Bloch decomposition based method for wave propagation

Zhongyi Huang

Dept. of Mathematical Sciences Tsinghua University Beijing 100084, China

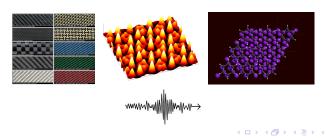
Joint work with: Shi Jin, Peter Markowich, Christof Sparber

Supported by the NSFC (11071139) and the National Basic Research Program of China (2011CB309705)

Motivation

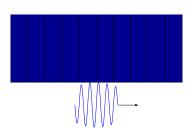
In this talk, we consider the propagation of (non)linear *high frequency* waves in heterogeneous media with *periodic microstructures*. Such problems arise, e.g., in the study of

- composite materials,
- photonic crystals,
- laser optics,
- Bose-Einstein condensates in optical lattices,
-



Semiclassical regime

We are interested in the case where the *typical wavelength* is comparable to the *period of the medium*, and both of which are assumed to be *small* on the *length-scale of the considered physical domain*. This consequently leads us to a problem involving *two-scales* where from now on we shall denote by $0 < \varepsilon \ll 1$ the small dimensionless parameter describing the *microscopic / macroscopic scale ratio*.



Singapore, Dec 19-21, 2011

Typical Methods

- The mathematically precise asymptotic description of these problems has been intensively studied by
 - * A. Bensoussan, J. L. Lions, and G. Papanicolaou, 1978;
 - * P. Gérard, P. Markowich, N. Mauser, and F. Poupaud, 1997;
 - * J. C. Guillot, J. Ralston, and E. Trubowitz, 1998;
 - * G. Panati, H. Spohn, and S. Teufel, 2003;
 - * ·····;
- On the other hand, the numerical literature on these issues is not so abundant, cf. L. Gosse, P. A. Markowich, N. Mauser, et al, 2004–2007.

Numerical Methods and Challenges

- Markowich, Pietra, Pohl, et al, (1999, 2003): Using finite difference schemes for linear Schrödinger equation, one needs $\Delta x = o(\varepsilon)$ and $\Delta t = o(\varepsilon)$ to get the correct observables.
- Bao, Markowich, Jin (2002, 2004): Using Fourier spectral method for (non)linear Schrödinger equation, to get the correct observables, one needs
 - $\Delta x = O(\varepsilon)$ and $\Delta t = O(\varepsilon)$ for defocusing case,
 - $\Delta x = O(\varepsilon)$ and $\Delta t = o(\varepsilon)$ for strong focusing case.

Therefore, the computational costs are *very expensive* for semiclassical cases ($\varepsilon \ll 1$)!

Recently, we developed an efficient numerical approach based on *Bloch-decomposition* method to reduce the computational costs.¹

¹Huang, Jin, Markowich, Sparber, CAM 15, 2010

Outline

- Bloch Decomposition Based Algorithm
 - A classical time-splitting spectral method (TS)
 - The Bloch decomposition based algorithm (BD)
 - Review of Bloch's Decomposition
 - Our BD algorithm in details
- Numerical Implementation and Applications
 - Numerical tests for 1D problems
 - Numerical examples for lattice BEC in 3D
 - Random coefficients: Stability tests and Anderson localization
- Conclusion

Outline

- Bloch Decomposition Based Algorithm
 - A classical time-splitting spectral method (TS)
 - The Bloch decomposition based algorithm (BD)
 - Review of Bloch's Decomposition
 - Our BD algorithm in details
- Numerical Implementation and Applications
 - Numerical tests for 1D problems
 - Numerical examples for lattice BEC in 3D
 - Random coefficients: Stability tests and Anderson localization
- 3 Conclusion

Model Problem

In this talk, we shall consider two kinds of problems: the Schrödinger equation and the Klein-Gordon equation.

Let us first focus on the Schrödinger equation for the electrons in a *semiclassical* asymptotic scaling, *i.e.*

$$\begin{cases} i\varepsilon \partial_t \psi = -\frac{\varepsilon^2}{2} \Delta \psi + V_{\Gamma} \left(\frac{x}{\varepsilon}\right) \psi + U(x)\psi + \beta |\psi|^2 \psi, & x \in \mathbb{R}^d, \\ \psi\big|_{t=0} = \psi_{\rm in}(x), \end{cases} \tag{1}$$

where $0<\varepsilon\ll 1$, denotes the small *semiclassical parameter* describing the microscopic/macroscopic scale ratio.

The equation (1) describes the motion of the electrons on the macroscopic scale induced by the external potentials U and V_{Γ} .

The highly oscillating *lattice-potential* $V_{\Gamma}(y)$ is assumed to be *periodic* w.r.t some *regular lattice* Γ .

Conserved Quantities

It is well known that we have two conserved quantities:

Mass

$$M(\psi(t)) = \int_{\mathbb{R}^d} |\psi|^2 dx = M(\psi(0)).$$

Energy

$$E(\psi(t)) = \int_{\mathbb{R}^d} \left[\frac{\varepsilon^2}{2} |\nabla \psi|^2 + (U + V_{\Gamma}) |\psi|^2 + \frac{\beta}{2} |\psi|^4 \right] dx = E(\psi(0)).$$

- $\beta > 0$ defocusing case,
- $\beta < 0$ focusing case.

