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Lecture 4.

e Dark matter
Nonlinear Klein-Gordon equation (NLKG)
Non-relativistic limit: NLSE
Simulation of galactic halo

e Gravitational collapse in a superfluid

Kerr metric (rotating star)
Frame-dragging -- vorticity from space-time geometry



Dark matter
Galaxy

Evidence of dark matter: galaxy halo
 From gravitational lensing
* From velocity curve
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Vacuum
scalar field

Energy density = Dark energy
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Star

Fluctuations = Dark matter
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NLKG (Nonlinear Klein-Gordon equation)
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Use any convenient potential, since scale does not change with time,
renormalization not important.

Interaction with “star”

V=299 -Ff)
Current density
ju = L(p*0"p — pot$*) = F2040
OuJt =0

* This is in flat space-time.
* Gravitational effect of star is regarded as Newtonain, and may
be includes in interaction Lagrangian.



The “star”

For a rotating star:
Jt = (p,J)
J=pv
9 _
Ved+—-=0 Ve = —Qy
The only Lorentz-invariant interaction Vy = (X
Lagrangian is a current-current
interaction

Ling = -y = -1 -V —pG)
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A rotating star can create vortices in the superfluid.
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Damping added by hand Superfluid velocity



Dimensionless form of NLKG
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Correlation length: b JﬁFo

Relation to physical parameters:

X = bX

t = bt

¢ =Fod
p=Db"p
J=Db"*]
n = b7
y = bty



Physical parameters
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Pdark energy ~ 1077 glem’ = 2 x 10716 GeV/iecm® = 102 cm~

Assume scalar field energy supplies dark energy:
gF;

= Pdark energy

JiFo =1

g = (b4pdark energy) h

Assume correlation length is of galactic size

b = 10%° cm (diameter of Milky Way)

g = 1078

Fo =10 cm™

T=%=102yr



* Length scale in free space is chosen to be of galactic magnitude,
corresponding to a small mass scale.

Mo = b1 =102cm ™" = 2x 1025eV

* But inside a star the scale is set by the star density, which may
corresponds to a small length, or large mass.

Star

Mass scale outside
is small. Scalar field
obeys NLKG
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Mass scale inside determined
by star density. If large,
NLKG reduces to NLSE.



Non-relativistic limit

Relativistic: E =+ p>+m?* (positive and negative frequencies)
Non-rel: E=p°/2m (positive frequency only)

¢ = ¢ exp(=imot) + ¢ exp(imot)

Put
¢ = yexp(-imot)

y = ¢ + ¢ exp(-2imot)

Second term approaches zero in the weak sense, in the limit Mo — ©
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If star has high mass scale:

M = npo M >> bt

Inside star, put
¢ = yexp(—iMt)
v = «/ﬁei(p The “wave function” is still complex

In large M limit the wave function satisfies NLSE:

[-5V2+ A2 -no) - 2(p+L3-Vp) Jy = (i-v) %

FZ
No = %(1 + WO) Non-relativistic superfluid velocity:
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e Far inside star, superfluid is governed by NLSE.
* Far outside it is governed by NLKG.
e The transition layer is the halo.

Star

NLSE Transition layer NLKG
is the halo

The length changes from small to large.
So do vortex core sizes.
Votex density also changes.



Gravitational collapse in a superfluid

* In a Schwarzschild metric, one can repeat the Oppenheimer-Snyder
calculation in the presence of a vacuum complex scalar field.

* The result is not qualitatively different.

* To see new effects, and to be more realistic, one has to consider the
collapse of a rotating star, which is described by the Kerr metric.



Kerr metric

ds? = —dt? + %dr2 +2d0? + (r? + a?)sin’0dep?
4 %(dt — asin?0de)?

J

m
> =r2 + a2 cos?0

A = 1% -2mr+ a?
Frame-dragging: the metric has a local angular velocity

_ a(r’+a?-A)
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e Kerr metric is a solution to the

Einstein equation in vacuum. Star
*Presence of vacuum scalar field will ’/ / *. Horizon
affect the metric. ' DY
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* One would have to solve Einstein’s . ,!
. . . . s P

equation again, with scalar field. Se v

* As first step, one one can study NLKG
in Kerr metric
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* In collapse, the length is rapidly changing.

e Must use Halpern-Huang potential.

* Frame-dragging can be transformed away
in locally rotating frames.

* This can create vortices.

» After collapse, black hole is formed, but
vortices remain outside.

* These could be the “non-thermal filaments,
which might constitute “hair” on the black
hole.



A generalization of the Kerr metric is the Kerr-Newmn
metric, which describes the condition outside a
rotating electrically-charged star.

e Athough there are no charged stars in equilibrium, a
star can separate into dipole layers when collapsing.

* This will then describe the inner charges core.

* There would be lightning between layers.



