Convergence of Rescaled Competing Species Processes to a Class of SPDEs

Sandra Kliem

EURANDOM

Singapore - March 31, 2011

A class of rescaled competing species processes

We define a sequence ξ_t^N , $N \in \mathbb{N}$ of rescaled competing species models, which can be described as perturbations of rescaled voter models.

A class of rescaled competing species processes

We define a sequence ξ_t^N , $N \in \mathbb{N}$ of rescaled competing species models, which can be described as perturbations of rescaled voter models. In the N^{th} model:

- space: ℤ/N,
- state-space of each site x ∈ Z/N: {0,1} respectively { , , }. Think of: individual with political opinion 0 or 1 or: two populations 0 and 1.
- state of the system at time $t: \xi_t^N : \mathbb{Z}/N \to \{0, 1\}$, i.e. $\xi_t^N(x)$ gives state of x at time t:

Sandra Kliem (EURANDOM)

Sandra Kliem (EURANDOM) Conv. of Rescaled Competing Species Processes Singapore - March 2010 3 / 28

Each x has $2c(N)N^{1/2}$, $c(N) \stackrel{N \to \infty}{\to} 1$ neighbours.

Long-range interaction takes into account the densities of the neighbours of $x \in \mathbb{Z}/N$ at long-range, i.e.

$$f_i^{(N)}(x,\xi) \equiv rac{1}{|\{y: y \sim x\}|} \sum_{y: y \sim x} \mathbb{1}(\xi^N(y) = i), \quad i = 0, 1.$$

Note in particular:

• $0 \le f_i^{(N)} \le 1$ and • $f_0^{(N)} + f_1^{(N)} = 1.$

Sandra Kliem (EURANDOM)

Conv. of Rescaled Competing Species Processes Singapore - March 2010 3 / 28

Each x has $2c(N)N^{1/2}$, $c(N) \stackrel{N \to \infty}{\to} 1$ neighbours.

Long-range interaction takes into account the densities of the neighbours of $x \in \mathbb{Z}/N$ at long-range, i.e.

$$f_i^{(N)}(x,\xi) \equiv rac{1}{|\{y: y \sim x\}|} \sum_{y: y \sim x} \mathbb{1}(\xi^N(y) = i), \quad i = 0, 1.$$

Note in particular:

• $0 \le f_i^{(N)} \le 1$ and • $f_0^{(N)} + f_1^{(N)} = 1.$

Sandra Kliem (EURANDOM)

Conv. of Rescaled Competing Species Processes Singapore - March 2010 4 / 28

The evolution of the process in time is given via infinitesimal rates. $c(x,\xi)$ denotes the rate at which the coordinate $\xi(x)$ flips from 0 to 1 or from 1 to 0 when the system is in state ξ . Then the process ξ_t will satisfy

$$\mathbb{P}(\xi_t(x) \neq \xi_0(x)) = c(x,\xi_0)t + o(t) \text{ for } t \downarrow 0^+$$

Sandra Kliem (EURANDOM) Conv. of Rescaled Competing Species Processes Singapore - March 2010 5 / 28

The evolution of the process in time is given via infinitesimal rates. $c(x,\xi)$ denotes the rate at which the coordinate $\xi(x)$ flips from 0 to 1 or from 1 to 0 when the system is in state ξ . Then the process ξ_t will satisfy

$$\mathbb{P}(\xi_t(x) \neq \xi_0(x)) = c(x,\xi_0)t + o(t)$$
 for $t \downarrow 0^+$.

Flip rates of the *unscaled voter process*:

$$0 \rightarrow 1$$
 at rate $c(x,\xi) = f_1(x,\xi),$
 $1 \rightarrow 0$ at rate $c(x,\xi) = f_0(x,\xi).$

Sandra Kliem (EURANDOM) Conv. of Rescaled Competing Species Processes Singapore - March 2010 5 / 28

The evolution of the process in time is given via infinitesimal rates. $c(x,\xi)$ denotes the rate at which the coordinate $\xi(x)$ flips from 0 to 1 or from 1 to 0 when the system is in state ξ . Then the process ξ_t will satisfy

$$\mathbb{P}(\xi_t(x) \neq \xi_0(x)) = c(x,\xi_0)t + o(t)$$
 for $t \downarrow 0^+$.