Typical methods for numerical solution

Certainly, one can consider the finite difference method or pseudo-spectral method to solve this problem.

Actually, the time-splitting pseudo-spectral method proposed by Bao, Markowich, Jin (2002, 2004) was the optimal method for (non)linear Schrödinger equation.

To get the correct observables, one needs

- $\Delta x = O(\varepsilon)$ and $\Delta t = O(\varepsilon)$ for defocusing case,
- $\Delta x = O(\varepsilon)$ and $\Delta t = o(\varepsilon)$ for strong focusing case.

Singapore, Dec 19-21, 2011

Classical Time-Splitting Spectral Method (TS)

Ignoring the additional structure provided by the periodic potential V_{Γ} , one might solve (1) by a classical time-splitting spectral scheme:

Step 1. First, we solve the equation

$$\mathrm{i}\varepsilon\partial_t\psi = -\frac{\varepsilon^2}{2}\,\Delta\psi,$$
 (2)

on a fixed time interval Δt , relying on the *pseudo-spectral* method.

Step 2. Then, we solve the ordinary differential equation

$$i\varepsilon \partial_t \psi = \left(V_\Gamma \left(\frac{x}{\varepsilon}\right) + U(x) + \beta |\psi|^2\right) \psi,$$
 (3)

on the same time-interval, where the solution obtained in Step 1 serves as initial condition for Step 2. It is clear that $|\psi|^2$ does not change in Step 2, *i.e.* the exact solution of (3) is

$$\psi(t,x) = \psi(0,x) e^{-i(V_{\Gamma}(x/\varepsilon) + U(x) + \beta|\psi|^2)t/\varepsilon}.$$

Bloch Decomposition Based Algorithm (BD)

Another natural time-splitting algorithm is given as follows:

Step 1. First, we solve the equation

$$\mathrm{i}\varepsilon\partial_t\psi = -\frac{\varepsilon^2}{2}\,\Delta\psi + V_\Gamma\left(\frac{x}{\varepsilon}\right)\psi,$$
 (4)

on a fixed time-interval Δt . Certainly, we can not use the typical spectral method to solve it. We shall use the *Bloch-decomposition method* in this step.

Step 2. Second, we solve the ordinary differential equation (ODE)

$$i\varepsilon \partial_t \psi = \left(U(x) + \beta |\psi|^2 \right) \psi,$$
 (5)

on the same time-interval, where the solution obtained in Step 1 serves as initial condition for Step 2. We easily obtain the exact solution for this linear ODE by

$$\psi(t,x) = \psi(0,x) e^{-i(U(x)+\beta|\psi|^2)t/\varepsilon}.$$

Notations and definitions

For the sake of simplicity, first, we let d=1 and assume that $\Gamma=2\pi\mathbb{Z}$, *i.e.*

$$V_{\Gamma}(y+2\pi) = V_{\Gamma}(y) \quad \forall y \in \mathbb{R}.$$
 (6)

With V_{Γ} obeying (6) we have:

- The fundamental domain of our lattice $\Gamma = 2\pi \mathbb{Z}$, is $\mathcal{C} = (0, 2\pi)$.
- The *dual lattice* Γ^* can then be defined as the set of all wave numbers $k \in \mathbb{R}$, for which plane waves of the form $\exp(\mathrm{i}kx)$ have the same periodicity as the potential V_{Γ} .
- The fundamental domain of the dual lattice, *i.e.* the (first) *Brillouin zone*, $\mathcal{B} = \mathcal{C}^*$ is the set of all $k \in \mathbb{R}$ closer to zero than to any other dual lattice point. In our case, that is $\mathcal{B} = \left(-\frac{1}{2}, \frac{1}{2}\right)$.

Review of Bloch's Decomposition

To solve the two-scale problem (4) in Step 1, we need to consider the *Bloch eigenvalue problem*,

$$\begin{cases} H(k)\varphi_m(y,k) = E_m(k)\varphi_m(y,k), \\ \varphi_m(y+2\pi,k) = e^{i2\pi k}\varphi_m(y,k) \quad \forall k \in \mathcal{B}, \end{cases}$$
(7)

with
$$H(k) = (\frac{1}{2}(-\mathrm{i}\partial_y + k)^2 + V_{\Gamma}(y)).$$

It is well known that under very mild conditions on V_{Γ} , the problem (7) has a complete set of *eigenfunctions* $\varphi_m(y,k), m \in \mathbb{N}$, providing, $\forall k \in \overline{\mathcal{B}}$, an orthonormal basis in $L^2(\mathcal{C})$.

Review of Bloch's Decomposition (cont.)

Correspondingly, there exists a countable family of *real-valued eigenvalues* which can be ordered according to

$$E_1(k) \le E_2(k) \le \dots \le E_m(k) \le \dots, \ m \in \mathbb{N},$$

including the respective multiplicity.

