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A class of rescaled competing species processes

We define a sequence ξNt ,N ∈ N of rescaled competing species models,
which can be described as perturbations of rescaled voter models.

In the Nth model:

space: Z/N,

state-space of each site x ∈ Z/N: {0, 1} respectively { u, u}.
Think of: individual with political opinion 0 or 1
or: two populations 0 and 1.

state of the system at time t: ξNt : Z/N → {0, 1}, i.e.
ξNt (x) gives state of x at time t:
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i.e. ξNt (−2/N) = u, ξNt (3/N) = u, etc.
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The dynamics of the process

neighbours of x : y ∼ x iff 0 < |x − y | ≤ N−1/2

-N = 1 : s u u u s
-N = 4 : s s s s s s s s s u u u u u s s s s s s
-N = 16 : q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q sssssssssq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

Each x has 2c(N)N1/2, c(N)
N→∞→ 1 neighbours.

Long-range interaction takes into account the densities of the neighbours
of x ∈ Z/N at long-range, i.e.

f
(N)
i (x , ξ) ≡ 1

|{y : y ∼ x}|
∑

y :y∼x

1(ξN(y) = i), i = 0, 1.

Note in particular:

0 ≤ f
(N)
i ≤ 1 and

f
(N)
0 + f

(N)
1 = 1.
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The evolution of the process in time is given via infinitesimal rates. c(x , ξ)
denotes the rate at which the coordinate ξ(x) flips from 0 to 1 or from 1
to 0 when the system is in state ξ. Then the process ξt will satisfy

P(ξt(x) 6= ξ0(x)) = c(x , ξ0)t + o(t) for t ↓ 0+.

Flip rates of the unscaled voter process:

0→ 1 at rate c(x , ξ) = f1(x , ξ),

1→ 0 at rate c(x , ξ) = f0(x , ξ).

Flip rates of the unscaled biased voter process:

0→ 1 at rate c(x , ξ) = (1 + τ)f1(x , ξ),

1→ 0 at rate c(x , ξ) = f0(x , ξ).
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Graphical representation of the long-range voter process
Example: N = 4
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rate of an arrow to 0 from 1
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= 1

4

rate of an arrow to site 0: 1
4 × ”no. of neighbours” = 1

rate of an arrow to 0, at time t = 0, that changes colour at 0:
1
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× ”no. of red neighbours” = 1
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Recall:

• Flip rates of the unscaled biased voter process:

0→ 1 at rate c(x , ξ) = (1 + τ)f1(x , ξ),

1→ 0 at rate c(x , ξ) = f0(x , ξ).

Rescaling for the biased voter process::

0→ 1 at rate c(x , ξ) = N
(

1 +
τ

N

)
f

(N)
1 (x , ξ)

= Nf
(N)
1 (x , ξ) + f

(N)
1 (x , ξ)τ ,

1→ 0 at rate c(x , ξ) = Nf
(N)
0 (x , ξ).

Adding more general perturbations:

0→ 1 at rate Nf
(N)
1 + f

(N)
1 G

(N)
0

(
f

(N)
1

)
,

1→ 0 at rate Nf
(N)
0 + f

(N)
0 G

(N)
1

(
f

(N)
0

)
,

where G
(N)
i , i = 0, 1 are power series on [0, 1],
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i.e.

G
(N)
i (x) =

∞∑
m=0

α
(m+1,N)
i xm, i = 0, 1, x ∈ [0, 1]

with α
(m+1,N)
i satisfying certain summability and convergence conditions,

uniformly in N ≥ N0. As a result define

Gi (x) ≡ lim
N→∞

G
(N)
i (x) =

∞∑
m=0

lim
N→∞

α
(m+1,N)
i xm =

∞∑
m=0

α
(m+1)
i xm

for x ∈ [0, 1].
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The object of interest

Approximate density A(ξNt ) for the configurations ξNt :

A(ξNt )(x) =
1

|{y : y ∼ x}|
∑

y :y∼x

ξNt (y), x ∈ Z/N.

Note: A(ξNt )(x) = f
(N)
1

(
x , ξNt

)
.

By linearly interpolating between sites we obtain approximate densities
A(ξNt )(x) ∈ [0, 1] for all x ∈ R.

Notation
Set C1 ≡ {f : R→ [0, 1] continuous} and let C1 be equipped with the
topology of uniform convergence on compact sets.

We obtain that t 7→ A(ξNt ) is càdlàg C1-valued.
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Theorem
Suppose that A(ξN0 )→ u0 in C1 and that G

(N)
i , i = 0, 1 satisfy appropriate

Hypotheses. Then(
A(ξNt ) : t ≥ 0

)
are C-tight as càdlàg C1-valued processes.

