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Clinical Trial

• A clinical trial is a prospective study that examines
the treatment effects of a new drug, therapy or any
medical intervention in humans.

• Conventionally, clinical trials are classified into four
sequential phases: I, II, III and IV.

• In oncology, phase I clinical trials focus on the
induced toxicities of the new drug.

• The main purpose of the study is to find the
maximum tolerated dose (MTD), which is the
highest possible dose while still tolerable.
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Phase II

• Phase II clinical trials examine the preliminary
evidence of efficacy and continue to monitor the
safety of the drug.

• At this stage, compounds found to be ineffective or
unsafe should be dropped to avoid wasting more
resources.

• Generally speaking, non-working or unsafe drugs
should be “killed” as early as possible.

• Once passing through the phase II stage, the new
drug will proceed into phase III clinical trials, which
are more rigorous and long-term efficacy studies.
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Phase III and IV

• Phase III trials involve comparison with multiple
treatments (controlled), randomization, and
definitive clinical endpoints.

• Phase IV clinical trials are conducted to learn more
about rare side effects of the approved intervention
and its interaction with other therapies after the
regulatory approval of the new treatment.

Guosheng Yin
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Phase I Trials

• In conventional phase I trials, the primary objective
is often to find the maximum tolerated dose (MTD).

• A sequence of doses is screened in order to find the
target dose associated with the maximum level of
tolerable toxicity.

• Many methods have been proposed for phase I
trials, see Chevret (2006) and Ting (2006) for
comprehensive reviews.

• Typically, we assume that toxicity monotonically
increases with the dose.
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Figure 1: Illustration of dose finding.
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Figure 2: Single-agent dose finding.
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3 + 3 Design

• This is an algorithm-based procedure that is
conservative and typically finds the MTD as the
highest dose with a toxicity probability less than
33%.

• Due to its simplicity, many phase I clinical trials are
carried out using the 3 + 3 design in practice.

Guosheng Yin
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Enter 3 patients at dose level j

DLT = 1 / 3DLT = 0 / 3 DLT > 1 / 3  

Enter 3 patients at dose level j

Enter 3 more patients 

DLT = 1 / 6 DLT = 2 / 6 DLT > 2 / 6

Escalate to j+1 De-escalate to j-1Dose level j-1 is MTD

Figure 3: Diagram of the standard 3 + 3 design.
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Related Issues

• The 3 + 3 design is “memoryless” because dose
escalation or de-escalation is solely based on the
toxicity outcomes observed at the current dose level
without any borrowing information from other
doses.

• Moreover, this design does not have any statistical
convergence property and is only suitable for
targeting a toxicity probability less than 33%.

Guosheng Yin
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Continual Reassessment Method

• The continual reassessment method (CRM)
proposed by O’Quigley, Pepe and Fisher (1990) is a
popular dose-finding design.

• The CRM is model-based and requires practitioners
to prespecify the toxicity probability at each dose.

• The true toxicity probabilities are linked with the
prespecified probabilities in a parametric model via
a single unknown parameter.

• During the trial, the CRM continuously updates the
unknown parameter as more data are collected, and
eventually identifies the MTD.

Guosheng Yin
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Figure 4: Different dose-toxicity curves lead to different
MTDs.
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CRM

• Let (d1, . . . , dJ) denote a set of J prespecified doses
for the drug under investigation, and let (p1, . . . , pJ)

be the prespecified toxicity probabilities at those
doses; p1 < · · · < pJ are known as the skeleton of the
CRM.

• The CRM assumes a working dose-toxicity model,

Pr(toxicity at dj) = πj(α) = p
exp(α)
j

for j = 1, . . . , J, where α is an unknown parameter
(O’Quigley and Shen, 1996).

Guosheng Yin
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Figure 5: Dose-toxicity curves under the CRM power
function.
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Likelihood

• Suppose among nj patients treated at dose level j,
there are yj patients experiencing the DLT.

• Let D = {(nj, yj), j = 1, . . . , J} denote the observed
data, then the likelihood function is

L(D|α) ∝
J∏

j=1

{pexp(α)j }yj{1− p
exp(α)
j }nj−yj .