- The set $\{E_m(k) \mid k \in \mathcal{B}\} \subset \mathbb{R}$ is called the mth energy band of the operator H(k),
- the eigenfunctions $\varphi_m(\cdot, k)$ are usually called *Bloch functions*. (In the following the index $m \in \mathbb{N}$ will *always* denote the *band index*.)

Review of Bloch's Decomposition (cont.)

We can rewrite $\varphi_m(y,k)$ as

$$\varphi_m(y,k) = e^{iky} \chi_m(y,k) \quad \forall m \in \mathbb{N},$$
 (8)

for some 2π -periodic function $\chi_m(\cdot,k)$. In terms of $\chi_m(y,k)$ the **Bloch** eigenvalue problem reads

$$\begin{cases}
H(k)\chi_m(y,k) = E_m(k)\chi_m(y,k), \\
\chi_m(y+2\pi,k) = \chi_m(y,k) \quad \forall k \in \mathcal{B}.
\end{cases}$$
(9)

Solving this eigenvalue problem allows to decompose the Hilbert space $\mathcal{H} = L^2(\mathbb{R})$ into a direct sum of, so called, band spaces, i.e.

$$L^2(\mathbb{R}) = \bigoplus_{m=1}^{\infty} \mathcal{H}_m, \tag{10}$$

$$\mathcal{H}_m := \left\{ \psi_m(y) = \int_{\mathcal{B}} f(k) \, \varphi_m(y, k) \, \mathrm{d}k, \ f \in L^2(\mathcal{B}) \right\}.$$

Review of Bloch's Decomposition (cont.)

This is the well known *Bloch decomposition method*, which allows us to write

$$\forall \, \psi(t,\cdot) \in L^2(\mathbb{R}): \quad \psi(t,y) = \sum_{m \in \mathbb{N}} \psi_m(t,y), \quad \psi_m(t,\cdot) \in \mathcal{H}_m. \tag{11}$$

The corresponding projection of $\psi(t)$ onto the $m{\rm th}$ band space is thereby given via

$$\psi_{m}(t,y) \equiv (\mathbb{P}_{m}\psi)(t,y)$$

$$= \int_{\mathcal{B}} \left(\int_{\mathbb{R}} \psi(t,\zeta) \overline{\varphi}_{m}(\zeta,k) \, \mathrm{d}\zeta \right) \varphi_{m}(y,k) \, \mathrm{d}k.$$
(12)

In what follows, we denote by

$$C_m(t,k) := \int_{\mathbb{D}} \psi(t,\zeta) \overline{\varphi}_m(\zeta,k) \,\mathrm{d}\zeta \tag{13}$$

the coefficients of the Bloch decomposition.

Bloch Transformation

To apply the Bloch decomposition method in our scheme, we need the Bloch transformation to fit the boundary conditions.

From now on, we denote by $\widetilde{\psi}$ the unitary transformation of ψ

$$\widetilde{\psi}(t,y,k) := \sum_{\gamma \in \mathbb{Z}} \psi(t,\varepsilon(y+2\pi\gamma)) e^{-\mathrm{i}2\pi k\gamma}, \quad y \in \mathcal{C}, \ k \in \mathcal{B}, \tag{14}$$

for any fixed $t \in \mathbb{R}$. We thus get that

$$\widetilde{\psi}(t, y + 2\pi, k) = e^{2i\pi k} \widetilde{\psi}(t, y, k), \quad \widetilde{\psi}(t, y, k + 1) = \widetilde{\psi}(t, y, k).$$
 (15)

The main advantage of $\widetilde{\psi}$ is that we can use the standard *fast Fourier* transform (FFT) in the numerical algorithm.

Furthermore, we have the following inversion formula

$$\psi(t,\varepsilon(y+2\pi\gamma)) = \int_{\mathcal{B}} \widetilde{\psi}(t,y,k) e^{i2\pi k\gamma} dk. \tag{1}$$

Bloch Transformation (cont.)

From the first step of our BD algorithm, \it{cf} . (4), if we take the Bloch transformation of ψ , \it{cf} . (14), we have

$$\mathrm{i}\varepsilon\partial_t\widetilde{\psi} = \left(\frac{1}{2}(-\mathrm{i}\partial_y + k)^2 + V_{\Gamma}(y)\right)\widetilde{\psi}.$$
 (17)

Then by the Bloch decomposition method, cf. (11)–(13), we obtain

$$\widetilde{\psi}(t,y,k) = \sum_{m \in \mathbb{N}} (\mathbb{P}_m \widetilde{\psi}) = \sum_{m \in \mathbb{N}} C_m(t,k) \varphi_m(y,k), \qquad (18)$$

with the coefficients

$$C_m(t,k) := \int_{\mathcal{C}} \widetilde{\psi}(t,\zeta,k) \overline{\varphi}_m(\zeta,k) \,\mathrm{d}\zeta. \tag{19}$$

Therefore, we get the evolution equation for the coefficients

$$i\varepsilon \partial_t C_m(t,k) = E_m(k)C_m(t,k).$$

Temporal and spatial discretization

For the convenience of computations, we shall consider the equation (1) on a bounded domain $\mathcal{D} = [0, 2\pi]$ with *periodic boundary conditions*.

