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1. Group sequential tests for Phase III clinical trials

The setting for this lecture is a Phase III clinical trial, comparing a new treatment

against the current standard.

Two positive Phase III trials are usually required to support the case made to

regulators for the approval of a new treatment.

Suppose the treatment effect θ represents the advantage of the new treatment over

the control, so a positive value means the new treatment is effective.

We wish to test the null hypothesis H0: θ ≤ 0 against θ > 0 with

Pθ=0{Reject H0} = α,

Pθ=δ{Reject H0} = 1 − β.

This could be done in a fixed sample size trial.

However, there are strong reasons (ethical, financial, and administrative) to monitor

data as the study proceeds and possibly terminate the trial early.
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Group sequential tests

In a Group Sequential clinical trial, standardized test statistics Z1, Z2, . . . , are

computed at interim analyses and used to define a stopping rule for the trial.

A typical boundary for a one-sided test has the form:
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Crossing the upper boundary leads to early stopping for a positive outcome,

rejecting H0 in favour of θ > 0.

Crossing the lower boundary implies stopping for “futility” with acceptance of H0.
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Joint distribution of parameter estimates

Reference: Chapter 11 of “Group Sequential Methods with Applications to

Clinical Trials”, Jennison & Turnbull, 2000 (hereafter, JT).

Let θ̂k denote the estimate of θ based on data at analysis k.

The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . , K.

Canonical joint distribution of θ̂1, . . . , θ̂K

In many situations, θ̂1, . . . , θ̂K are approximately multivariate normal,

θ̂k ∼ N(θ, {Ik}−1), k = 1, . . . , K,

and

Cov(θ̂k1
, θ̂k2

) = Var(θ̂k2
) = {Ik2

}−1 for k1 < k2.
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Sequential distribution theory

The joint distribution of θ̂1, . . . , θ̂K can be demonstrated directly for:

θ a single normal mean,

θ = µA − µB, comparing two normal means.

The canonical distribution also applies when θ is a parameter in:

a general normal linear model,

a general model fitted by maximum likelihood (large sample theory).

Thus, theory supports general comparisons, including:

crossover studies,

analysis of longitudinal data,

comparisons adjusted for covariates.
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Canonical joint distribution of z-statistics

In testing H0: θ = 0, the standardised statistic at analysis k is

Zk =
θ̂k√

Var(θ̂k)
= θ̂k

√Ik.

For this,

(Z1, . . . , ZK) is multivariate normal,

Zk ∼ N(θ
√Ik, 1), k = 1, . . . , K,

Cov(Zk1
, Zk2

) =
√
Ik1

/Ik2
for k1 < k2.
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Canonical joint distribution of score statistics

The score statistics, Sk = Zk

√Ik, are also multivariate normal with

Sk ∼ N(θ Ik, Ik), k = 1, . . . , K.

The score statistics possess the “independent increments” property,

Cov(Sk − Sk−1, Sk′ − Sk′−1) = 0 for k 6= k′.

It can be helpful to know that the score statistics behave as Brownian motion with

drift θ observed at times I1, . . . , IK .
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Survival data

The canonical joint distributions also arise for

a) estimates of a parameter in Cox’s proportional hazards regression model

b) log-rank statistics (score statistics) for comparing two survival curves

— and to Z-statistics formed from these.

For survival data, observed information is roughly proportional to the number of

failures.

Special types of group sequential test are needed to handle unpredictable and

unevenly spaced information levels: see error spending tests.

Reference:

“Group-sequential analysis incorporating covariate information”, Jennison &

Turnbull (J. American Statistical Association, 1997).
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Computations for group sequential tests
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In order to find Pθ{Reject H0}, etc., we need to calculate the probabilities of basic

events such as

a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3.
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Computations for group sequential tests
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Probabilities such as Pθ{a1 < Z1 < b1, a2 < Z2 < b2, Z3 > b3} can be

computed by repeated numerical integration (see JT, Ch. 19).

Combining such probabilities yields properties of a group sequential boundary.

Constants and group sizes can be chosen to define a test with a specific type I error

probability and power.

11



'

&

$

%

A parametric family of one-sided tests

Reference: Pampallona & Tsiatis (J. Statistical Planning and Inference, 1994).

Stopping boundaries can be defined with a particular shape.

The computational methods just described can be used to find the parameter

values needed to satisfy type I error rate and power requirements.
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Pampallona & Tsiatis (1994) propose a family of boundaries with varying degrees of

early stopping.
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Benefits of group sequential testing

In order to test H0: θ ≤ 0 against θ > 0 with type I error probability α and power

1 − β at θ = δ, a fixed sample size test needs information

Ifix =
{Φ−1(1 − α) + Φ−1(1 − β)}2

δ2
.

