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1 Personalized medicine

From Wikipedia:

Personalized medicine is a medical model emphasizing the

systematic use of information about an individual patient

to select or optimize that patient’s preventative and therapeutic care.

Personalized medicine can broadly be defined as products and

service that leverage the science of genomics and

proteomics (directly and indirectly) and capitalize on the

trends toward wellness and consumerism to enable tailored approaches

to prevention and care.
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Over the past century, medical care has centered on standards of care

based on epidemiological studies of large cohorts. However, large

cohort studies do not take into account the genetic variability of

individuals within a population. Personalized medicine (also call

Future medicine) seeks to provide an objective basis for

consideration of such individual differences.
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Three main steps to develop personalized medicine:

• Identify important biomarkers that could be related with certain

diseases: Bio-informatics, genomics, proteomics, and

metabolomics, etc.

• Well designed clinical studies to confirm the significance of

biomarkers to certain diseases and treatments, then approved by

FDA.

• Implement to healthcare.



1 Personalized medicine 6

There are several stakeholders:

• The industry:

– Pharmaceutical industry;

– Diagnostics industry;

– Insurers.

• Government agencies: FDA in USA.

• Both Physicians and Patients need to be educated.
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In the past decades, fields of translational research (genomics,

proteomics, and metabolomics) study the contribution of genes,

proteins, and metabolic pathways to human physiology and variations

of these pathways that can lead disease susceptibility.

Here are some recent examples:

• Khan, Fotheringham, Wood, et al (2010) reported a biomarker

(HR23B) is highlighted as the main biomarker that could be used

to determine CTCL (cutaneous T-cell lymphoma) cells’ sensitivity

to the drug SAHA (suberoylanilide hydroxamic acid). In their

study, the researchers demonstrated how HR23B could be

implemented as a biomarker in a clinically relevant setting. They

showed that the presence of HR23B in biopsies from patients with

CTCL predicted who would respond to the treatment 71.7% of

the time.
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• Li, Sheu, Ye, et al (2010) found that the top two SNPs

(rs2352028 and rs235209) were connected with lung cancer in

never smokers through their regulation of GPC5 expression.

• A recent study by Ashley, Butte, Matthew, Wheeler, et al (2010)

indicated that rare variants in three genes that are clinically

associate with sudden death- THEM43, DSP and MYBPC3. The

study showed that genome sequenced data can be used to predict

risk of diseases like myocardial infarction, type 2 diabetes and

some cancers and response to treatments.
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• In a study of Mcllroy, McCartan, Early, et al (2010), Novel

biomarkers (Nuclear HOXC11 and S100β) were found to predict

poor disease-free survival in breast cancer patients, and these

proteins could be detected in the blood.

• Genetic clues that may aid in the development of personalized

medications for alcohol addiction as studied by Ramchandani,

Umhau, Pavon, et al (2010). They found that mice with the 118G

variant demonstrated a fourfold higher peak dopamine response.
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• Lipkin, Chao, Moreno, et al (2010) found that HMGCR variant

may help identify patients who are likely to benefit from Statins

than others- for both cholesterol lowering and colorectal cancer

prevention.
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Identifying genes that seems to be linked with a disease in only the

first step of developing personalized medicine. New approaches

to the drug-development paradigm are needed, especially new designs

for clinical trials so that genetics and other biomarkers can be

incorporated to assist in patient and treatment selection.
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On June 11, 2011, The Economist published a paper:

”If personalized medicine is to achieve its full potential, it

should be used earlier on in clinical trials.”

Examples are discussed there.
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What statisticians can do?:

• Formulate the procedure statistically (mathematically).

• Find optimal or efficient solutions.

• New Designs of clinical trials.

• New statistical inference tools.

• etc.

I will focus on the new designs of clinical trials in this talk.
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Complexness of data structure:

• Many covariates:

– biomarkers;

– investigation sides;

– other covariates (male or female; smoker or nonsmoker, etc);

• sequentially dependent.

• missing data.

• small sample size.

• multi-treatments.

• others.
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2 Mathematical framework

Consider a clinical trial of n patients, each of whom is to randomly

receive one of 2 treatments (can be generalized to multi-treatments).