In what follows, for some $N \in \mathbb{N}$, T > 0, let the time step be

$$\Delta t = T/N, \quad t_n = n\Delta t, \ n = 1, \dots, N.$$

Suppose that there are $L \in \mathbb{N}$ lattice cells within the computational domain \mathcal{D} , and there are R grid points in each lattice cell, which yields the following discretization

$$\begin{cases} k_\ell = -\frac{1}{2} + \frac{\ell-1}{L}, & \text{where } \ell = \{1, \cdots, L\} \subset \mathbb{N}, \\ y_r = \frac{2\pi(r-1)}{R}, & \text{where } r = \{1, \cdots, R\} \subset \mathbb{N}, \end{cases}$$

and thus finally we evaluate $\psi^n = \psi(t_n)$ at the grid points

$$x_{\ell,r} = \varepsilon(2\pi(\ell-1) + y_r).$$

Singapore, Dec 19-21, 2011

Bloch Decomposition algorithm in details

Now we can give the details of our BD algorithm. Let's recall the BD algorithm given before:

Step 1. First, we solve the equation

$$\mathrm{i}\varepsilon\partial_t\psi = -\frac{\varepsilon^2}{2}\,\Delta\psi + V_\Gamma\left(\frac{x}{\varepsilon}\right)\psi,$$
 (20)

on a fixed time-interval Δt .

Step 2. Second, we solve the ordinary differential equation (ODE)

$$i\varepsilon \partial_t \psi = \left(U(x) + \beta |\psi|^2\right) \psi,$$
 (21)

on the same time-interval.

Indeed Step 1 consists of several intermediate steps by BD:

Step 1.1 We first compute $\widetilde{\psi}$, *cf.* Bloch transform (14), at time t^n by

$$\widetilde{\psi}_{\ell,r}^n = \sum_j \psi_{j,r}^n \, \mathrm{e}^{-\mathrm{i} 2\pi k_\ell \cdot (j-1)}.$$

Step 1.2 Next, we calculate the coefficients $C_m(t_n, k_\ell)$ via (13),

$$C_m(t_n, k_\ell) \approx C_{m,\ell}^n = \frac{2\pi}{R} \sum_r \widetilde{\psi}_{\ell,r}^n \overline{\chi_m}(y_r, k_\ell) e^{-ik_\ell y_r}.$$

Step 1.3 The obtained Bloch coefficients are then evolved up to t^{n+1} ,

$$C_{m,\ell}^{n+1} = C_{m,\ell}^n e^{-iE_m(k_\ell)\Delta t/\varepsilon}.$$

Step 1.4 Then we get $\widetilde{\psi}^{n+1}$ by summing up all band contributions

$$\widetilde{\psi}_{\ell,r}^{n+1} = \sum_{m} (\mathbb{P}_m \widetilde{\psi})_{\ell,r}^{n+1} \approx \sum_{m} C_{m,\ell}^{n+1} \chi_m(y_r, k_\ell) e^{ik_\ell y_r}.$$

Step 1.5 Finally we perform the inverse transformation (16),

$$\psi_{\ell,r}^{n+1} = \frac{1}{L} \sum_{j=1}^{L} \widetilde{\psi}_{j,r}^{n+1} e^{\mathrm{i} 2\pi k_j (\ell-1)}.$$

Numerical Computation of the Bloch Bands

As a preparatory step for our algorithm we shall first calculate Bloch's energy bands numerically as follows. We expand the potential $V_{\Gamma} \in C^1(\mathbb{R})$ in its *Fourier series*, *i.e.*

$$V_{\Gamma}(y) = \sum_{\lambda \in \mathbb{Z}} \widehat{V}(\lambda) e^{i\lambda y}, \quad \widehat{V}(\lambda) = \frac{1}{2\pi} \int_0^{2\pi} V_{\Gamma}(y) e^{-i\lambda y} dy.$$
 (22)

Likewise, we expand any *Bloch eigenfunctions* $\chi_m(\cdot, k)$, in its respective Fourier series

$$\chi_m(y,k) = \sum_{\lambda \in \mathbb{Z}} \widehat{\chi}_m(\lambda,k) e^{i\lambda y}, \quad \widehat{\chi}_m(\lambda,k) = \frac{1}{2\pi} \int_0^{2\pi} \chi_m(y,k) e^{-i\lambda y} dy.$$
 (23)

In general, we only need to take into account a few coefficients.

Numerical computation of the Bloch bands (cont.)