Flip rates of the *unscaled voter process*:

$$0 \rightarrow 1$$
 at rate $c(x,\xi) = f_1(x,\xi),$
 $1 \rightarrow 0$ at rate $c(x,\xi) = f_0(x,\xi).$

Flip rates of the unscaled biased voter process:

$$0 \rightarrow 1$$
 at rate $c(x,\xi) = (1+\tau)f_1(x,\xi),$
 $1 \rightarrow 0$ at rate $c(x,\xi) = f_0(x,\xi).$

Sandra Kliem (EURANDOM)

Conv. of Rescaled Competing Species Processes Singapore - March 2010 5 / 28

Graphical representation of the long-range voter process Example: N = 4

Sandra Kliem (EURANDOM)

Conv. of Rescaled Competing Species Processes Singapore - March 2010 6 / 28

Graphical representation of the long-range voter process Example: N = 4

Sandra Kliem (EURANDOM)

Conv. of Rescaled Competing Species Processes Singapore - March 2010 6 / 28

Graphical representation of the long-range voter process Example: N = 4

Sandra Kliem (EURANDOM)

Conv. of Rescaled Competing Species Processes Singapore - March 2010 6 / 28

Graphical representation of the long-range voter process Example: N = 4

Sandra Kliem (EURANDOM) Conv. of Rescaled Competing Species Processes Singapore - March 2010 Recall:

• Flip rates of the unscaled biased voter process:

$$0 \rightarrow 1$$
 at rate $c(x,\xi) = (1+\tau)f_1(x,\xi),$
 $1 \rightarrow 0$ at rate $c(x,\xi) = f_0(x,\xi).$

Recall:

• Flip rates of the unscaled biased voter process:

$$0 \rightarrow 1$$
 at rate $c(x,\xi) = (1+\tau)f_1(x,\xi),$
 $1 \rightarrow 0$ at rate $c(x,\xi) = f_0(x,\xi).$

• Rescaling for the biased voter process::

$$0 \rightarrow 1 \text{ at rate } c(x,\xi) = N\left(1 + \frac{\tau}{N}\right) f_1^{(N)}(x,\xi)$$
$$= Nf_1^{(N)}(x,\xi) + f_1^{(N)}(x,\xi)\tau,$$
$$1 \rightarrow 0 \text{ at rate } c(x,\xi) = Nf_0^{(N)}(x,\xi).$$

Sandra Kliem (EURANDOM) Conv. of Rescaled Competing Species Processes Singapore - March 2010 7 / 28

Recall:

• Flip rates of the unscaled biased voter process:

$$\begin{split} 0 &\rightarrow 1 \text{ at rate } c(x,\xi) = (1+\tau) f_1(x,\xi), \\ 1 &\rightarrow 0 \text{ at rate } c(x,\xi) = f_0(x,\xi). \end{split}$$

• Rescaling for the biased voter process::

$$0 \rightarrow 1 \text{ at rate } c(x,\xi) = N\left(1 + \frac{\tau}{N}\right) f_1^{(N)}(x,\xi)$$
$$= Nf_1^{(N)}(x,\xi) + f_1^{(N)}(x,\xi)\tau,$$
$$1 \rightarrow 0 \text{ at rate } c(x,\xi) = Nf_0^{(N)}(x,\xi).$$

• Adding more general perturbations:

$$\begin{split} 0 &\to 1 \text{ at rate } Nf_1^{(N)} + f_1^{(N)}G_0^{(N)}\left(f_1^{(N)}\right), \\ 1 &\to 0 \text{ at rate } Nf_0^{(N)} + f_0^{(N)}G_1^{(N)}\left(f_0^{(N)}\right), \end{split}$$

where $G_i^{(N)}, i = 0, 1$ are power series on [0, 1], Sandra Kliem (EURANDOM) Conv. of Rescaled Competing Species Processes i.e.

$$G_i^{(N)}(x) = \sum_{m=0}^{\infty} \alpha_i^{(m+1,N)} x^m, \quad i = 0, 1, x \in [0,1]$$

with $\alpha_i^{(m+1,N)}$ satisfying certain summability and convergence conditions, uniformly in $N \ge N_0$. As a result define

$$G_i(x) \equiv \lim_{N \to \infty} G_i^{(N)}(x) = \sum_{m=0}^{\infty} \lim_{N \to \infty} \alpha_i^{(m+1,N)} x^m = \sum_{m=0}^{\infty} \alpha_i^{(m+1)} x^m$$

for $x \in [0, 1]$.