• Let f(α) denote a prior distribution for α, for
example, α ∼ N(0, σ2).

Guosheng Yin
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Bayesian Estimation

• Using Bayes’ theorem, the dose toxicity probabilities
can be estimated by the posterior means

π̂j =

∫
p
exp(α)
j

L(D|α)f(α)∫
L(D|α)f(α)dα

dα,

• A new cohort of patients is assigned to dose level j∗

such that

j∗ = argminj∈(1,...,J)|π̂j − ϕT |.

• The trial continues until the total sample size is
exhausted, and the dose with a posterior toxicity
probability closest to ϕT is selected as the MTD.

Guosheng Yin
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Simulation Comparison

• We considered five increasing dose levels with
monotonically increasing toxicity.

• The target toxic probability was ϕT = 30%, and the
initial guesses of the toxicity probabilities were
(p1, . . . , p5) = (0.1, 0.2, 0.3, 0.4, 0.5).

• The first cohort of patients was treated at the lowest
dose level, and the maximum sample size was 30.

• We simulated 10,000 trials, and implemented the
3 + 3 design for comparison.

Guosheng Yin
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Table 1: Simulations using the CRM and 3 + 3 designs
with a target toxicity probability ϕT = 30%.

Selection percentage at dose level Ave # Ave #

Design 1 2 3 4 5 tox pats

Scenario 1 0.30 0.40 0.55 0.60 0.65

CRM 70.6 27.7 1.7 0 0 10.1 30

# patients 20.6 8.2 1.2 0.1 0

3 + 3 44.2 20.9 2.9 0.2 0 2.8 7.9

# patients 4.8 2.4 0.6 0.1 0

Guosheng Yin
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Selection percentage at dose level Ave # Ave #

Design 1 2 3 4 5 tox pats

Scenario 2 0.10 0.20 0.30 0.40 0.50

CRM 2.9 37.2 44.4 14.0 1.6 7.1 30

# patients 5.6 11.9 9.1 3.0 0.5

3 + 3 18.9 33.8 28.5 12.7 1.4 3.0 13.3

# patients 4.0 4.2 3.1 1.5 0.4

Scenario 3 0.02 0.06 0.10 0.20 0.30

CRM 0 0.5 9.3 39.3 50.9 5.0 30

# patients 3.2 4.2 6.1 8.6 7.8

3 + 3 1.6 5.8 18.2 32.2 11.8 2.2 17.3

# patients 3.2 3.5 3.9 4.0 2.7

Guosheng Yin
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Bayesian Model Averaging CRM

• Despite the popularity, a major criticism of the
CRM is the arbitrariness and subjectivity in the
prespecification of (p1, . . . , pJ), which is known as the
“skeleton” of the CRM.

• Model misspecification may lead to poor operating
characteristics, incorrectly select the MTD, and
may even result in treating a substantial number of
patients at excessively toxic doses.

• In practice, we have no information to justify
whether a specific skeleton is reasonable.

Guosheng Yin



The University of Hong Kong 22

SKELETON

• CRM model: πj(α) = pj
exp(α) for j = 1, · · · , J.

• Prefixed p1, p2, . . . , pJ .

• For example, eight dose levels with a target ϕ = 30%:

(p1, . . . , p8) =


(.02, .06, .08, .12, .20, .30, .40, .50), Skeleton 1

(.01, .05, .09, .14, .18, .22, .26, .30), Skeleton 2

(.10, .20, .30, .40, .50, .60, .70, .80), Skeleton 3

(.20, .30, .40, .50, .60, .65, .70, .75), Skeleton 4.

Guosheng Yin
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BMA-CRM

• To overcome the arbitrariness and further enhance
the robustness of the design, we can use multiple
parallel CRM models, each with a different skeleton
(Yin and Yuan, 2009).

• Instead of using a single CRM for the trial conduct,
we carry out multiple parallel CRMs and rely upon
the BMA approach for decision making.

• BMA is known to provide a better predictive
performance than any single model (Raftery,
Madigan and Hoeting, 1997; and Hoeting et al.,
1999).