We consequently aim to approximate the Sturm-Liouville problem (9), by the following algebraic eigenvalue problem

$$\mathbf{H}(k) \begin{pmatrix} \widehat{\chi}_m(-\Lambda) \\ \widehat{\chi}_m(1-\Lambda) \\ \vdots \\ \widehat{\chi}_m(\Lambda-1) \end{pmatrix} = E_m(k) \begin{pmatrix} \widehat{\chi}_m(-\Lambda) \\ \widehat{\chi}_m(1-\Lambda) \\ \vdots \\ \widehat{\chi}_m(\Lambda-1) \end{pmatrix}$$
(24)

where the $2\Lambda \times 2\Lambda$ matrix $\mathbf{H}(k)$ is given by

$$\mathbf{H}(k) = \begin{pmatrix} \widehat{V}(0) + \frac{(k-\Lambda)^2}{2} & \widehat{V}(-1) & \cdots & \widehat{V}(1-2\Lambda) \\ \widehat{V}(1) & \widehat{V}(0) + \frac{(k-\Lambda+1)^2}{2} & \cdots & \widehat{V}(2-2\Lambda) \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{V}(2\Lambda - 1) & \widehat{V}(2\Lambda - 2) & \cdots & \widehat{V}(0) + \frac{(k+\Lambda-1)^2}{2} \end{pmatrix}$$
 (25)

Some Remarks on Our BD Algorithm

- It is easy to check that our BD algorithm conserves the mass, and the total energy numerically.
- In our BD algorithm, we compute the dominant effects from dispersion and periodic lattice potential in one step, and treat the non-periodic potential as a perturbation.
- On the same spatial grid, the numerical costs of our Bloch transform based algorithm is of the same order as the classical time-splitting spectral method.
- Clearly, if there is *no lattice potential*, *i.e.* $V_{\Gamma}(y) \equiv 0$, the BD algorithm simplifies to the described time-splitting spectral method.

Outline

- Bloch Decomposition Based Algorithm
 - A classical time-splitting spectral method (TS)
 - The Bloch decomposition based algorithm (BD)
 - Review of Bloch's Decomposition
 - Our BD algorithm in details
- Numerical Implementation and Applications
 - Numerical tests for 1D problems
 - Numerical examples for lattice BEC in 3D
 - Random coefficients: Stability tests and Anderson localization
- 3 Conclusion

Numerical tests for 1D linear problems ($\beta = 0$)

First, we consider the 1D linear problem¹. We choose the initial data $\psi_{in}\in\mathcal{S}(\mathbb{R})$ of the following form

$$\psi_{\rm in}(x) = \left(\frac{2\omega}{\pi}\right)^{1/4} e^{-\omega(x-\pi)^2}.$$
 (26)

Concerning slowly varying, external potentials U, we shall choose,

• a *harmonic oscillator* type potential:

$$U(x) = \frac{|x - \pi|^2}{2},\tag{27}$$

or an external (non-smooth) step potential,

$$U(x) = \begin{cases} 1, & x \in \left\lfloor \frac{\pi}{2}, \frac{3\pi}{2} \right\rfloor \\ 0, & \text{else.} \end{cases}$$
 (28)

Within the setting described above, we shall focus on two particular choices for the lattice potential, namely:

Example 1 (Mathieu's model)

The so-called *Mathieu's model*, *i.e.*

$$V_{\Gamma}(x) = \cos(x). \tag{29}$$

(For applications in solid state physics this is rather unrealistic, however it fits quite good with experiments on Bose-Einstein condensates in optical lattices.)

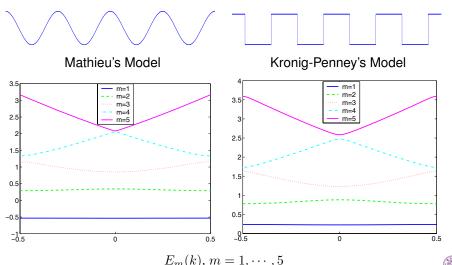
Example 2 (Kronig-Penney's model)

The so-called *Kronig-Penney's model*, i.e.

$$V_{\Gamma}(x) = 1 - \sum_{\gamma \in \mathbb{Z}} \mathbf{1}_{x \in \left[\frac{\pi}{2} + 2\pi\gamma, \frac{3\pi}{2} + 2\pi\gamma\right]},\tag{30}$$

where $\mathbf{1}_{\Omega}$ denotes the characteristic function of a set $\Omega \subset \mathbb{R}$.

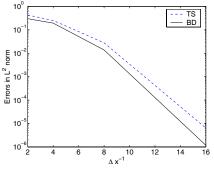
Mathieu's model and Kronig-Penney's model

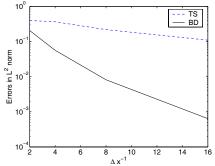


Spatial discretization error test, $\varepsilon = \frac{1}{1024}$

Left Figure: Example 1 with U(x) = 0. TS: $\triangle t = 10^{-4}$, BD: $\triangle t = 1$.

Right Figure: Example 2 with $U(x)=\frac{|x-\pi|^2}{2}$. TS: $\triangle t=10^{-6}$, BD: $\triangle t=10^{-2}$.

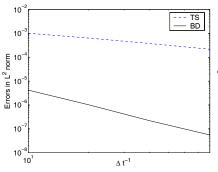


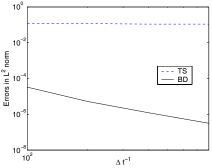


Temporal discretization error test, $\frac{\triangle x}{\varepsilon} = \frac{1}{128}$

Kronig-Penney's Model with $U(x) = \frac{|x-\pi|^2}{2}$

Left Figure: (
$$\varepsilon = \frac{1}{2}$$
 at $t = 0.1$).
Right Figure: ($\varepsilon = \frac{1}{1024}$ at $t = 0.01$).