The object of interest

Approximate density $A(\xi_t^N)$ for the configurations ξ_t^N :

$$A(\xi_t^N)(x) = \frac{1}{|\{y: y \sim x\}|} \sum_{y: y \sim x} \xi_t^N(y), \qquad x \in \mathbb{Z}/N.$$

Note: $A(\xi_t^N)(x) = f_1^{(N)}(x, \xi_t^N).$

By linearly interpolating between sites we obtain approximate densities $A(\xi_t^N)(x) \in [0, 1]$ for all $x \in \mathbb{R}$.

Notation

Set $C_1 \equiv \{f : \mathbb{R} \to [0, 1] \text{ continuous}\}$ and let C_1 be equipped with the topology of uniform convergence on compact sets.

We obtain that $t \mapsto A(\xi_t^N)$ is càdlàg \mathcal{C}_1 -valued.

Theorem

Suppose that $A(\xi_0^N) \to u_0$ in C_1 and that $G_i^{(N)}$, i = 0, 1 satisfy appropriate Hypotheses. Then

- $(A(\xi_t^N) : t \ge 0)$ are *C*-tight as càdlàg C_1 -valued processes.
- The limit points of A(ξ^N_t) are continuous C₁-valued processes u_t which solve

$$\frac{\partial u}{\partial t} = \frac{\Delta u}{6} + (1-u)u\left\{G_0(u) - G_1(1-u)\right\} + \sqrt{2u(1-u)}\dot{W}$$

with initial condition u_0 .

• If we assume additionally $\int u_0(x)dx < \infty$, then u_t is the unique in law [0, 1]-valued solution to the above SPDE.

Example 1: The Lotka-Volterra model

 $0 \to 1$ at rate $c(x,\xi) = f_1(x,\xi)(f_0(x,\xi) + a_{01}f_1(x,\xi))$

 $1 \to 0$ at rate $c(x,\xi) = f_0(x,\xi) \left(f_1(x,\xi) + a_{10}f_0(x,\xi) \right)$

- The first factor of the rate represents the strength of the instantaneous replacement by a particle of opposite type.
- The second factor of the rate governs the density-dependent mortality of a particle.
 - \triangleright f_0 describes the effect of intraspecific competition,
 - \triangleright $a_{01}f_1$ the effect of interspecific competition.

Rewrite, using $f_0 + f_1 = 1$,

$$egin{aligned} 0 &
ightarrow 1 ext{ at rate } c(x,\xi) = f_1(x,\xi) \left(f_0(x,\xi) + a_{01}f_1(x,\xi)
ight) \ &= f_1(x,\xi) \left(1 + (a_{01} - 1)f_1(x,\xi)
ight) \end{aligned}$$

$$\begin{split} 1 \to 0 \text{ at rate } c(x,\xi) &= f_0(x,\xi) \left(f_1(x,\xi) + a_{10} f_0(x,\xi) \right) \\ &= f_0(x,\xi) \left(1 + (a_{10} - 1) f_0(x,\xi) \right). \end{split}$$

If we choose a_{01} , a_{10} close to 1, the Lotka-Volterra model can be seen as a small perturbation of the voter model.