The limit points of A(ξNt ) are continuous C1-valued processes ut

which solve

∂u

∂t
=

∆u

6
+ (1− u)u {G0(u)− G1(1− u)}+

√
2u(1− u)Ẇ

with initial condition u0.

If we assume additionally
∫

u0(x)dx <∞, then ut is the unique in
law [0, 1]-valued solution to the above SPDE.
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Example 1: The Lotka-Volterra model

0→ 1 at rate c(x , ξ) = f1(x , ξ)(f0(x , ξ) + a01f1(x , ξ))

1→ 0 at rate c(x , ξ) = f0(x , ξ) (f1(x , ξ) + a10f0(x , ξ))

I The first factor of the rate represents the strength of the
instantaneous replacement by a particle of opposite type.

I The second factor of the rate governs the density-dependent mortality
of a particle.

. f0 describes the effect of intraspecific competition,

. a01f1 the effect of interspecific competition.
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Rewrite, using f0 + f1 = 1,

0→ 1 at rate c(x , ξ) = f1(x , ξ) (f0(x , ξ) + a01f1(x , ξ))

= f1(x , ξ) (1 + (a01 − 1)f1(x , ξ))

1→ 0 at rate c(x , ξ) = f0(x , ξ) (f1(x , ξ) + a10f0(x , ξ))

= f0(x , ξ) (1 + (a10 − 1)f0(x , ξ)) .

If we choose a01, a10 close to 1, the Lotka-Volterra model can be seen as a
small perturbation of the voter model.
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Consider a sequence of rescaled Lotka-Volterra models with rates of change

0→ 1 at rate Nf
(N)
1

(
1 +

(
a
(N)
01 − 1

)
f

(N)
1

)
,

1→ 0 at rate Nf
(N)
0

(
1 +

(
a
(N)
10 − 1

)
f

(N)
0

)
.

For i = 0, 1 choose

a
(N)
i(1−i) − 1 ≡

θ
(N)
i

N
with θ

(N)
i

N→∞→ θi

and rewrite

0→ 1 at rate Nf
(N)
1 + θ

(N)
0

(
f

(N)
1

)2
= Nf

(N)
1 + f

(N)
1 θ

(N)
0 f

(N)
1 ,

1→ 0 at rate Nf
(N)
0 + θ

(N)
1

(
f

(N)
0

)2
= Nf

(N)
0 + f

(N)
0 θ

(N)
1 f

(N)
0 .
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The Theorem yields that the sequence of approximate densities A(ξNt ) is
tight and every solution solves

∂u

∂t
=

∆u

6
+ (1− u)u {θ0u − θ1(1− u)}+

√
2u(1− u)Ẇ

with initial condition u0. Uniqueness in law holds for initial conditions of
finite mass.
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Literature Review

This paper is an extension of results of Mueller and Tribe [3]
(d = 1, voter processes with nonnegative bias).

In Cox and Perkins [1] it was shown that rescaled Lotka-Volterra
models with long-range interaction converge weakly to
super-Brownian motion with linear drift. They consider

low density regime
weak limits for measure-valued processes

X N
t =

1

N

∑
x∈Z/(MN

√
N)

ξN
t (x)δx

with MN/
√

N →∞ (for d = 1)
We consider MN =

√
N (we also get X N

t converges to utdt in the
vague topology).
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Additionally, [1] consider fixed kernel models in dimensions d ≥ 2
respectively d ≥ 3. In Cox and Perkins [2], the results of [1] for d ≥ 3
are used to relate the limiting super-Brownian motions to questions of
coexistence and survival of a rare type in the original Lotka-Volterra
model.
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Example 2

Consider rescaled Lotka-Volterra models with long-range dispersal and
short-range competition, i.e. where

0→ 1 at rate Nf
(N)
1

(
g

(N)
0 + a

(N)
01 g

(N)
1

)
,

1→ 0 at rate Nf
(N)
0

(
g

(N)
1 + a

(N)
10 g

(N)
0

)
.

Here f
(N)
i , i = 0, 1 is the density corresponding to a long-range kernel and

g
(N)
i , i = 0, 1 is the density corresponding to a fixed kernel.
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Example 3

Spatial versions of the Lotka-Volterra model

Introduced in Neuhauser and Pacala [4]. Consider

0→ 1 at rate N

[
λ(N)f

(N)
1

λ(N)f
(N)
1 + f

(N)
0

(
f

(N)
0 + a

(N)
01 f

(N)
1

)]
,

1→ 0 at rate N

[
f

(N)
0

λ(N)f
(N)
1 + f

(N)
0

(
f

(N)
1 + a

(N)
10 f

(N)
0

)]
.