Some remarks on linear problems

- If $U(x) \equiv 0$:
 - As discussed before, we can use only *one step* in time to obtain the numerical solution, because the *Bloch-decomposition method* indeed is *"exact"* in this case (independently of ε).
 - On the other hand, by using the *time-splitting Fourier spectral method*, one has to refine the time steps (depending on ε) as well as the mesh size in order to achieve the same accuracy.
- If $U(x) \neq 0$ and $\varepsilon \ll 1$:
 - We can achieve quite good accuracy by using the Bloch-decomposition method with $\Delta t = \mathcal{O}(1)$ and $\Delta x = \mathcal{O}(\varepsilon)$.
 - On the other hand, by using the *time-splitting Fourier spectral* method, we have to use $\Delta t = \mathcal{O}(\varepsilon^{\alpha})$, $\Delta x = \mathcal{O}(\varepsilon^{\alpha})$, for some $\alpha \geq 1$. In particular $\alpha > 1$ is required for the case of a non-smooth lattice potential V_{Γ} .

Numerical tests for 1D NLS

Then we consider the NLS².

Example 3 (Tests for band mixing)

We start with the initial condition likes

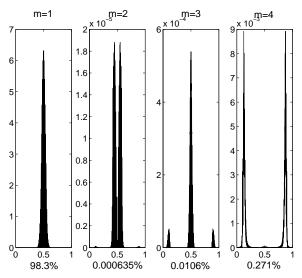
$$\psi_{\rm I}(x) = \mathbb{P}_{m_0} \psi_{\rm in}(x) e^{ikx},\tag{31}$$

where $\psi_{\rm in}(x)$ is given in (26). We'll test the mass transition from one band to others.

Here we have the following results,

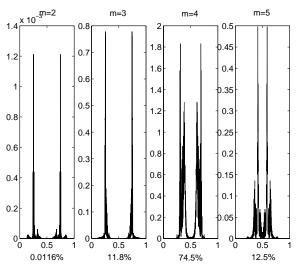
- The *isolated band* with $m_0 = 1$ is more stable than other bands.
- If m_0 is large, there will be more mass transfers to other bands.
- If E_{m_0} is not isolated, there will be $\mathcal{O}(1)$ mass transfers to other bands.
- If $\beta = \mathcal{O}(1)$, there will be $\mathcal{O}(1)$ mass transfers to other bands.

Example 3: $U(x) = \frac{|x-\pi|^2}{2}$, $\varepsilon = \frac{1}{128}$, $\beta = \frac{1}{100}$, $m_0 = 1$.



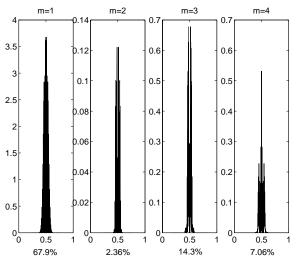
Zhongyi Huang (Tsinghua Univ.)

Example 3:
$$U(x) = \frac{|x-\pi|^2}{2}$$
, $\varepsilon = \frac{1}{128}$, $\beta = \frac{1}{100}$, $m_0 = 4$.



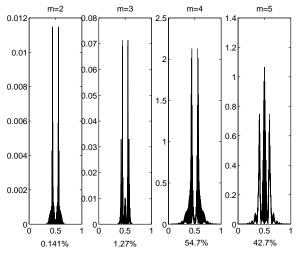
Mass distribution

Example 3: $U(x) = \frac{|x-\pi|^2}{2}$, $\varepsilon = \frac{1}{128}$, $\beta = 1$, $m_0 = 1$.



Mass distribution

Example 3: $U(x) = \frac{|x-\pi|^2}{2}$, $\varepsilon = \frac{1}{128}$, $\beta = 1$, $m_0 = 4$.



Mass distribution

Numerical examples for lattice BEC in 3D ²

Example 4 (**Dynamics of BECs**)

Now we want to simulate the dynamics of the BECs. The initial condition is $\psi\big|_{t=0}=\psi_{\mathrm{in}}(x)$, where $\psi_{\mathrm{in}}(x)$ is the *ground state* of the nonlinear eigenvalue problem (*without the lattice potential term*)

$$\begin{cases} \mu \phi(x) &= -\frac{1}{2} \Delta \phi + U \phi + \beta |\phi|^2 \phi \\ \|\phi\|_{L^2} &= \int_{\mathbb{R}^d} |\phi|^2 (x) dx = 1. \end{cases}$$

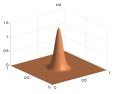
For example, in 3D case, with $U(x) = \frac{|x|^2}{2}$,

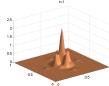
- weak interaction: $|\beta| \ll 1$, $\mu_g = \frac{3\varepsilon}{2}$, $\phi_g = \frac{1}{(\pi\varepsilon)^{3/4}} e^{-U(x)/\varepsilon}$;
- strong interaction: $\beta = \mathcal{O}(1)$,

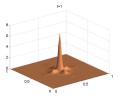
$$\mu_g^s = \frac{1}{2} \left(\frac{15\beta}{4\pi}\right)^{2/5}, \quad \phi_g = \left\{ \begin{array}{ll} \sqrt{\left(\mu_g^s - U(x)\right)/\beta}, & \quad U(x) < \mu_g^s, \\ 0, & \quad otherwise. \end{array} \right.$$

Comparison of the initial and final mass densities, evaluated at $x_3 = 0$.