Consider a sequence of rescaled Lotka-Volterra models with rates of change

$$\begin{split} 0 &\rightarrow 1 \text{ at rate } \mathsf{N} \mathsf{f}_1^{(\mathsf{N})} \left(1 + \left(\mathsf{a}_{01}^{(\mathsf{N})} - 1 \right) \mathsf{f}_1^{(\mathsf{N})} \right), \\ 1 &\rightarrow 0 \text{ at rate } \mathsf{N} \mathsf{f}_0^{(\mathsf{N})} \left(1 + \left(\mathsf{a}_{10}^{(\mathsf{N})} - 1 \right) \mathsf{f}_0^{(\mathsf{N})} \right). \end{split}$$

For i = 0, 1 choose

$$a_{i(1-i)}^{(N)} - 1 \equiv rac{ heta_i^{(N)}}{N} ext{ with } heta_i^{(N)} \stackrel{N o \infty}{ o} heta_i$$

and rewrite

$$\begin{array}{l} 0 \rightarrow 1 \ \text{at rate } \ \mathsf{Nf}_1^{(N)} + \theta_0^{(N)} \left(f_1^{(N)}\right)^2 = \mathsf{N}f_1^{(N)} + f_1^{(N)}\theta_0^{(N)}f_1^{(N)}, \\ \\ 1 \rightarrow 0 \ \text{at rate } \ \mathsf{N}f_0^{(N)} + \theta_1^{(N)} \left(f_0^{(N)}\right)^2 = \mathsf{N}f_0^{(N)} + f_0^{(N)}\theta_1^{(N)}f_0^{(N)}. \end{array}$$

Sandra Kliem (EURANDOM)

Conv. of Rescaled Competing Species Processes Singapore - March 2010 13 / 28

The Theorem yields that the sequence of approximate densities $A(\xi_t^N)$ is tight and every solution solves

$$\frac{\partial u}{\partial t} = \frac{\Delta u}{6} + (1-u)u\left\{\frac{\theta_0 u}{\theta_0 u} - \theta_1(1-u)\right\} + \sqrt{2u(1-u)}\dot{W}$$

with initial condition u_0 . Uniqueness in law holds for initial conditions of finite mass.

Literature Review

This paper is an extension of results of Mueller and Tribe [3]
 (d = 1, voter processes with nonnegative bias).

Literature Review

- This paper is an extension of results of Mueller and Tribe [3]
 (d = 1, voter processes with nonnegative bias).
- In Cox and Perkins [1] it was shown that rescaled Lotka-Volterra models with long-range interaction converge weakly to super-Brownian motion with linear drift. They consider
 - low density regime
 - weak limits for measure-valued processes

$$X_t^N = rac{1}{N} \sum_{x \in \mathbb{Z}/(M_N\sqrt{N})} \xi_t^N(x) \delta_x$$

with $M_N/\sqrt{N} \to \infty$ (for d=1)

• We consider $M_N = \sqrt{N}$ (we also get X_t^N converges to $u_t dt$ in the **vague** topology).

Sandra Kliem (EURANDOM)

 Additionally, [1] consider fixed kernel models in dimensions d ≥ 2 respectively d ≥ 3. In Cox and Perkins [2], the results of [1] for d ≥ 3 are used to relate the limiting super-Brownian motions to questions of coexistence and survival of a rare type in the original Lotka-Volterra model.

Example 2

Consider rescaled Lotka-Volterra models with long-range dispersal and short-range competition, i.e. where

$$\begin{split} 0 &\to 1 \text{ at rate } \mathsf{Nf}_1^{(N)} \left(g_0^{(N)} + a_{01}^{(N)} g_1^{(N)} \right), \\ 1 &\to 0 \text{ at rate } \mathsf{Nf}_0^{(N)} \left(g_1^{(N)} + a_{10}^{(N)} g_0^{(N)} \right). \end{split}$$

Here $f_i^{(N)}$, i = 0, 1 is the density corresponding to a long-range kernel and $g_i^{(N)}$, i = 0, 1 is the density corresponding to a fixed kernel.