A randomization sequence is a matrix T = (T1, ..., Tn)
′, where Ti = 1

if patient i is in treatment 1 and Ti = 0 if patient i is assigned in

treatment 2 for i = 1, ..., n N1(n) =
∑n
i=1 Ti is the total number of

patients in treatment 1. N2(n) = n−N1(n).
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Let X = (X1, ...,Xn)
′, where Xi = (Xi1, Xi2), be a matrix of

response variables, where Xi represents the sequence of responses

that would be observed if each treatment were assigned to the i-th

patient independently. However, only one element of Xi will be

observable. Z1, ...,Zn are their corresponding covariate vectors

(biomarkers, etc.). Throughout the talk, we will consider probability

models for Xi conditional on T i and Zi.

The data structure: {Zi,T i,Xi}, i = 1, ..., n.
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• Let Tn = σ{T1, ..., Tn} be the sigma-algebra generated by the first

n treatment assignments,

• let Xn = σ{X1, ...,Xn} be the sigma-algebra generated by the

first n responses,

• let Zn = σ{Z1, ...,Zn} be the sigma-algebra generated by the

first n covariate vectors.

• Let Fn = Tn ⊗Xn ⊗Zn+1.
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A randomization procedure is defined by

φn = E(T n|Fn−1),

where φn+1 is Fn-measurable. We can describe φn as the conditional

probability of assigning treatments 1 to the n-th patient, conditional

on the previous n− 1 assignments, responses, and covariate vectors,

and the current patient’s covariate vector.
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We can describe five types of randomization procedures. We have

• complete randomization if

φn = E(Tn|Fn−1) = E(Tn);

• restricted randomization if

φn = E(Tn|Fn−1) = E(Tn|Tn−1);

• response-adaptive design (randomization) if

φn = E(Tn|Fn−1) = E(Tn|Tn−1,Xn−1);
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• covariate-adaptive randomization (design) if

φn = E(Tn|Fn−1) = E(Tn|Tn−1,Zn);

• covariate-adjusted response-adaptive (CARA) randomization

(design) if

φn = E(T n|Fn−1) = E(T n|Tn−1,Xn−1,Zn).
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3 Covariate-adaptive design

Clinical trialists are often concerned that treatment arms will be

unbalanced with respect to key covariates of interest. To prevent this,

covariate-adaptive randomization is often employed. Over 50000

covariate-adaptive clinical trials had been reported from 1988-2008

(Taves, 2010).

Two popular procedures:

• Stratified Block Randomization: Use permuted block designs

within each stratum. (about 95% reported trials).

• Pocock-Simon procedure (1975, Biometrics) (based on the biased

coin idea from Efron (1971)). (about 5% trials, but increasing

trend).
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Stratified Block Randomization: Use permuted block designs within

each stratum.

Permuted Block Design: permutation of m A’s and m B’s.

- e.g.: block size 2m = 4, permutation of (AABB) or (BAAB);

For 10 patients: —AABB—BAAB—BB
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• Advantage:

– Easy to understand and implement.

– Good large sample properties (almost prefect balance).

– Balance within stratum.

• Disadvantage:

– Only consider balance within stratum.

– Does not work for cases with many strata (many covariates or

many levels).
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Pocock-Simon procedure: Let Z1, ...,Zn be the covariate vector of

patients 1, ..., n. Assume that there are S covariates of interest

(continuous or otherwise) and they are divided into ns, s = 1, ..., S,

different levels.

Nsik(n), s = 1, ..., S, i = 1, ..., ns, k = 1, 2 to be the number of

patients in the i-th level of the s-th covariate on treatment k.

Let patient n+ 1 have covariate vector Zn+1 = (r1, ..., rS).

Let Ds(n) = Nsrs1(n)−Nsrs2(n), which is the difference between the

numbers of patients on treatments 1 and 2 for members of level rs of

covariate s.
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Let w1, ..., wS be a set of weights and take the weighted aggregate

D(n) =
∑S
s=1 wsDs(n). Establish a probability π ∈ (1/2, 1]. Then

the procedure allocates to treatment 1 according to

φi1 = E(Ti1|Ti−1,Zi) = 1/2, if D(i− 1) = 0,

= π, if D(i− 1) < 0,

= 1− π, if D(i− 1) > 0.
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• Advantage:

– Balance across covariates (marginal balance).

