
Causal Effects based on 
Randomized Clinical and 

Intervention Trials 

Alan Hubbard and Nicholas P. Jewell 
Division of Biostatistics  
School of Public Health  

University of California, Berkeley 

Workshop on the Design and Analysis of 
Clinical Trials 

Oct 28, 2011 
1 



Collaborators 

 Mark van der Laan                 
 Farid Jamshidian 

 Supported by NIAID 



References 
•  M.J. van der Laan and S. Rose. Targeted Learning.  Springer. 2011. 

•  M. Rosenblum, N. P. Jewell, M. J. van der Laan, S. Shiboski, A. van der Straten and 
N. Padian, “Analyzing direct effects in randomized trials with secondary intervention: 
An application to HIV prevention trials.” Journal of the Royal Statistical Association, 
Series A, 172, 2009, 443-465. 

•  S. Shiboski, M. Rosenblum and N. P. Jewell, “The impact of secondary condom 
interventions on the interpretation of results from HIV prevention trials,” Statistical 
Communications in Infectious Diseases, Vol. 2 : Iss. 1, Article 2. 

•  F. Jamshidian, A. Hubbard, N. P. Jewell, “Accounting for perception, placebo, ad 
unmasking effects in estimating treatment effects in randomized clinical trials,” to 
appear in Statistical Methods in Medical Research.  

•  M. Backonja, A. Beydoun, K. R. Edwards et al., “Gabapentin for the symptomatic 
treatment of painful neuropathy in patients with diabetes mellitus. A randomized 
controlled trial,” JAMA, 280, 1998, 1831-1836. 

•  J. Simes, M. Voysey, R.O’Connell et al., “A novel method to adjust efficacy estimates 
for uptake of other active treatments in long-term clinical trials,” PLoS ONE 5(1): 
e8580. doi:10.1371/journal.pone.0008580 

3 



Benefits of Applying Insights of Causal 
Inference to Clinical Trials 

•  The application of “causal inference” techniques to 
randomized trials 

–  Improving efficiency using covariates when there is no 
confounding of effect of interest (randomization works) – 
Tsiatis, et al. (2006); More generally, Moore and van der 
laan (2007). 

•  If there are predictive covariates, can gain efficiency in estimating the 
marginal (adjusted) treatment effect, which is protected against 
model misspecification. 
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•  Can estimate parameters relevant to important 
questions public health/research questions when 
randomization does not eliminate confounding. 
– Missing data, informative censoring 
–  Isolating pathways (direct effects  when intermediates 

not randomized) 

•  Provides a general roadmap of estimation (e.g., what 
is the parameter of interest in the context of competing 
events) 5 

Benefits of Applying Insights of Causal 
Inference to Clinical Trials 



Examples 

•  Two applications: 

– the MIRA trial on HIV intervention 

– pain trials and (unmasking) side effects 
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The MIRA Trial 
•  Gates Foundation study to determine the 

effectiveness of a latex diaphragm in the reduction 
of heterosexual acquisition of HIV among women  

•  Two arm, randomized, controlled trial 
•  Primary intervention: diaphragm and gel provision 

to diaphragm arm (nothing to control arm). 
•  Secondary Intervention: Intensive condom provision 

and counseling given to both arms, plus treatment 
of STIs 

•  Obviously not blinded. 
•  5000 women seen for 18 months in three sites in 

Zimbabwe and South Africa 
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MIRA Trial: Basic Intention to 
Treat Results 

•  Basic Intent-to-Treat Analysis:  
– 158 new HIV infections in Diaphragm Arm 
– 151 new HIV infections in Control Arm 

•  ITT estimate of Relative Risk is 1.05 with a 
95% CI of (0.84, 1.30)  

•  End of story . . . . .? 
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MIRA Trial: Basic Intention to 
Treat Results 

•  However condom use differed between the 
two arms: 
– 53.5% in Diaphragm Arm (by visit) 
– 85.1% in Control Arm (by visit) 

•  Could this mean that the diaphragm was more 
effective than it appeared from the basic 
analysis? 