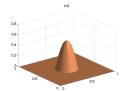
$$|\beta|=\frac{1}{4}$$
 and $\varepsilon=\frac{1}{4}$

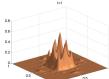


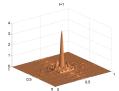




$$|\beta|=1$$
 and $\varepsilon=\frac{1}{4}$







 $|\psi(t,x)|^2\big|_{t=0}$, $|\psi^d(t,x)|^2$ (defocusing case) and $|\psi^f(t,x)|^2$ (focusing case).

Anderson localization in disordered media

In this example, we present numerical studies for the Klein-Gordon equation (32) including *random coefficients* ³. This describes waves propagating in *disordered media*, a topic of intense physical and mathematical research (*cf.* P. A. Robinson, *Phil. Magazine B* **80**, 2000).

The *purely periodic coefficients* $a_{\Gamma}(y)$ and $W_{\Gamma}(y)$ describe an idealized situation where *no defects* are present within the material. More realistic descriptions for *disordered media* usually rely on the introduction of *random perturbations* within these coefficients.

Since our numerical method relies on $\{\varphi_m(y,k)\}_{m=1}^M$ as basis functions, the *stability* of our method w.r.t. to *perturbation* of these *Bloch functions* is an important question.

³Huang, Jin, Markowich and Sparber, Wave Motion, 09'

Klein-Gordon equation with random coefficients

We shall study of the following class of (one-dimensional) *Klein-Gordon* type equations

$$\begin{cases}
\frac{\partial^{2} u}{\partial t^{2}} = \frac{\partial}{\partial x} \left(a_{\Gamma} \left(\frac{x}{\varepsilon} \right) \frac{\partial u}{\partial x} \right) - \frac{1}{\varepsilon^{2}} W_{\Gamma} \left(\frac{x}{\varepsilon} \right) u + f(x), & t > 0, \\
u \Big|_{t=0} = u_{0}(x), & \frac{\partial u}{\partial t} \Big|_{t=0} = v_{0}(x),
\end{cases}$$
(32)

with given initial data $u_0(x), v_0(x) \in \mathbb{R}$ and $f(x) \in \mathbb{R}$ describing some slowly varying source term.

The highly oscillatory coefficients $a_{\Gamma}(y), W_{\Gamma}(y) \in \mathbb{R}$ are assumed to be *periodic* with respect to some *regular lattice* $\Gamma \simeq \mathbb{Z}$. Equation (32) henceforth describes the propagation of waves on macroscopic length- and time-scales.

Stability of our BD algorithm

To this end we consider, instead of (7), the *randomly perturbed* eigenvalue problem

$$\left(-\frac{\partial}{\partial_y}\left(a_{\Gamma}(\omega,y)\frac{\partial}{\partial_y}\right) + W_{\Gamma}(y)\right)\varphi_m(\omega,y,k) = \lambda_m(\omega,k)\varphi_m(\omega,y,k),$$
(33)

subject to the quasi-periodic boundary condition. Here, the coefficient $a_\Gamma=a_\Gamma(\omega,y)$ is assumed to be a function of a *uniformly distributed random variable* ω with mean zero and variance $\sigma^2\geq 0$. In the following we shall vary σ in such a way that we do not loose the uniform ellipticity.

In our algorithm, we solve the *random eigenvalue problem* (33), for different choices of σ , to obtain the corresponding eigenvalues $\lambda_m(\omega,k)$ and eigenfunctions $\varphi_m(\omega,y,k)$. We shall then take the *average* of them and use these averaged quantities in our Bloch decomposition based algorithm (as described in Section 7).

Example 5 (Stability tests and Anderson localization)

Consider (32) with $f(x) \equiv 0$ and initial data

$$u_0(x) = \left(\frac{2}{\pi\varepsilon}\right)^{1/4} e^{-\frac{(x-\pi)^2}{\varepsilon}}, \quad v_0(x) = 0.$$
 (34)

The random coefficient a_{Γ} is chosen as

$$a_{\Gamma}(\omega, y) = a_{\Gamma}(y) + \omega, \quad a_{\Gamma}(y) = 2.5 + \cos(y),$$
 (35)

i.e. including an additive noise. For a given choice of σ we numerically generate $N\in\mathbb{N}$ realizations of ω and consequently take the ensemble average. In our examples we usually choose N=100, i.e.

$$E_m(k) := \mathbb{E}\{E_m(\omega, k)\} \approx \frac{1}{N} \sum_{\ell=1}^N E_m(\omega_\ell, k), \tag{36}$$

for different values of σ .