Information is (roughly) proportional to sample size in many clinical trial settings.

A group sequential test with K analyses will need to be able to continue to a

maximum information level IK which is greater than Ifix.

The benefit is that, on average, the sequential test can stop earlier than this and

expected information on termination, Eθ(I), will be considerably less than Ifix,

especially under extreme values of θ.

We term the ratio R = IK/Ifix the “inflation factor” for a group sequential design.

13



'

&

$

%

Benefits of group sequential testing

In specifying a group sequential test’s boundary, one can aim to minimise the

expected information Eθ(I) under effect sizes of θ of most interest, subject to a

fixed number of analyses K and inflation factor R.

Eales & Jennison (Biometrika, 1992) and Barber & Jennison (Biometrika, 2002)

report on designs optimised for criteria of the form
∑

i wiEθi
(I) or

∫
f(θ) Eθ(I) dθ,

where f is a normal density.

These optimal group sequential designs can be used in their own right.

They also serve as benchmarks for other methods which may have additional useful

features: see later comments on the efficiency of “error spending” designs.
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Benefits of group sequential testing

One-sided tests, α = 0.025, 1 − β = 0.9, K analyses, Imax = R Ifix,

equal group sizes, minimising {E0(I) + Eδ(I)}/2.

Minimum values of {E0(I) + Eδ(I)}/2, as a percentage of Ifix

R Minimum

K 1.01 1.05 1.1 1.2 1.3 over R

2 80.8 74.7 73.2 73.7 75.8 73.0 at R=1.13

3 76.2 69.3 66.6 65.1 65.2 65.0 at R=1.23

5 72.2 65.2 62.2 59.8 59.0 58.8 at R=1.38

10 69.2 62.2 59.0 56.3 55.1 54.2 at R=1.6

20 67.8 60.6 57.5 54.6 53.3 51.7 at R=1.8

Note: E(I) ց as K ր but with diminishing returns,

E(I) ց as R ր up to a point.
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2. Error spending tests

The sequence I1, I2, . . . is often unpredictable.

Lan & DeMets (Biometrika, 1983) presented two-sided tests of H0: θ = 0 against

θ 6= 0 which “spend” type I error probability as a function of observed information.

For a one-sided test of H0: θ ≤ 0 against θ > 0, we need two functions to spend

Type I error probability α under θ = 0,

Type II error probability β under θ = δ.

A maximum information design works towards a target information level Imax.
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Type I error probability α is spent according to the function f(I), and type II error

probability β according to g(I).
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One-sided error-spending tests

Analysis 1:

Observed information I1.

Reject H0 if Z1 > b1, where

Pθ=0{Z1 > b1} = f(I1).

Accept H0 if Z1 < a1, where

Pθ=δ{Z1 < a1} = g(I1).

-
I1 k

6
Zk

•

•
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One-sided error-spending tests

Analysis 2:

Observed information I2.

Reject H0 if Z2 > b2, where

Pθ=0{a1 < Z1 < b1, Z2 > b2} = f(I2) − f(I1).

Accept H0 if Z2 < a2, where

Pθ=δ{a1 < Z1 < b1, Z2 < a2} = g(I2) − g(I1).

-
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One-sided error-spending tests

Analysis k:

Find ak and bk to satisfy

Pθ=0{a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk > bk}

= f(Ik) − f(Ik−1),

Pθ=δ{a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk < ak}

= g(Ik) − g(Ik−1).
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Remarks on error spending tests

1. Computation of (ak, bk) does not depend on future information levels,

Ik+1, Ik+2, . . . .

2. A “maximum information design” continues until a boundary is crossed or an

analysis with Ik ≥ Imax is reached.

If necessary, patient accrual can be extended to reach Imax.

-×
I1

×
I2

×
I3

×
I4

×
I5

×
I6

Imax

Information

If a maximum of K analyses is specified, the study terminates at analysis K

with f(IK) defined to be α.
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Remarks on error spending tests

3. The value of Imax can be chosen so that boundaries converge at the final

analysis under a typical sequence of information levels, e.g.,

Ik = (k/K) Imax, k = 1, . . . , K.

4. The ρ-family provides a convenient choice of error spending functions.

In the case of one-sided tests, type I error probability is spent as

f(I) = α min{1, (I/Imax)
ρ}

and type II error probability as

g(I) = β min{1, (I/Imax)
ρ}.

The value of ρ determines the inflation factor R.

Barber & Jennison (Biometrika, 2002) show ρ-family tests have excellent

efficiency properties when compared with designs for the same number of

analyses K and inflation factor R.
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Error spending tests: over-running

Care is needed at the final analysis of a one-sided error spending test.