•  To make sense of this—we’d like to 
understand the role of condom use in 
mediating the effect of treatment assignment 
on HIV infection.  9 



Most Important Public Health Questions 

1. What is the effectiveness of providing study product in 
environment of country-level standard condom 
counseling?  

     (in environment of no condom counseling?) 
2. How does providing study product alone compare to 

consistent condom use alone in reducing HIV 
transmission? 

3. How does providing the study product alone compare 
to unprotected sex, in terms of risk of HIV infection? 
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A Roadmap for  
Semiparametric Causal Inference 

•  There is a general framework that can lead, through 
a series of steps to arrive at: 

1.  The relevant parameter of interest (parameter as function 
of some theoretical intervention) 

2.  The identifiability conditions necessary to estimate it (the 
parameter as a function of the data-generating distribution). 

3.  Optimal loss-based estimation of the data-generating 
distribution. 

4.  Defining the locally efficient estimator in a semi-parametric 
model. 

5.  Bending this model so that it targets the parameter of 
interest. 

6.  Derive robust sampling-based inference. 11 



Targeted Learning 
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Starting simple 

•  The actual experiment involved time-dependent 
measurements of adherence, condom use, HIV 
status, and baseline covariates. 

•  To illustrate approach, start with simpler data-
structures/questions. 

•  For instance, single measure of condom use. 
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The Data, Model 1 

•  Start with the single definition of condom use case 
(actual time-dependent measurements). 

•  O=(R,W,C,Y)~P0 
–  R=random treatment assignment (Diaphragm=1) 
–  W=baseline covariates 
–  C=condom use 
–  Y=HIV status at end of trial (1=yes) 

•  Graphical Model: R=fR(UR), W=fW(UW), C=fC
(R,UC),  Y= fY(R,W,C,UY), (U’s independent) 

–  Except for fR(UR), which is a known function of a 
UR with known distribution, the other functions are 
unknown, i.e., P0 nonparametric.? 14 
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Graph Associated with Model 1 

HIV 
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(Diaphragm use) 
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Condom 
Use 
C 

DIRECT EFFECT 

•   We want to estimate the direct effect of diaphragm provision, at a set 
    level of condom use. (Petersen et al. 2006, Robins and Greenland 1992,  
     Pearl 2000, Rosenblum et al. 2009) 
•    Still ITT interpretation (no confounding of intermediate) 
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The parameter of interest 

•  Language:  
–  a comparison of the mean if every subject in target or super 

population is assigned diaphragm and uses condoms, 
versus the same population not assigned diaphragm, but 
uses condoms. 

•  Parameter as function of theoretical populations 
defined by interventions (counterfactual distributions). 

–  Controlled (Type I) DE: 

–  Pure (Type II) DE:  16 

  

€ 

X = (Yrc,Cr,r∈R,c ∈C ),   Yrc = fY (r,c,UY ),Cr = fC (r,UC )

€ 

θ(c) =ψc (PX ) = E(Y1c −Y0c )

€ 

θ =ψ(PX ) = E(Y1C0 −Y0C0 )

Data, 
Parameter 



More on Pure Direct Effect 

•  Can be represented as a weighted average of the 
controlled direct effects, θ(c). 

      Q(c)=P(C0=c) in this case. 

•  Given the parameter involves counterfactuals that 
one never observes, going to need an additional 
identifiability assumption (, e.g., van der Laan and 
Petersen, 2004). 

•  Other one’s can be invoked (Pearl, 2000; Robins and 
Greenland, 1992). 17 

€ 

θ = E(Y1c −Y0c )
c
∑ Q(c)

€ 

E(Y1c −Y0c |C0 = c) = E(Y1c −Y0c )

 Parameter 



More on Pure Direct Effect, cont. 

•  Because need a sort or arbitrary assumption, if one 
wants a single number (instead of different ones for 
different c’s), then just treat can choose Q(c) to be 
another convenient conditional distribution of C. 