Guosheng Yin
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CRM Model

• Let model Mk be associated with the kth skeleton
(pk1, . . . , pkJ), for k = 1, . . . , K, and the corresponding
CRM model is given by

πkj(αk) = p
exp(αk)
kj , j = 1, . . . , J.

• Let P (Mk) be the prior probability that model Mk is
the true model, and P (Mk) = 1/K if there is no
preference a priori for any single CRM model.

Guosheng Yin
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Posterior Model Probability

• The likelihood function under model Mk is

L(D|αk,Mk) ∝
J∏

j=1

{pexp(αk)
kj }yj{1− p

exp(αk)
kj }nj−yj .

• The posterior model probability for Mk is given by

P (Mk|D) =
L(D|Mk)P (Mk)∑K
i=1 L(D|Mi)P (Mi)

,

where the marginal likelihood of model Mk,

L(D|Mk) =

∫
L(D|αk,Mk)f(αk|Mk)dαk.

Guosheng Yin
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BMA Estimation

• The BMA estimate for the toxicity probability at
each dose level is given by

π̄j =
K∑
k=1

π̂kjP (Mk|D), j = 1, . . . , J,

where π̂kj is the posterior mean of the toxicity
probability at dose level j under model Mk,

π̂kj =

∫
p
exp(αk)
kj

L(D|αk,Mk)f(αk|Mk)∫
L(D|αk,Mk)f(αk|Mk)dαk

dαk.

• By assigning π̂kj a weight of P (Mk|D), the BMA
method automatically favors the best model.

Guosheng Yin
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Simulation Study

• The target toxicity probability was ϕT = 30%. We
took the prior distribution α ∼ N(0, 4), and a discrete
uniform prior model probability P (Mk) = 1/4 for
k = 1, . . . , 4.

• We used a cohort size of 3, and treated the first
cohort of patients at the lowest dose level. The
maximum sample size was 30, and for each scenario
we carried out 10,000 simulated trials.

Guosheng Yin
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Seamless Phase I/II Design

• Higher doses are assumed to induce more severe
toxicities, while efficacy is typically not considered
in phase I studies.

• In phase II trials, patients would be treated at the
MTD to examine the potential efficacy of the drug.

• Efficacy is often modeled as a short-term and binary
endpoint.

• In conventional settings, phase I and phase II trials
are conducted separately without any kind of formal
borrowing of information or strength across them.

Guosheng Yin
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Combining Phase I and II

• There has been a growing trend to seamlessly
combine phase I and phase II clinical trials to

(1) speed up the drug development process,

(2) improve the dose-finding procedure by
maximizing the drug’s efficacy as well as
controlling its toxicity, and

(3) enlarge the sample size by pooling patients in
phase I and phase II trials to produce more
reliable estimates of toxicity and efficacy than
would be achieved in each separate trial.

Guosheng Yin
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Notation

• Let pj and qj be the probabilities of toxicity and
efficacy at dose dj.

• For toxicity, a monotonic order is assumed,
p1 < · · · < pJ , while no constraint is imposed for qj.

• Let Xij denote the toxicity outcome for subject i at
dose level j,

Xij =

 1 with probability pj

0 with probability 1− pj,

and the efficacy outcome Yij ∼ Ber(qj).

• We measure the association between the bivariate
Guosheng Yin
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outcomes using the global cross ratio (Dale, 1986).

• Define πj(xy) = P (Xij = x, Yij = y) where x, y = 0, 1, and
at dose level j,

γj =
πj(00)πj(11)

πj(01)πj(10)

,

quantifies the association between toxicity and
efficacy.

• The joint probabilities πj(xy) can be derived from γj

Guosheng Yin
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and the marginal probabilities pj and qj,

πj(11) =


aj−(a2j+bj)

1/2

2(γj−1)
γj ̸= 1

pjqj γj = 1,

πj(10) = pj − πj(11),

πj(01) = qj − πj(11),

πj(00) = 1− pj − qj + πj(11),

where aj = 1+ (pj + qj)(γj − 1) and bj = −4γj(γj − 1)pjqj.