– Overall treatment balance with many covariates.

• Disadvantage:

– Unknown theoretical properties (not well studied, Rosenberger

and Sverdlov, 2009).

– usually not well balanced within stratum.
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We need new covariate-adaptive designs that provide balance (within

stratum, marginal and overall) under different situations (sample size

200, 500 or 1000):

• 10 covariates, each with 2 levels: total 210 = 1024 strata.

• 2 covariates: a biomarker with 2 levels and 100 investigation sides:

total 200 strata.
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4 New Covariate-Adaptive Designs for

Balance

Consider two covariates: covariate 1 with I levels and covariate 2 with

J levels, For patient n+ 1 (with i (covariate 1) and j (covariate 2))

n = 0, 1, 2, ... First we define the following values:

• If patient n+ 1 is assigned to treatment 1, let

– Within Stratum: D
(1)
ij (n+ 1) = Nij,1(n+ 1)−Nij,2(n+ 1),

where Nij,1(n+ 1) and Nij,2(n+ 1) are the number of

patients assigned to treatment 1 and 2 respectively in strata ij

of the first n+ 1 patients.

– Marginal 1: D
(1)
i· (n+ 1) = Ni·,1(n+ 1)−Ni·,2(n+ 1), where

Ni·,1(n+ 1) and Ni·,2(n+ 1) are the number of patients

assigned to treatment 1 and 2 respectively in (covariate 1=i)

of the first n+ 1 patients.
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– Marginal 2: D
(1)
·j (n+ 1) = N·j,1(n+ 1)−N·j,2(n+ 1), where

N·j,1(n+ 1) and N·j,2(n+ 1) are the number of patients

assigned to treatment 1 and 2 respectively in (covariate 2=j)

of the first n+ 1 patients.

– Overall: Dn,overall = Nn,1 −Nn,2 be the overall difference of

patient numbers in group 1 and 2 among the first n.

– Define A
(1)
ij (n+ 1) = (D

(1)
ij (n+ 1))2,

A
(1)
i· (n+ 1) = (D

(1)
i· (n+ 1))2, A

(1)
·j (n+ 1) = (D

(1)
·j (n+ 1))2

and A
(1)
·· = (Dn,overall)

2.

– The score of imbalance is B
(1)
ij (n+ 1) =

w1A
(1)
ij (n+1)+w2A

(1)
i· (n+1)+w3A

(1)
·j (n+1)+w4A

(1)
i· (n+1)

for some weights w1, w2, w3, w4 ≥ 0.

• If patient n+ 1 is assigned to treatment 2, B
(1)
ij (n+ 1) is

calculated similarly.
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Then the proposed procedure allocates to treatment 1 according to

φn+1,1 = 1/2, if B
(1)
ij (n+ 1) = B

(2)
ij (n+ 1),

= π, if B
(1)
ij (n+ 1) < B

(2)
ij (n+ 1),

= 1− π, if B
(1)
ij (n+ 1) > B

(2)
ij (n+ 1).

Where π > 0.5 (π ∈ (0.75, 0.95) is recommended).
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Remarks:

• When weight w1 = 0, w4 = 0, the new design becomes Pocock

and Simon’s procedure.

• When w2 = w3 = w4 = 0, the new design is similar to Stratified

Block Randomization.

• With w1, w2, w3 > 0, we can balance both within each strata and

cross covariates.
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Theorem: Under certain conditions (w1 > 0 and some others), Dn

(imbalance matrix) is a positive recurrent Markov chain.