18 € 

θ = E(Y1c −Y0c )
c
∑ Q(c)

 Parameter 



Estimates (Type I) 

•  In this case of controlled direct effect under the very 
restrictive assumptions of model I, and if we define C 
at a particular intermediate time then (RA is 
randomization assumption, CA consistency assump.) 

•  Thus, assuming C is discrete (e.g., 1=yes) then a 
simple plug-in nonparametric estimator. 

19 

€ 

E(Y1c ) =
RA
E(Y1c |R =1,C = c) =

CA
E(Y |R =1,C = c)

€ 

ˆ θ (c) =

YiI(Ri =1,Ci = c)
i=1

n

∑

I(Ri =1,Ci = c)
i=1

n

∑
−

YiI(Ri = 0,Ci = c)
i=1

n

∑

I(Ri = 0,Ci = c)
i=1

n

∑

Estmates 



Model 2 – Some confounders of 
condom use 

HIV 
Infection 
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(Diaphragm use) 

Condom 
Use 

Confounders 

after stratification on condom use 

HIV 
Infection 

Treatment Group 
(Diaphragm use) 

Confounders randomization hasn’t ruled out confounding of direct 
effect!  How does one define, estimate DE? 20 
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The Data, Parameter, RA 

•  Same data, O=(R,W,C,Y)~P0, but now can’t ignore 
W. 

•  Model: R=fR(UR), W=fW(UW), C=fC(R,W,UC),      
Y= fY(R,W,C,UY) 

•  Same parameter of interest: 

•  Model implies different randomization 
assumption:   
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€ 

θ(c) =ψc (PX ) = E(Y1c −Y0c )

  

€ 

RA→C⊥(Yrc,r∈R,c ∈C ) |R,W

Data, 
Parameter 



Identifiability 

•  First, get the ψc(P0): 

•  But, need to integrate out over W: 

     Under ETA (positivity):  P(C=c|R=r,W=w) > 0, over dist (R,W). 
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€ 

E(Y1c |W ) =
RA
E(Y1c |R =1,C = c,W ) =

CA
E(Y |R =1,C = c,W )

€ 

E(Y1c ) = E(Y |R =1,C = c,W = w)
w
∑ p(w)

€ 

ψc (PX )
want

=
RA /ETA

ψc (P0)
can get

= E(Y |R =1,C = c,W = w) − E(Y |R = 0,C = c,W = w){ }
w
∑ p(w)

Model/
Parameter 



Estimates 
•  Two General Approaches 

–  Estimating equation (IPCW, DR-IPCW) 
–  Plug-in (G-computation, T-MLE) 

•  DR-IPCW, T-MLE both based  on efficient influence 
curve (asymptotically equivalent) 

•  Require either estimates of   
–  Q(r,c,W)=E(Y|R=r,C=c,W) 
–  g(c,r|W)=P(C=c,R=r|W) 
–  both. 

•  If W high dimensional, requires modeling. 23 

Estimates 



G-computation (Robins) 

•  Simple plug-in estimator: 

•  Need Q0
n to be consistent for estimate to be 

consistent. 
•  Typically know very little about model (semi-

parametric) 
•  Use loss-based approach          Super Learning 

(van der Laan, Polley, Hubbard, 2007). 
24 

€ 

ˆ θ 
Gcomp

(c) =ψC ( ˆ P ) =
1
n

Qn
0(1,c,Wi) −Qn

0(0,c,Wi){ }
i=1

n

∑

Estmates 



Super Learner 
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Loss-
based 
Estimation 



Super Learner - Optimality 
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Loss-
based 
Estimation 



Bottom Line 
•  Super learner performs as well as the oracle 

selector (up to a typically second order term) 

•  as long as the number of candidate learners 
considered is polynomial in sample size, no over-
fitting. 

•  can make even better (potentially much better) by 
weighted averaging over candidates, where this 
average is determined via cross-validation (so 
called ensemble learner). 

