− dj so

qj =
dj

bj

=
(1− s)j/2

1− (1− s)j/2
≈ 1− js

1 + js
≈ 1− 2js

Since bj ≈ 1/2, it follows that

1− qj

bju(1− qj+1)
≈ 2j

u(j + 1)

Using λj = bj(2−u)−1 ≈ js, log(bj(2−u)) ≈ log(1+js) ≈ js and 1−1/(bj(2−u)) ≈
js, we have (S6) from Bozic et al. (2010)

σj+1 − σj ≈
T

js
log

(
2j2s

u(j + 1)

)
(47)

where T is the generation time. The apparent extra factor of 2 here compared to
(??) is due to the fact that uj+1 = bju ≈ u/2. Bozic et al. (2010) suggest that we can
simplify this to

σj+1 − σj ≈
T

js
log

(
2js

u

)
(48)

because log(j/(j + 1)) is much smaller than log(2js/u).

Example 5. Bozic et al. (2010) argue that appropriate parameters for colon cancer
are u = 10−5, s = 10−2, and T = 4 days. In this case (??) gives

σ2 − σ1 = 400 log(2000) = 3040 days = 8.33 years

σ3 − σ2 = 200 log(4000) = 1659 days = 4.54 years

which agrees with the numbers given on page 18546 of their paper. In contrast (??)
gives

σ2 − σ1 = 400 log(1000) = 2763 days = 7.57 years

σ3 − σ2 = 200 log(8000/3) = 1577 days = 4.32 years

so in the first case (??) introduces a significant error. To see what impact that the
missing term has in the second case we note that using (??) with k = 1, λj = (j +1)s
we have α1 = 1/2, a1 = b1 = 1/2, and Γ(1/2) =

√
π so the missing term is

100 log(50/π) = 276.72

21



9 Transitions between waves

In this section we investigate the time Tk = inf{t ≥ 0 : Zk(t) > Zj(t) for all j 6= k}
at which the type-k’s first become dominant in the population. Our first step is to
remove the mutation rate from the limit distribution.

Theorem 7. Suppose Z∗
0(t) = V0 for t ∈ (−∞,∞) where V0 is exponential(λ0/a0)).

Then µ
−λk/λ0

k e−λktZ∗
k(t) → V̄k a.s. with

Ee−θV̄k =
(
1 + cθ,kθ

λ0/λk
)−1

Recall µk =
∏k

j=1 u
λ0/λj−1

j . For simplicity we will consider the special case in which
all the ui = u and hence

µ
−λk/λ0

k = (1/u)ρ(k) where ρ(k) =
k−1∑
j=0

λk

λj−1

The result in Theorem ?? suggests that for large t

log Zk(t) ≈ λkt− ρ(k) log(1/u) + log(V̄k)

Let L = log(1/u). If we speed up time by a factor of L, divide both sides by L then
we have

Theorem 8. Let βk = ρ(k)/λk =
∑k−1

j=0 1/λj. As u → 0

1

L
log+ Zk(Lt) → zk(t) = λk(t− βk)

+

Here x+ = max{0, x} takes care of the fact that log(0) = −∞. A picture tells the
story much better than formulas:
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In words Zk−1(Lt) hits 1/u at time ≈ βk. At this point the first type k is born
and the population grows like eλkt, i.e., its logarithm grows like λkt. It is clear from
the definition that

βk − βk−1 =
1

λk−1

(49)

so the process is accelerating, i.e., the increments between the birth times for succes-
sive waves are decreasing.

Wave k overtakes wave k−1 at the time tk > βk when λk(t−βk) = λk−1(t−βk−1)
or

(λk − λk−1)tk = λkβk − λk−1βk−1

In the special case λk = λ0 + kb this becomes

btk = bβk +
1

λk−1

(βk − βk−1)

so using (??)
tk = βk + b−1

Note that this is a constant time after the time the first type k appears:

Theorem 9. If uj ≡ u and λk = λ0 + kb then Tk/L → βk + b−1
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10 Heterogeneity

The point process representation of V1 = limt→∞ e−λ1tZ∗
1(t) in Theorem ?? is very

useful for considering tumor heterogeneity. One reason for this is that it allows us to
make a connection between V1 and one-sided stable laws.