The proof is quite difficult because the correlated structure. This

theorem ensures good balance for both within strata and cross factors

(marginal).
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Some numerical results:

Case 1: 10 covariates, each with 2 levels: total 210 = 1024 strata.
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Table 1. Averaging imbalance under 100 simulations and n = 500

Dist of pts across strata Counts & percentages

# of pts E(# prop) Imb strt(PB) P-S New

2 .07 0 50.2(.67) 38.2(.50) 55.1(.74)

2 24.9(.33) 37.8(.50) 18.9(.26)

3 .01 1 12(1.00) 9.3(.77) 12.0(.96)

3 0(0.00) 2.8(.23) .5(.04)

(< 2) .91

overall abs dif 12.8 .76 .90

margnal abs dif 10.4 1.68 1.90
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Table 2. Averaging imbalance under 100 simulations and n = 1000

Dist of pts across strata Counts & percentages

# of pts E(# prop) Imb strt(PB) P-S New

2 .18 0 123.4(.67) 93.5(.51) 135.0(.74)

2 60.0(.33) 91.0(.49) 48.0(.26)

3 .06 1 59.89(1.00) 45.1(.76) 57.1(.95)

3 0(0.00) 14.4(.24) 2.8(.05)

(< 2) .75

(> 5) .00

overall abs dif 19.46 .62 1.1

margnal abs dif 14.29 1.61 2.1
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Case 2: 2 covariates: a biomarker with 2 levels and 100 investigation

sides: total 200 strata.
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Table 3. Averaging imbalance under 1000 simulations and n = 200

Dist of pts across strata Counts & percentages

# of pts E(# prop) Imb strt(PB) P-S New

2 .184 0 24.46(.66) 24.15(.65) 30.23(.82)

2 12.37(.34) 12.74(.35) 6.46(.18)

3 .06 1 12.02(1.00) 11.18(.92) 12.05(.97)

3 0(0.00) 1.02(0.08) 0.35(.03)

(< 2) .735

overall abs dif 9.39 1.14 1.53

margnal long abs dif 6.57 0.87 1.13

margnal short abs dif 1.00 0.86 0.81
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Table 4. Averaging imbalance under 1000 simulations and n = 500

Dist of pts across strata Counts & percentages

# of pts E(# prop) Imb strt(PB) P-S New

2 .257 0 34.24(.67) 31.46(.61) 41.51(.81)

2 17.14(.33) 19.99(.39) 9.96(.19)

3 .214 1 42.84(1.00) 37.76(.88) 41.47(.97)

3 0(0.00) 5.21(0.12) 1.19(.03)

(< 2) .286

overall abs dif 10.25 1.31 1.71

margnal long abs dif 7.23 0.96 1.28

margnal short abs dif 1.02 0.92 0.87
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5 Optimal design for detecting

interactions among treatments and

biomarkers.

Covariate-adjusted response-adaptive (CARA) randomization (Zhang,

Hu, Cheung and Chan, 2007, Annals; Rosenberger and Sverdlov, 2009,

Statistical Science, etc.).

The main feature of CARA randomization is that patients are

allocated on the basis of previous responses and the previous and

current patient’s known covariate profile.

Such procedures allow patients to be assigned to the treatment that is

better for their individual covariate profile.
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The goal of a conventional clinical trial is to determine if a new

treatment is superior. When designing a clinical trial for personalized

medicine, our goal is not limited to detect the treatment difference,

but also to identify biomarkers that predict efficacy of treatments.

Therefore, the interaction between the treatment and the biomarker

becomes especially important.
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Consider the linear model,

E(Xi) = β0 + β1Zi1+, · · · ,+βKZiK + βTTi + βZi1Ti, i = 1, . . . , n

(1)

where the Xi’s are independent with error from normal distribution

N(0, σ2
i ),

Zi1, . . . , ZiK are covariates,

Ti is the treatment assignment taking values 1 or 0 for treatment 1 or

2 respectively

and (β0, β1, . . . , βK , βT , β) are the unknown parameters.

β is the interaction between treatment and covariate Z1 (taking values

1 or 0 only).
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In the model, we are interested in the effect of the interaction term,

that is.

H0 : β = 0 versus H1 : β 6= 0. (2)

Our objective is to find the optimal allocation to maximize the power

for the above hypothesis test and propose an effective design to target

the optimal allocation.
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New approach: The patients are divided into four groups based on

treatment assignment and the value of covariate Z1.

• Group (1) contains patients in treatment A with Z1 = 1;

• group (2) contains patients in treatment A with Z1 = 0;

• group (3) contains patients in treatment B with Z1 = 1;

• group (4) contains patients in treatment B with Z1 = 0.
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Let Xj , j = 1, 2, 3, 4, be the response for four independent groups.