• If nj subjects are treated at dose dj, the likelihood is

L(D|p,q,γ) ∝
J∏

j=1

nj∏
i=1

1∏
x=0

1∏
y=0

{πj(xy)}I(Xij=x,Yij=y).

Guosheng Yin



The University of Hong Kong 40

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Efficacy (q)

T
ox

ic
ity

 (
p)

AAAAA

Figure 6: Two-dimensional toxicity-efficacy odds ratio
trade-off contours with point A (qj, pj). Guosheng Yin
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Odds Ratio

• The odds ratio ωj between the toxicity and efficacy
at dose level j,

ωj =
pj/(1− pj)

qj/(1− qj)
=

pj(1− qj)

qj(1− pj)
,

is exactly the ratio of the area in the lower-right
rectangle to that in the upper-left.

• A smaller value of ωj indicates a more desirable
dose.

Guosheng Yin
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Drug-Combination Trials

• Compared with single-agent treatments,
combination therapy in cancer treatment may

(1) lead to synergistic treatment effects,

(2) target tumor cells with differing drug
susceptibilities and through different disease
pathways, and

(3) achieve higher dose intensities with
non-overlapping toxicities.

Guosheng Yin
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Motivating Example

• A recent phase I dose-finding trial was conducted
for the combination of bortezomib with
gemcitabine/doxorubicin in the treatment of
metastatic urothelial cancer.

• Bortezomib interferes with a substance inside the
cancer cell that is responsible for cell division.

• Gemcitabine/doxorubicin are chemotherapeutic
agents that disrupt the growth of cancer cells.

• Combining these two drugs is expected to show
substantial synergy to enhance efficacy.

Guosheng Yin
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Broader Application

• The problem of two- or high-dimensional dose
finding can be cast in a more general framework as
one of the following choices:

(1) a trial evaluating several different drugs, each
administered at different doses,

(2) a study of a single agent at a set of dose levels,
adding a change to different dose schedules, or

(3) a single-agent dose-finding trial involving ordered
patient groups.

Guosheng Yin
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New Challenges

• The toxicity order of dose combinations is only
partially known.

• The dimension of the dose-searching space expands
multiplicatively.

• As multiple MTD combinations may exist in the
two-dimensional grid, dose searching may be more
easily trapped in a local area around certain MTD
combinations, and thus lack the opportunity to
explore the entire searching space.

Guosheng Yin
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Clayton Copula-Type Regression

• Borrowing the structure of Clayton’s copula, the
joint toxicity probability can be written as

πjk = 1− {(1− pαj )
−γ + (1− qβk )

−γ − 1}−1/γ,

where γ > 0 characterizes the drug-drug interactive
effect.

• Strictly speaking, it is not a copula because it does
not characterize a bivariate distribution, we in fact
only observe one single DLT outcome for combined
agents.

Guosheng Yin
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Model conditions

(1) If pαj = 0 and qβk = 0, then πjk = 0.

(2) If pαj = 0, then πjk = qβk ; and if qβk = 0, then πjk = pαj .

(3) If either pαj = 1 or qβk = 1, then πjk = 1.

Guosheng Yin
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Figure 8: Toxicity probability surface and MTD equiva-
lence contour under a Clayton copula-type model.
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Likelihood

• The likelihood function can be constructed based on
the binomial distribution with the probabilities of
πjk.

• Suppose yjk out of njk patients treated at the dose
combination (Aj, Bk) have experienced toxicity, then
the likelihood function is given by

L(α, β, γ|D) ∝
J∏

j=1

K∏
k=1

π
yjk
jk (1− πjk)

njk−yjk ,

where D represents the observed data.

Guosheng Yin
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Figure 9: Dose escalation/de-escalation in a matrix of
5× 4 dose combinations.

Guosheng Yin



The University of Hong Kong 52

Conclusion

• BMA-CRM user-friendly software

http://biostatistics.mdanderson.org/SoftwareDownload/

• Seamless phase I/II trial with the efficacy and
toxicity odds ratio.

• A copula-type model approach for drug combination
trials.
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