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A class of rescaled competing species processes

We define a sequence £V, N € N of rescaled competing species models,
which can be described as perturbations of rescaled voter models.
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A class of rescaled competing species processes

We define a sequence f{v, N € N of rescaled competing species models,
which can be described as perturbations of rescaled voter models.
In the Nth model:

@ space: Z/N,

@ state-space of each site x € Z/N: {0,1} respectively {g .g }-
Think of: individual with political opinion 0 or 1
or: two populations 0 and 1.

e state of the system at time t: ¢V : Z/N — {0,1}, i.e.
¢N(x) gives state of x at time t:

=[]
=
=R
z\m:
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The dynamics of the process
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The dynamics of the process

@ neighbours of x: y ~ x iff 0 < |x — y| < N~1/2

N=1: . O » o ———— o>
N=4: g o o oooooo0600-00o—o—o oo o>
N =16: -

Each x has 2¢(N)N/2, ¢(N) Nopey neighbours.
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The dynamics of the process

@ neighbours of x: y ~ x iff 0 < |x — y| < N~1/2

N=1: . O » o ———— o>
N=4:
N =16: -

Each x has 2¢(N)N/2, ¢(N) Nopey neighbours.

Long-range interaction takes into account the densities of the neighbours
of x € Z/N at long-range, i.e.

1
M0z ———— N 1(My) =), i=0,1
M08 = g 2 W) =)

yiy~x

Note in particular:
° ngi(N)gland
° ﬁ)(N) + fl(N) =1
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The dynamics of the process

@ neighbours of x: y ~ x iff 0 < |x — y| < N~1/2
N=1: . » —— o>

N:43o—o—o—o—o—o—o—o—o———.—.——o—o—o—o—o—o—>
N=16: e e @ »>-

Each x has 2¢(N)N/2, ¢(N) Nopey neighbours.

Long-range interaction takes into account the densities of the neighbours

of x € Z/N at long-range, i.e.
1
M ey — = 1eN(y) = i), i=0,1.
M) = o 2 1) =)

yiy~x

Note in particular:
° ngi(N)gland
° ﬁ)(N) + fl(N) =1
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The evolution of the process in time is given via infinitesimal rates. c(x,¢)
denotes the rate at which the coordinate £(x) flips from 0 to 1 or from 1
to 0 when the system is in state £&. Then the process &; will satisfy

P(&(x) # Go(x)) = c(x. &)t + o(t) for ¢ | OF.
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The evolution of the process in time is given via infinitesimal rates. c(x,¢)
denotes the rate at which the coordinate £(x) flips from 0 to 1 or from 1
to 0 when the system is in state £&. Then the process &; will satisfy

P(&e(x) # Eo(x)) = c(x, &)t + o(t) for ¢ | 0.
Flip rates of the unscaled voter process:

0 — 1 at rate ¢(x,&) = fi(x,§),
1 — 0 at rate c(x,&) = fo(x, &).
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The evolution of the process in time is given via infinitesimal rates. c(x,¢)
denotes the rate at which the coordinate £(x) flips from 0 to 1 or from 1
to 0 when the system is in state £&. Then the process &; will satisfy

P(&e(x) # Eo(x)) = c(x, &)t + o(t) for ¢ | 0.
Flip rates of the unscaled voter process:

0 — 1 at rate ¢(x,&) = fi(x,§),
1 — 0 at rate c(x,&) = fo(x, &).

Flip rates of the unscaled biased voter process:

0 — 1 at rate ¢(x,§) = (1 + 7)f(x,§),
1 — 0 at rate c(x, &) = fo(x,§).
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Graphical representation of the long-range voter process

Example: N =4
t A

A

A

A

A

YY

L4
—_
»lw
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Graphical representation of the long-range voter process
Example: N =4

t i

A

A

A

A

YY

Y

— .
-1

0 2
~—— ~——
neighbours of 0

@ rate of an arrow to 0 from %:

Hlw
N[
A=
=
Hlw
=
Hlor

[y

1 1
"no. of neighbours” — 4
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Graphical representation of the long-range voter process
Example: N =4

t A
o 3 1 1 1 1 3 5
-1 -3 =2 -3 0 7z 3 3 1 3
~—— ~——
neighbours of 0
1 1 1
@ rate of an arrow to 0 from 5: . =z
0 2 "no. of neighbours” — 4
@ rate of an arrow to site O: i X "no. of neighbours” =1
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Graphical representation of the long-range voter process
Example: N =4

t A

A

1—0——‘—

3 1 1 1 3 5
-1 -3 =2 -3 0 7z 3 3 1 3
~~—— ~—
neighbours of 0
1. 1 -1
e rate of an arrow to 0 from 3: "no. of neighbours” — 4
@ rate of an arrow to site 0: % X "no. of neighbours” =1
@ rate of an arrow to 0, at time t = 0, that changes colour at 0:
1 ” . no_ l
"no. of neighbours’ X "no. of red neighbours” = 35
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ecall:
e Flip rates of the unscaled biased voter process:

0 — 1 at rate ¢(x,&) = (14 7)f(x,§),
1 — 0 at rate c(x, &) = fo(x, &).
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Recall:
e Flip rates of the unscaled biased voter process:

0 — 1 atrate ¢(x,§) = (1 + 7)f(x,§),
1 — 0 at rate c(x, &) = fo(x, §).