27 

Loss-
based 
Estimation 



R-function on CRAN.org 

28 

Loss-
based 
Estimation 



IPCW (Robins) 
•  Weighted estimating equation: 

     where g(r,c|W)=P(C=c|W,R)P(R=r|W)=                   
P(C=c|R=r,W)P(R=r)  (R randomized) 

•  Based on  

•  Need to estimate g (gn). 29 

€ 

ˆ E (Y1c ) =
1
n

I(Ri =1,C = c)Yi

gn (r,c |Wi)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ i=1

n

∑

€ 

E I(R = r,C = c)Y
g(r,c |W )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= EX E
I(R = r,C = c)Y
g(r,c |W )

| X
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

=

EX
Y

g(r,c |W )
E[I(R = r,C = c)] | X

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

=
(R ,C )⊥Yrc |W

EX
Y

g(r,c |W )
g(r,c |W )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= EYrc

Estimate 



IPTW equivalent can be framed as 
solving estimating equation 

•  e.g.,                                         ,  E(Y1c-Y0c)=β1+β3. 

•  Can generalize this to more complicated situations 
(longitudinal intermediates), and different (non-
linear) forms of m – called marginal structural 
models (true of all types of estimators, G-comp, T-
MLE, DR-IPTW). 

€ 

m(r,c; ˆ β ) : 1
gn (Ri,Ci |Wi)

(Yi −m(Ri,Ci;β))
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ i=1

n

∑

m(r,c;β) ≡ saturated model of E(Yrc )

€ 

m(r,c;β) = β0 + β1r + β2c + β3rc

Estimate 



Model 3 (Repeat this for every time,  
t = 1,..,8) 

Treatment  
Group (R) 

HIV Status 
(H) 

Condom Use 
(C) 

Diaphragm Use 
(D) (confounder) 

Using Regression, if we control for D, we don’t get the direct effect that we 
want. 31 

Model 



Interventions on time-dependent 
variables 

•  O = {W,R,D(0),C(0),Y(0),D(1),C(1),Y(1),…, D(8),C(8),Y(8)} 
•  Counterfactuals of interest: 

•  Diaphragm use also an intermediate (can 
define counterfactuals of it with regards to 
history of condom use as well). 

•  To estimate distribution of counterfactuals of 
interest, need a more general (sequential) 
randomization assumption 

32 

€ 

Yrc (t),c = (0,0...,0) and c = (1,1...,1)

€ 

C(t)⊥(Yrc ,Dr,c ) |W ,R,C(t −1),Y (t −1),D(t −1)

Data/Model 



Marginal Structural Model 
•  Lots of counterfactuals of interest – need to make simplifying 

assumptions (smoothness) – assume a MSM. 

•  Specifically, model the counterfactual hazard of HIV: 

•  Make simplifying (dimension reduction assumptions): 
–  condom use measured at the current visit should not have an effect on 

the outcome of the HIV test at that visit and 
–  Condom use in the previous 3 months may have a large effect on 

whether HIV is detected at a given visit, compared with condom use 
further in the past. 
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€ 

Pr(Yrc (t) =1 |Yrc (t −1) = 0) = m(t,r,c (t) | β)

Parameter 
of Interest 



Estimator - IPTW 
•  Used inverse weighted estimating equation approach, where 

weight is proportional to estimated probability of observing the 
sequential history of condom use for a subject: 

•  Sequential randomization assumption (along with even more 
onerous ETA assumption) and estimating this probability 
consistently results in consistent estimate of (also needing to 
be properly specified) hazard model, m. 