Choose competition parameters and fecundity parameter λ near one:

λ(N) ≡ 1 +
λ′

N
, a

(N)
01 ≡ 1 +

a01

N
, a

(N)
10 ≡ 1 +

a10

N
.

The limit points of A(ξNt ), ut solve

∆u

6
+ (1− u)u

{
λ′ − a10 + u (a01 + a10)

}
+
√

2u(1− u)Ẇ .
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Example 4

We obtain a class of SPDEs,

∂u

∂t
=

∆u

6
+ (1− u)u {G0(u)− G1(1− u)}+

√
2u(1− u)Ẇ

with u0 ∈ C1, that can be characterized as the limit of perturbations of the
long-range voter model.
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Proof of the Theorem
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Proof Part 1: ”How to get positive perturbations only.”

Recall:

0→ 1 at rate Nf1 + f1

∞∑
m=0

α
(m+1,N)
0 f m

1 ,

1→ 0 at rate Nf0 + f0

∞∑
m=0

α
(m+1,N)
1 f m

0 .

Rewrite the rates in a form, where all resulting coefficients are
non-negative by using

−xm = (1− x)
m−1∑
l=1

x l − x and 1− f1 = f0.
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∞∑
m=0

α
(m+1,N)
1 f m

0 .

Rewrite the rates in a form, where all resulting coefficients are
non-negative by using

−xm = (1− x)
m−1∑
l=1

x l − x and 1− f1 = f0.
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Lemma
We obtain

0→ 1 at rate (N − θ) f1 + f1
∑

m≥2,j=0,1

q
(0,m)
j fj f

m−2
1 , (1)

1→ 0 at rate (N − θ) f0 + f0
∑

m≥2,j=0,1

q
(1,m)
j fj f

m−2
0 ,

with corresponding θ = θ(N), q
(k,m)
j = q

(k,m,N)
j ∈ R+, j , k = 0, 1,m ≥ 2.
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Proof Part 2: Tightness and SPDE-limit
Step 1: Graphical construction
Suppose

0→ 1 at rate · · ·+ q
(0,m)
j fj f

m−1
1 + · · ·

with j ∈ {0, 1}, q
(0,m)
j > 0.

Recall: f
(N)
i (x , ξ) ≡ 1

2c(N)
√

N

∑
y :y∼x 1(ξN(y) = i), i = 0, 1.

The graphical construction uses independent families of i.i.d. Poisson
processes: E.g.,(

Qm,j ,0
t (x ; y1, . . . , ym) : x , y1, . . . , ym ∈ N−1Z

)
i.i.d. Poisson processes of rate

q
(0,m)
j

2c(N)
√

N(2c(N)
√

N)m−1
.

At a jump of Qm,j ,0
t (x ; y1, . . . , ym) the voter at x adopts the opinion 1

provided that y1, . . . , ym are neighbours of x , y1 has opinion j and all of
y2 . . . , ym have opinion 1.
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⇒ stochastic integral equation for ξNt :

ξNt (x) =ξN0 (x)

+
∑
y∼x

∫ t

0

{
δ0

(
ξNs−(x)

)
δ1

(
ξNs−(y)

)
− δ1

(
ξNs−(x)

)
δ0

(
ξNs−(y)

)}
× dPs(x ; y)

+
∑

k=0,1

(1− 2k)
∑

m≥2,i ,j=0,1

∑
y1,...,ym∼x

∫ t

0
δk

(
ξNs−(x)

)
× δj

(
ξNs−(y1)

) m∏
l=2

δ1−k

(
ξNs−(yl)

)
dQm,j ,k

s (x ; y1, . . . , ym)

for all x ∈ N−1Z.
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Step 2: An approximate martingale problem

I Use: If N ∼ Pois(λ), then Nt − λt is a martingale with quadratic
variation 〈N〉t = λt.

I Integrate against test-functions φt(x), i.e. calculate
1
N

∑
x∈Z/N ξt(x)φt(x),

⇒ an approximate semimartingale decomposition for
1
N

∑
x∈Z/N ξ

N
t (x)φt(x).

Step 3: Green’s function representation for A(ξNt )

Choose ”clever” test function φt(x)
⇒ approximate Green’s function representation for A(ξNt ).
Note: Taking N →∞ we find the form of the SPDE.
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Step 4: Tightness estimates

Derive estimates on pth-moment differences, i.e. bound (I omit some
details here)

E
[∣∣∣A(ξNt )(z)− A(ξNs )(y)

∣∣∣p] ≤ Ceλp|z|
(
|t − s|p/24 + |z − y |p/24 + N−p/24

)
.

Then use Kolmogorov’s continuity theorem and the Arzelà-Ascoli theorem.

Proof Part 3: Uniqueness in law

Apply a version of Dawson’s Girsanov theorem.
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thank you
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