@ Rescaling for the biased voter process::
0 — 1 atrate c(x,&) =N (1 + %) fl(N)(X,f)

= NV (x,€) + £V (x, )7,
1 0 at rate c(x, &) = NEMV(x, €).
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Recall:
e Flip rates of the unscaled biased voter process:

0 — 1 at rate ¢c(x,&) = (L + 7)f(x,§),
1 — 0 at rate c(x, &) = fo(x, §).

@ Rescaling for the biased voter process::
0 — 1 atrate c(x,&) =N (1 + %) fl(N)(x,f)
N N
= NEM (.6 + 5 (x.€)r,
1 — 0 at rate ¢(x,§) = NfO(N)(X,f).
o Adding more general perturbations:
0— 1at rate N 4 M [ (A1),
1 0ot rate N 4 MG (1)

N) . .
where Gi( ),/ = 0,1 are power series on [0, 1],
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6Mx) =3 almtNxm i =0,1,x€[0,1]
m=0

with a(m+ N) satisfying certain summability and convergence conditions,

umformly in N > Np. As a result define

Gi(x) = N'E)noo G (X) Z I\Ilinoo ag’"ﬂ”v)x’" — Z oz,(-mH)x’"
m=0 m=0

for x € [0,1].
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The object of interest

Approximate density A(g,{") for the configurations &JV:

AEM) () = SNy, xeZ/N.

yy~x

[y iy ~x}

Note: A(ﬁ?’)(x) = fl(N) (X,f{\’).

By linearly interpolating between sites we obtain approximate densities
A(EMY(x) € [0,1] for all x € R.

Notation
Set C; = {f : R — [0, 1] continuous} and let C1 be equipped with the
topology of uniform convergence on compact sets.

We obtain that t +— A(¢N) is cadlag Ci-valued.
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Theorem
Suppose that A(&)) — uo in C1 and that G,-(N), i = 0,1 satisfy appropriate
Hypotheses. Then

o (A(¢N):t>0) are C-tight as cadlag C1-valued processes.

o The limit points of A(¢N) are continuous Cy-valued processes u;

which solve
ou Au .
FTire + (1 —wv)u{Go(u) — Gi(1 — uv)} + /2u(l — u)W

with initial condition ug.

o If we assume additionally | ug(x)dx < oo, then uy is the unique in
law [0, 1]-valued solution to the above SPDE.
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Example 1: The Lotka-Volterra model

0 — 1 at rate ¢(x,§) = fi(x,§)

1 — 0 at rate c(x, &) = fo(x,€) (A(x,&) + a1ofo(x,£))

» The first factor of the rate represents the strength of the
instantaneous replacement by a particle of opposite type.

» The governs the density-dependent mortality
of a particle.

> fy describes the effect of intraspecific competition,
> ag1fi the effect of interspecific competition.
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Rewrite, using fo + 1 =1,
0 — 1 at rate ¢(x,&) = A(x, &) (fo(x, &) + a1 fi(x, &))
= f(x,€) (1 + (201 — 1)A(x.€))
1 — 0 at rate c(x,&) = fo(x,&) (A(x,&) + a1ofo(x,£))
= fo(x, &) (L + (210 — 1)f(x,€))-

If we choose ag1, a1g close to 1, the Lotka-Volterra model can be seen as a
small perturbation of the voter model.
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Consider a sequence of rescaled Lotka-Volterra models with rates of change

0 — 1 at rate Nfl(N) (1 + <a(()lf) — 1) fl(N)) ,
1 — 0 at rate NfO(N) (1 + <a§’(¥) — 1) fO(N)> .
For i = 0,1 choose
1= with oM N2 g,
and rewrite
0 — 1 at rate NE™ 4 6§ (fl(N))2 = NEM 4 £ (V)

2
1 — 0 at rate NfO(N) + 9§N) (fO(N)) = Nﬁ.(N) + fO(N)
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The Theorem yields that the sequence of approximate densities A(¢N) is
tight and every solution solves

0 A .
a—i:%—i—(l—u)u{ﬁou— Y4 2u(1 — o)W
with initial condition uy. Uniqueness in law holds for initial conditions of
finite mass.
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Literature Review

@ This paper is an extension of results of Mueller and Tribe [3]
(d =1, voter processes with nonnegative bias).
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Literature Review