Example 3 Spatial versions of the Lotka-Volterra model

Introduced in Neuhauser and Pacala [4]. Consider

$$\begin{split} 0 &\to 1 \text{ at rate } N \left[\frac{\lambda^{(N)} f_1^{(N)}}{\lambda^{(N)} f_1^{(N)} + f_0^{(N)}} \left(f_0^{(N)} + a_{01}^{(N)} f_1^{(N)} \right) \right], \\ 1 &\to 0 \text{ at rate } N \left[\frac{f_0^{(N)}}{\lambda^{(N)} f_1^{(N)} + f_0^{(N)}} \left(f_1^{(N)} + a_{10}^{(N)} f_0^{(N)} \right) \right]. \end{split}$$

Choose competition parameters and fecundity parameter λ near one:

$$\lambda^{(N)} \equiv 1 + \frac{\lambda'}{N}, \ a_{01}^{(N)} \equiv 1 + \frac{a_{01}}{N}, \ a_{10}^{(N)} \equiv 1 + \frac{a_{10}}{N}$$

The limit points of $A(\xi_t^N)$, u_t solve

$$\frac{\Delta u}{6} + (1-u)u\left\{\lambda' - a_{10} + u(a_{01} + a_{10})\right\} + \sqrt{2u(1-u)}\dot{W}.$$

Sandra Kliem (EURANDOM)

Conv. of Rescaled Competing Species Processes Singapore - March 2010

Example 4

We obtain a class of SPDEs,

$$\frac{\partial u}{\partial t} = \frac{\Delta u}{6} + (1-u)u \left\{ G_0(u) - G_1(1-u) \right\} + \sqrt{2u(1-u)}\dot{W}$$

with $u_0 \in C_1$, that can be characterized as the limit of perturbations of the long-range voter model.

Proof of the Theorem

Sandra Kliem (EURANDOM) Conv. of Rescaled Competing Species Processes Sing

Singapore - March 2010

20 / 28

Proof Part 1: "How to get positive perturbations only."

Recall:

$$0 \to 1$$
 at rate $Nf_1 + f_1 \sum_{m=0}^{\infty} \alpha_0^{(m+1,N)} f_1^m$,
 $1 \to 0$ at rate $Nf_0 + f_0 \sum_{m=0}^{\infty} \alpha_1^{(m+1,N)} f_0^m$.

Sandra Kliem (EURANDOM) Conv. of Rescaled Competing Species Processes Singapore - March 2010 21 / 28

Proof Part 1: "How to get positive perturbations only."

Recall:

$$0 \to 1$$
 at rate $Nf_1 + f_1 \sum_{m=0}^{\infty} \alpha_0^{(m+1,N)} f_1^m$,
 $1 \to 0$ at rate $Nf_0 + f_0 \sum_{m=0}^{\infty} \alpha_1^{(m+1,N)} f_0^m$.

Rewrite the rates in a form, where all resulting coefficients are non-negative by using

$$-x^m = (1-x)\sum_{l=1}^{m-1} x^l - x$$
 and $1 - f_1 = f_0$.

Sandra Kliem (EURANDOM)

Conv. of Rescaled Competing Species Processes Singapore - March 2010 21 / 28

Lemma We obtain

$$0 \to 1 \text{ at rate } (N - \theta) f_1 + f_1 \sum_{m \ge 2, j = 0, 1} q_j^{(0,m)} f_j f_1^{m-2},$$
(1)
$$1 \to 0 \text{ at rate } (N - \theta) f_0 + f_0 \sum_{m \ge 2, j = 0, 1} q_j^{(1,m)} f_j f_0^{m-2},$$

with corresponding $\theta = \theta^{(N)}, q_j^{(k,m)} = q_j^{(k,m,N)} \in \mathbb{R}^+, j, k = 0, 1, m \ge 2.$

Sandra Kliem (EURANDOM)

Conv. of Rescaled Competing Species Processes Singapore - March 2010 22 / 28

Proof Part 2: Tightness and SPDE-limit Step 1: Graphical construction Suppose

$$0
ightarrow 1$$
 at rate $\cdots + q_j^{(0,m)} f_j f_1^{m-1} + \cdots$

with $j \in \{0, 1\}$, $q_j^{(0,m)} > 0$. Recall: $f_i^{(N)}(x, \xi) \equiv \frac{1}{2c(N)\sqrt{N}} \sum_{y:y \sim x} 1(\xi^N(y) = i), i = 0, 1$.