Theorem 10. Let Y1, Y2, . . . be independent and identically distributed nonnegative
random variables with P (Yi > x) ∼ cx−α where 0 < α < 1. Let Sn = Y1 + · · · + Yn.
Then

Sn/n
1/α ⇒ W

where W is the sum of the points in a Poisson process with mean measure µ(z,∞) =
cx−α.

Why is this true? |{i ≤ n : Yi ≥ xn−1/α}| is ≈ Binomial(n, cx−α/n) and hence
converges to Poisson(cx−α).

Before turning to the consequences of this observation we note that since Theorem
?? assumes Z∗

0(t) = V0e
λ0t and then derives a representation for V1 = limt→∞ e−λ1tZ∗

1(t),
it follows from Theorem ?? and induction that Vk is the sum of points in a Poisson
process with mean measure µ(x,∞) = Ckx

−α where α = λk−1/λk. Fortunately the
value of the constant is not important for the measures of diversity we consider.

10.1 Simpson’s index

We define Simpson’s index to be the probability two randomly chosen individuals in
wave k are descended from the same mutation. In symbols,

R =
∞∑
i=1

X2
i

V 2
k

where X1 > X2 > . . . are points in the Poisson process and Vk is the sum. The result
for the mean is much simpler than one could reasonably expect.

Theorem 11. ER = 1− α where α = λk−1/λk for wave k.

To prove this we apply results of Fuchs, Joffe and Teugels (2001) who considered

Rn =
n∑

i=1

Y 2
i

S2
n

where the Yi and Sn are as in Theorem ??, and showed that

lim
n→∞

ERn = 1− α

To complete the proof one has to show that limn→∞ERn = ER.

24



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10
t=70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

t=90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10
t=110

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15
t=130

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15
t=!

Simpsons Index

Figure 2: Empirical distribution of Simpson’s Index for wave 1 at times t =
70, 90, 110, 130,∞ when 1− α = 1/11.

Our next topic is the distribution of R. Figure ?? shows a histogram of Simpson’s
index for wave 1 in a number of simulations. Logan, Mallows, Rice and Shepp (1973)
considered the “self-normalized sums”

Sn(p) =

∑n
i=1 Xi

(
∑n

j=1 Xp
j )1/p

which has Sn(2) = R
−1/2
n . They proved convergence in distribution and identified

the Fourier transform of the limit. Despite considerable effort they were not able to
calculate the limiting density f of Sn(2), but in the case of interest to us they could
infer that (see their (5.7), (5.9), and the caption of Figure 2)

f(y) ∼ ae−by2

as y →∞
∼ π−1sin(πα)(y − 1)1−α as y ↓ 1

Differentiating P (Rn < x) = P (Sn(2) > x−1/2) we see that the density g of R has

g(x) =
1

2
x−3/2f(x−1/2)

and hence we have

g(x) ∼ a

2
x−3/2 exp(−b/x) as x ↓ 0

∼ c(1− x)1−α as x ↑ 1
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Figure 3: Density function for Sn(2) when α = 0.15

For the second formula note that x−1/2 has derivative−1/2 at 1 so x−1/2−1 ∼ (1−x)/2
as x ↑ 1.

Figure gives a picture of the density f in a special case. The constant ` which
gives the relative size of the left tail of the distribution is 0, i.e., our situation with
nonnegative random variables. The bumps at

√
2 and

√
3 suggests there will not be

a simple formula for the density function

10.2 Largest clone

Using the notation of Theorem ?? let Un = max1≤i≤n Yi/Sn be the contribution of
the largest term to the sum. Continuing to travel back in time, Darling (1952) has
shown the following (see his Theorem 5.1)

Theorem 12. As n → ∞, U−1
n → T where T has characteristic function eit/fα(t)

where

fα(t) = 1 + α

∫ 1

0

(1− eitu)u−(α+1) du

One cannot invert the characteristic function, but one can compute the moments

ET = 1/(1− α) and var (T ) = 2/(1− α)2(2− α)

It is remarkable that ET is so simple. Unfortunately T = lim U−1
n . To help interpret

the next graph note that since 1/t is convex, Jensen’s inequality implies E(1/T ) >
1/ET = 1− α.
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Figure 4: Monte Carlo estimates for E(1/Un) and EUn plotted versus 1/(1− α) and
1− α.
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