34 

€ 

Pr[C(u) |W ,R,D (u),C (u −1),Y (u −1)
u≤t
∏ ]

Estimate 



Final Parameter of Interest 
•  Can use simple product estimator now to get the probability of 

contracting HIV for different fixed scenarios of condom use 
and randomization group.  If T is time of HIV+, then 

•  Could use any of other methods, and in fact some potentially 
large advantages to using T-MLE (to appear in International 
Journal of Biostatistics) 

•  Nonparametric bootstrap used for inference. 35 

€ 

ˆ P r(Trc ≤ 8) = 1−m(u,r,c (u) | ˆ β )( )
u=1

8

∏

Parameter 



Results of Direct Effects Analysis 

•  Relative Risk of HIV infection between 
Diaphragm arm and Control arm by end of Trial, 
with Condom Use Fixed at “Never”: 0.59 (95% 
CI: 0.26, 4.56) 

•  Relative Risk of HIV infection between 
Diaphragm arm and Control arm by end of Trial, 
with Condom Use Fixed at “Always”: 0.96 (95% 
CI: 0.59, 1.45) 

   Conclusion: No definitive evidence from direct 
effects analysis that diaphragms prevent (or 
don’t prevent) HIV. 36 

Results, 
Rosenblum, 
et al., 2009 



Example 2 – Pain Trial 
•  Pain is the most disturbing symptom of peripheral 

neuropathy among diabetic patients 

•   As many as 45% of patients with diabetes develop 
peripheral neuropathies                 

•   Gabapentin was suggested as a treatment option 

•  To evaluate the effect of Gabapentin, a randomized,  
double-blind,  placebo-controlled trial was conducted 

•  165 patients with a 1- to 5-year history of pain attributed 
to diabetic neuropathy enrolled at 20 different sites 
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Backonja et al. Trial in JAMA 
•  The main outcome was daily pain severity as measured on an 

11-point Likert scale (0 no pain- 10 worst possible pain) 

•  Eighty-four patients received gabapentin, 81 received placebo 

•  By intention-to-treat analysis, gabapentin-treated patients' 
mean daily pain score (baseline 6.4, end point 3.9) was 
significantly lower (P<.001) than the placebo-treated patients' 
score (baseline 6.5, end point 5.1) 

•  Concluded that gabapentin appears to be efficacious for the 
treatment of pain associated with diabetic peripheral 
neuropathy 
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Handling Treatment-Related 
Side Effects 

•  Treat side effects singly by  
 removing those individuals 
 from the data analysis and 
 seeing if that changed the  
 results 
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Perception Effect 
•  Patients have a perception about the treatment they 

receive 
•  In general we may think of the patients assigning a 

degree of certainty (probability) to receiving the active 
treatment, measured by a variable P 

•  In most cases we do not observe the patient’s perception 
on a continuous scale. € 

P =

1
0
−1

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

convinced on treatment
not sure if on treatment or placebo

convinced on placebo

40 

Defining 
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Analysis on Side Effects 
•  Often only the time of occurrence of treatment 

related side effects 

•  No equivalent observation on when and if 
someone might perceive that they are only on 
placebo (absence of improvement?) 

•  Previous work (MIRA) indicates issues/
assumptions associated with stratification on 
side effect occurrence (no longer use data after 
occurrence of treatment related side effects) 
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Direct Effects 
•  Consider an ideal experiment in which the 

investigator measures the effect of treatment on 
the outcome holding perception at a fixed level 

•  Type I direct effect:  the difference. in the (mean) 
counterfactual outcomes if the individual received 
treatment  A = 1  with her perception fixed at level 
P = 0  vs. the counterfactual outcome if she 
received no treatment  A = 0  with her perception 
fixed at the same level: 

42 

€ 

ψ cont (p) = E(Y1p −Y0p )

Parameters 



Direct Effects 
•  Type II direct effect: 

 the difference in the (mean) counterfactual 
outcomes if the individual were untreated 
vs. the counterfactual outcome if she were 
treated, but her perception remained at its 
counterfactual level under no treatment:  

43 

€ 

ψPure = E(Y1P0 −Y0P0 )

Parameters 



 Data 
•  O=(W,A,P, Y) 