Assume the variance of responses in the four groups to be σ2
j ,

j = 1, 2, 3, 4, respectively. Let Xj , j = 1, 2 are the responses for

treatment 1 and 2, Zji = (Zi1, . . . , ZiK)T are covariate vectors for the

ith patient in group (j), nj is the number of the patients in group (j),

j = 1, 2., and β′ = (β0, β1, . . . , βK)T .
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Denote nj be the number of the patients in group (j), we have the

following result:

Theorem: Consider the linear model with specified variance as

above and hypothesis (2), the optimal allocation for maximizing the

power requires both of the following conditions:

(A)
∑n1

i=1Z
1
iβ/n1 =

∑n2

i=1Z
2
iβ/n2 =

∑n3

i=1Z
3
iβ/n3 =∑n4

i=1Z
4
iβ/n4

(B) n1

n1+n3
= σ1

σ1+σ3
and n2

n2+n4
= σ2

σ2+σ4

This can be viewed as a generalization of Neyman

allocation.
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CARA Randomization: Suppose n data points

(yi, zi1, . . . , ziK , Ti, i = 1, . . . , n) have been observed. When the

(n+ 1)th patient with covariates (z(n+1)1, . . . , z(n+1)K) enters the

trial,

(A) Obtain the estimator β̂
′′
n of parameter β′′ = (β0, β2, . . . , βK) and

the estimator σ̂i, i = 1, 2, 3, 4 of standard deviations for the four

groups by least squares.

(B) Count the number of patients in each of the four groups, i.e.

(n1, n2, n3, n4).
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(C) Assume the (n+ 1)th patient is assigned to treatment 1.

Calculate the variance (V AR1) of the four items

(
∑
Z1

i β̂
′′
n

n1
,
∑
Z2

i β̂
′′
n

n2
,
∑
Z3

i β̂
′′
n

n3
,
∑
Z4

i β̂
′′
n

n4
).

(D) Suppose the (n+ 1)th patient is assigned to treatment 2.

Calculate the corresponding variance (V AR2) in the same way as

in step (C). If z(n+1)1 = 1, go to step (E1), otherwise go to step

(E2).

(E1) Calculate D = w1(V AR1 − V AR2) + w2(
n1

n1+n3
− σ̂1

σ̂1+σ̂3
), where

w1, w2 > 0.

(E2) Calculate D = w1(V AR1 − V AR2) + w2(
n2

n2+n4
− σ̂2

σ̂2+σ̂4
).
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(F) Assign the next patient to treatment 1 with the following

probability

ψ =

π D < 0

0.5 D = 0

1− π D > 0

, (3)

where π > 0.5 (usually π ∈ (0.75, 0.95).
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Simulation: 1000 simulations with n = 500 data points from the

model with three covariates; (β0, β1, β2, β3, βT ) = (1, 10, 5, 3, 8),

(σ1, σ2, σ3, σ4) = (1, 1, 2, 2). By simulation, we also found that our

method could save over 10% of sample size.
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Table 1: Table 5. Comparison of power

Randomization β power β̂ (s.e.) n1/(n1 + n3) (s.e.)

CR 0.5 0.698 0.491 (0.198) 0.500 (0.023)

NEW 0.5 0.748 0.502 (0.190) 0.334 (0.014)

CR 0.6 0.834 0.589 (0.198) 0.500 (0.022)

NEW 0.6 0.890 0.598 (0.180) 0.335 (0.015)
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6 Statistical Inference and Some

Further Problems

• Statistical Inference under covariate-adaptive randomization:

– A theory for testing hypotheses (Shao, Yu and Zhang, 2010,

Biometrika) for special cases.

– Re-randomization tests (Rosenberger and Lachin, 2002, Jeon

and Hu, 2010, etc.) for some simple situations.

– Due to the complexness of the data structure, new methods?

– Subgroup (certain gene type) statistical analysis.
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• How to sequentially monitor covariate-adaptive randomized

clinical trials? Zhu and Hu (2010, Annals) considered how to

sequential monitor response-adaptive randomized clinical trials.

• Interim studies of covariate-adaptive randomized clinical trials

• Covariate-adjusted response-adaptive designs.

• multi-treatment.

• Many new problems.
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Thank you!
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