Graphs of the differences: $u(1, 2\pi x) - u^{\sigma}(1, 2\pi x)$

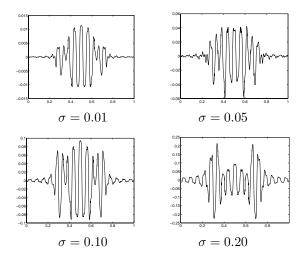


Figure: Comparison between the solution $u^{\sigma}(t,x)$ with noise and the solution u(t,x) without noise. $\varepsilon = \frac{1}{30}$, $\triangle t = \frac{1}{10}$, $\triangle x = \frac{\pi}{510}$.

Numerical Evidence for the Anderson localization

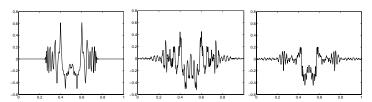
The phenomenon of Anderson localization, also known as the *strong localization*, describes the absence of dispersion for waves in random media with sufficiently *strong random perturbations*. It has been predicted by P. W. Anderson (Philos. Mag. B, **52**, 1985) in the context of (quantum mechanical) electron dynamics but is now regarded as a general wave phenomenon that applies to the transport of electromagnetic or acoustic waves as well.

We then study the random Klein-Gordon equation

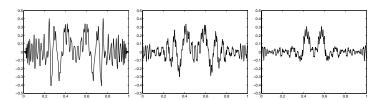
$$\begin{cases}
\frac{\partial^{2} u^{\omega}}{\partial t^{2}} = \frac{\partial}{\partial x} \left(a_{\Gamma} \left(\omega, \frac{x}{\varepsilon} \right) \frac{\partial u^{\omega}}{\partial x} \right) - \frac{1}{\varepsilon^{2}} W_{\Gamma} \left(\frac{x}{\varepsilon} \right) u^{\omega} + f(x), \\
u^{\omega}|_{t=0} = u_{0}(x), \quad \frac{\partial u^{\omega}}{\partial t}|_{t=0} = v_{0}(x),
\end{cases}$$
(37)

which describes the propagation of waves in disordered media.

Averaged solutions with random perturbations



 $\mathbb{E}\{u^{\omega}(1,1\pi x)\}$, where, from left to right: $\sigma=0,\,0.5,\,$ and 1.0.



 $\mathbb{E}\{u^{\omega}(2,1\pi x)\}$, where, from left to right: $\sigma=0,\,0.5$, and 1.0.

Figure: Averaged solutions at different time for different choices of σ ($\varepsilon = \frac{1}{64}$).

Definition of Energy Density

In order to realize the emergence of this localization phenomena we consider the *local energy density* $e^{\omega}(t,x)$ of the solution $u^{\omega}(t,x)$:

$$e^{\omega}(t,x) := \frac{1}{2} \left(\left| \frac{\partial u^{\omega}}{\partial t} \right|^2 + a_{\Gamma} \left(\omega, \frac{x}{\varepsilon} \right) \left| \frac{\partial u^{\omega}}{\partial x} \right|^2 + \frac{1}{\varepsilon^2} W_{\Gamma} \left(\frac{x}{\varepsilon} \right) |u^{\omega}|^2 \right).$$

The *total energy* $E_0^\omega(t)$ of $u^\omega(t,x)$ is then given by the zeroth spatial moment of $e^\omega(t,x)$, i.e.

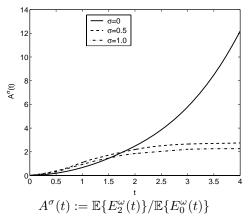
$$E_0^{\omega}(\omega, t) = \int_{\mathbb{R}} e^{\omega}(t, x) dx,$$
(38)

and we likewise define

$$E_2^{\omega}(\omega, t) = \int_{\mathbb{R}} x^2 e^{\omega}(t, x) dx,$$
(39)

which measures the *spread of the wave*. It represents the mean square of the distance of the wave from the origin at time t.

The graph of $A^{\sigma}(t)$ for different σ ($\varepsilon = \frac{1}{64}$)



The quantity $A^{\sigma}(t)$ has been introduced as a measure for the presence of *Anderson localization*. As we see it first grows almost linearly in t, a typical diffusive behavior, and then, around t=2 it flattens. The latter is a strong indication of *Anderson localization*.

Outline

- Bloch Decomposition Based Algorithm
 - A classical time-splitting spectral method (TS)
 - The Bloch decomposition based algorithm (BD)
 - Review of Bloch's Decomposition
 - Our BD algorithm in details
- Numerical Implementation and Applications
 - Numerical tests for 1D problems
 - Numerical examples for lattice BEC in 3D
 - Random coefficients: Stability tests and Anderson localization
- Conclusion

Conclusion

We present a new numerical method for accurate computations of solutions to (non)linear dispersive wave equations with periodic coefficients.

- Our approach is based on the classical Bloch decomposition method.
- It is shown by the given numerical examples, that our method is unconditionally stable, highly efficient, and also conserves the important physical quantities.
- Our new method allows for *much larger time-steps* and usually a *coarser spatial grid*, to achieve the same accuracy as for the usual time-splitting spectral method. This is particularly visible in cases, where the lattice potential is *non longer smooth* and $\varepsilon \ll 1$.

Thank you for your attention!