•  Outcome: (Y)   
 mean pain score for the last 7 
 diary entries 

•  Baseline covariates: (W) 
 age, sex, race, height, weight,  
 baseline pain, baseline sleep 

•  Treatment:  (A) 
 gabapentin, placebo 

•  Perception: (P) 
 changes from 0 to 1 when a  
 treatment-related side effect 
 occurs 

44 
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Parameters of Interest 
•  What is the treatment effect if all the patients 

remained unknowledgeable about their 
treatment? (Perception fixed at 0), ψ1=ψ(0) 

•  What is the treatment effect if all the 
patients thought they were receiving the 
active treatment? (Perception fixed at 1), 
ψ2=ψ(1) 

•  (The difference between these two parameters can be 
thought of as a perception bias) 

preferred ITT 
parameter 

45 

Parameters 



Parameters of Interest 
•  What is the perception effect if everyone 

receives a placebo?(Treatment fixed at 0) 

•  What is the perception effect if everyone 
receives the active treatment? (Treatment fixed 
at 1) 

•  (The difference between these parameters yields the 
same perception bias) 

46 
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Unmasking Bias 

•  Similarly, the unmasking bias can be 
defined as: 

47 

€ 

E Y11( ) −E Y0,−1( ){ } - E Y10( ) −E Y00( ){ }

Parameters 



Parameter Estimation Using 
G-Computation 

•  Assumptions for G-computation: 
  Consistency Assumption:.                              

    The observed data for a subject is one of the  
counterfactuals from the full data. 

 No Unmeasured Confounding:  
 Treatment is randomized within strata of W 
 Experimental Treatment Assumption: 

•  G-comp Estimate   

© Nicholas P. Jewell, 2011 
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P(A = a,P = p |W ) > 0, ∀(a, p),PW

Estimators 



•  Estimated using a DSA machine-learning 
algorithm (forcing in  both main effect and 
interaction terms for A and P, and up to 
second degree polynomials in all other 
terms as needed as determined by 5-fold 
cross-validation) 

•  Also used Super Learner 
49 

€ 

E Y | A,P,W( )

Estimation 
of P0 



G-comp Estimates 

© Nicholas P. Jewell, 2011 
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Alternatives to G-Computation 
•  Inverse probability (of “treatment”) 

weighting--probably less efficient 
•  Double-robust version of IPTW—needs 

specialized software 
•  Targeted Maximum Likelihood Est (TMLE) 

extension of G-computation (and 
asymptotically equivalent to the double-
robust estimator)—allows use of standard 
software 

•  Collaborative TMLE 51 

Estimators 



Targeted Maximum Likelihood 
Estimation 

•  Observed data:  
•  Suppose we want to estimate  
•  Given the assumptions the likelihood can be 

written as: 

52 

Estimators 



TMLE Estimates 

© Nicholas P. Jewell, 2011 
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Potential Problems/Extensions 

•  ETA Bias:  Get small probability estimates 
for g(P,A|W), inflated standard errors 

•  Use full longitudinal feature of the data 
(daily recorded pain scores—apparently 
makes little difference to what has been 
shown here) 
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Time Dependent Intermediaries 

Side Effects 
(time 1) 

Pain  
(intermediate) 

Pain 
(final) 

•   Time dependent confounding if the intermediate 
    pain scores are ignored 

Treatment 
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Side Effects 
(time 2) 

Models 



Implications for Design/Analysis? 
•  Causal methods help us think about what we want to estimate and 

appropriate methods to collect data to achieve this goal within an 
honest model (usually nonparametric). 

•  Ethics of intensive condom counseling--human subjects review? 
•  Alternative (adaptive) designs (focus on non-condom users, 

adherents etc) 
•  How do we measure intermediate variables (eg condom use, side 

effects) effectively? 
•  Need to think about measurement of potential confounders even 

with randomization? 
•  Use of surrogate outcomes (eg HSV?, objective pain 

measurements?) and comparison with outcomes of interest 
•  Measurement of perception for all subjects in RCTs with self-

reported outcomes 
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