The graphical construction uses independent families of i.i.d. Poisson processes: E.g.,

$$\begin{pmatrix} Q_t^{m,j,0}(x;y_1,\ldots,y_m):x,y_1,\ldots,y_m\in N^{-1}\mathbb{Z} \end{pmatrix}$$

i.i.d. Poisson processes of rate
$$\frac{q_j^{(0,m)}}{2c(N)\sqrt{N}(2c(N)\sqrt{N})^{m-1}}.$$

At a jump of $Q_t^{m,j,0}(x; y_1, \ldots, y_m)$ the voter at x adopts the opinion 1 provided that y_1, \ldots, y_m are neighbours of x, y_1 has opinion j and all of $y_2 \ldots, y_m$ have opinion 1.

Sandra Kliem (EURANDOM)

Conv. of Rescaled Competing Species Processes Singapore - March 2010 23 / 28

 \Rightarrow stochastic integral equation for ξ_t^N :

$$\begin{split} \xi_{t}^{N}(x) = &\xi_{0}^{N}(x) \\ &+ \sum_{y \sim x} \int_{0}^{t} \left\{ \delta_{0} \left(\xi_{s-}^{N}(x) \right) \delta_{1} \left(\xi_{s-}^{N}(y) \right) - \delta_{1} \left(\xi_{s-}^{N}(x) \right) \delta_{0} \left(\xi_{s-}^{N}(y) \right) \right\} \\ &\times dP_{s}(x;y) \\ &+ \sum_{k=0,1} (1-2k) \sum_{m \geq 2, i, j=0,1} \sum_{y_{1}, \dots, y_{m} \sim x} \int_{0}^{t} \delta_{k} \left(\xi_{s-}^{N}(x) \right) \\ &\times \delta_{j} \left(\xi_{s-}^{N}(y_{1}) \right) \prod_{l=2}^{m} \delta_{1-k} \left(\xi_{s-}^{N}(y_{l}) \right) dQ_{s}^{m, j, k}(x; y_{1}, \dots, y_{m}) \end{split}$$

for all $x \in N^{-1}\mathbb{Z}$.

Sandra Kliem (EURANDOM)

Step 2: An approximate martingale problem

- Use: If N ~ Pois(λ), then N_t − λt is a martingale with quadratic variation ⟨N⟩_t = λt.
- ► Integrate against test-functions $\phi_t(x)$, i.e. calculate $\frac{1}{N} \sum_{x \in \mathbb{Z}/N} \xi_t(x) \phi_t(x)$,
- \Rightarrow an approximate semimartingale decomposition for $\frac{1}{N} \sum_{x \in \mathbb{Z}/N} \xi_t^N(x) \phi_t(x)$.

Step 3: Green's function representation for $A(\xi_t^N)$

Choose "clever" test function $\phi_t(x)$ \Rightarrow approximate Green's function representation for $A(\xi_t^N)$. **Note:** Taking $N \to \infty$ we find the form of the SPDE.

Step 4: Tightness estimates

Derive estimates on p^{th} -moment differences, i.e. bound (I omit some details here)

$$\mathbb{E}\Big[\Big|A(\xi_t^N)(z) - A(\xi_s^N)(y)\Big|^p\Big] \le Ce^{\lambda p|z|} \left(|t-s|^{p/24} + |z-y|^{p/24} + N^{-p/24}\right)$$

Then use Kolmogorov's continuity theorem and the Arzelà-Ascoli theorem.

Proof Part 3: Uniqueness in law

Apply a version of Dawson's Girsanov theorem.

Sandra Kliem (EURANDOM) Conv. of Rescaled Competing Species Processes Singapore - March 2010 26 / 28

References

- COX, J.T. and PERKINS, E.A. Rescaled Lotka-Volterra models converge to super-Brownian motion. *Ann. Probab.* (2005)
- COX, J.T. and PERKINS, E.A. Survival and coexistence in stochastic spatial Lotka-Volterra models. *Probab. Theory Related Fields* (2007)
- MUELLER, C. and TRIBE, R. Stochastic p.d.e.'s arising from the long range contact and long range voter processes. *Probab. Theory Related Fields* (1995)
- NEUHAUSER, C. and PACALA, S.W. An explicitly spatial version of the Lotka-Volterra model with interspecific competition. *Ann. Appl. Probab.* (1999)

Sandra Kliem (EURANDOM) Conv. of Rescaled Competing Species Processes Singapore - March 2010 27 / 28

thank you