@ This paper is an extension of results of Mueller and Tribe [3]
(d =1, voter processes with nonnegative bias).
@ In Cox and Perkins [1] it was shown that rescaled Lotka-Volterra

models with long-range interaction converge weakly to
super-Brownian motion with linear drift. They consider

e low density regime
e weak limits for measure-valued processes

1
XM=5 > &
x€Z/(MyV'N)

with My/v/N — oo (for d = 1)
o We consider My = v/N (we also get X converges to u.dt in the
vague topology).
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e Additionally, [1] consider fixed kernel models in dimensions d > 2
respectively d > 3. In Cox and Perkins [2], the results of [1] for d > 3
are used to relate the limiting super-Brownian motions to questions of
coexistence and survival of a rare type in the original Lotka-Volterra
model.
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Example 2
Consider rescaled Lotka-Volterra models with long-range dispersal and
short-range competition, i.e. where

0 — 1 at rate Nfl(N) (géN) (()Ql)g( )> ,

10 at rate Nfy") <g1(’\’) 1 ol gN )) _

Here fi(N), i = 0,1 is the density corresponding to a long-range kernel and

g,-(N), i = 0,1 is the density corresponding to a fixed kernel.
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Example 3

Spatial versions of the Lotka-Volterra model

Introduced in Neuhauser and Pacala [4]. Consider

0—1atrate N

(N) £ (V)
A(/v)1 (67 a0 |
AW+ i
£V N N) (N
0 <f1( )+3(10)f0( )> .

N N
)\(N)fl( ) f( )

Choose competition parameters and fecundity parameter A near one:

N a a
N) _ N) __ 01 N) 10
)\():1+N, agl):].—FW’ ag_o)zl—{—w

The limit points of A(¢N), u; solve

A .
?u—i—(l—u)u{/\’—alo+u(301+alo)}+ 2u(1—u)W.
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Example 4
We obtain a class of SPDEs,

A .
g;l = ?u + (1 —uv)u{Go(u) — Gi(1 — u)} +/2u(l — u)W
with ug € C1, that can be characterized as the limit of perturbations of the
long-range voter model.
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Proof of the Theorem
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Proof Part 1. "How to get positive perturbations only.”

Recall:

oo

0— 1atrate N+ £ Z O,(()m+1,N)f1m7
=0

o0
1 — 0 at rate Nf0+f02u (m+1,N) ¢

m=0
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Proof Part 1: "How to get positive perturbations only.”

Recall:
0—1atrate Nfh +1 Z ('xémH’N)flm,

m=0
oo

1 — 0 at rate Nfy + fy ”(1
0

m=

m+1,N) fm
O .

Rewrite the rates in a form, where all resulting coefficients are
non-negative by using

—xM=(1-x) Zx and 1—-f =f.
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Lemma

We obtain
0—1atrate (N—0)f+h Z qj(O,m)Gflm—z, (1)
m>2,j=0,1
1—0 at rate (N—0)fy+ fo Z qj(l,m)ﬁﬂ)mQ’
m>2,j=0,1

(W), gkm) _ (i)

with corresponding 6 = 0\, q; q, ERY,j,k=0,1,m>2.
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Proof Part 2: Tightness and SPDE-limit

Step 1: Graphical construction

Suppose

0—1atrate -- +q(0m)ﬁ +---
WlthJG{O 1}, ¢ >0
Recall: £")(x, g) = oq NWN Sy LEN () =1), i=0,1.

The graphlcal construction uses independent families of i.i.d. Poisson
processes: E.g.,

( th’O(X;yl,...,ym):x,yl,...,ymeN_IZ)

qJ(O,m)

2¢(N)VN

At a jump of Q,_C"J’O(X; Yi,---,Ym) the voter at x adopts the opinion 1
provided that y1,..., yn are neighbours of x, y; has opinion j and all of
have opinion
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= stochastic integral equation for ¢/V:
&' (x) =€ (x)

+ Z /Ot {60 (SQ’_(X)) 01 (59’-()0) — 0 (59,—()()) 0o (dv—(y))}

yrx
x dPs(x; y)
t
UDSCEELID SEND DI A CA®)
k=0,1 m>2,ij=0,1y1,...,ym~x 0

X d; (5_9’—()/1)) ﬁél—k(fé\l—()/l)> dQM I (x;y1, .-, Ym)
1=2

for all x e N~1Z.
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Step 2: An approximate martingale problem

» Use: If N ~ Pois()), then Ny — At is a martingale with quadratic
variation (N); = \t.

» Integrate against test-functions ¢:(x), i.e. calculate
1
N erz//v Ee(x)pe(x),

= an approximate semimartingale decomposition for

b ezn EN () e (x).

Step 3: Green's function representation for A(¢N)

Choose "clever” test function ¢:(x)
= approximate Green's function representation for A(¢N).
Note: Taking N — oo we find the form of the SPDE.
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Step 4: Tightness estimates

Derive estimates on pth—moment differences, i.e. bound (I omit some

details here)
EHA(éé\I)(Z) - A(éé\l)(y)‘p} < Ce)\P|Z| <|t _ 5|P/24 + ’Z _y‘P/24 + N—P/24) )

Then use Kolmogorov's continuity theorem and the Arzela-Ascoli theorem.

Proof Part 3: Uniqueness in law

Apply a version of Dawson’s Girsanov theorem.
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thank you
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