If one reaches IK > Imax, solving for aK and bK is liable to give aK > bK .
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The calculated bK guarantees type I error probability of α. So, reduce aK to bK

— and gain extra power.

Even when IK = Imax, over-running may occur if information deviates from the

equally spaced values (say) used in choosing Imax.
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Error spending tests: under-running

A final information level IK < Imax may be imposed when a final planned

analysis is reached, e.g., at a maximum follow-up time in a survival study.

Then, solving for aK and bK is liable to give aK < bK .
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Again, with bK as calculated, the type I error probability is exactly α.

This time, increase aK to bK — attained power will be just below 1 − β.
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3. A survival data example

Example: Oropharynx Clinical Trial Data

Survival of patients on experimental Treatment A and standard Treatment B.

Number entered Number of deaths

k Date Trt A Trt B Trt A Trt B

1 12/69 38 45 13 14

2 12/70 56 70 30 28

3 12/71 81 93 44 47

4 12/72 95 100 63 66

5 12/73 95 100 69 73

From Kalbfleisch & Prentice (2002) The Statistical Analysis of Failure Time Data,

2nd edition, Appendix A, Data Set II. See also JT, Ch. 13.
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Accrual and follow up in a survival study

-
Start of

study
End of
accrual

End of
follow up

Calendar
time

•

•

◦

•

•

◦

•

•

•

◦

•

◦

Subjects are randomised to a treatment group as they enter the study.

Survival is measured from entry to the study.

Key: • death time observed,

◦ censored observation.
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Interim analyses

-
Analysis

1
Analysis

2
Analysis

3
Calendar

time

•

•

◦

•

•

◦

•

•

•

◦

•

◦

At an interim analysis, subjects are censored if they are still alive at this point.

Information on such patients will continue to accrue at later analyses.
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Interim analysis 1

-
Survival

time

•

◦

◦

◦

•

◦

◦

At the first interim analysis, we analyse data on survival from randomisation time.

These times have a common starting point of zero and “analysis time” censoring

occurs for subjects surviving past the first analysis.
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Interim analysis 2

-
Survival time

•

•

◦

◦

•

◦

◦

◦

•

◦

◦

◦

At interim analysis 2, we analyse data on survival from randomisation time.

These times have a common starting point of zero and “analysis time” censoring

occurs for subjects surviving past the second analysis.

And so on, through further analyses . . .
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The logrank statistic

At stage k, observed number of deaths is dk .

Elapsed times between entry to the study and death for these cases are

τ1,k < τ2,k < . . . < τdk,k (assuming no ties).

Define

riA,k and riB,k Numbers at risk on Treatments A and B at τi,k−

rik = riA,k + riB,k Total number at risk at τi,k−

Ok Observed number of deaths on Trt B at stage k

Ek =
∑dk

i=1 riB,k/rik “Expected” number of deaths on Trt B at stage k

Vk =
∑dk

1 riA,kriB,k/r2
ik “Variance” of Ok

Zk = (Ok − Ek)/
√

Vk Standardised logrank statistic at stage k
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Proportional hazards model

Assume hazard rates hA on Treatment A and hB on Treatment B are related by

hB(t) = λhA(t).

The log hazard ratio is θ = ln(λ).

Then, with Ik = Vk , we have approximately

Zk ∼ N(θ
√Ik, 1), k = 1, . . . , K,

Cov(Zk1
, Zk2

) =
√

(Ik1
/Ik2

) for k1 < k2.

Here, Vk is the variance of the score statistic Zk

√Ik .

Also, θ̂k = Zk/
√
Ik ∼ N(θ, I−1

k ) approximately.

For λ ≈ 1, we have Ik = Vk ≈ dk/4.
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Design of the Oropharynx trial

To create: A one-sided test of H0: θ ≤ 0 vs θ > 0.

Note θ > 0 ⇒ λ > 1, i.e., Treatment A is better.

Require:

Type I error probability α = 0.025,

Power 1 − β = 0.8 at θ = 0.5, i.e., at λ = 1.65.

Information needed for a fixed sample study is

If =
{Φ−1(α) + Φ−1(β)}2

0.52
= 31.40.

Under the approximation I ≈ d/4, the total number of failures to be observed is

df = 4 If ≈ 126.

Since increments in information between analyses are unpredictable, an error

spending design is a natural choice.
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A one-sided, error spending design

Specification:

One-sided test of H0: θ ≤ 0 vs θ > 0,

Type I error probability α = 0.025,

Power 1 − β = 0.8 at θ = ln(λ) = 0.5.

At the design stage, assume K = 5 equally spaced information levels.

Use a power-family test with ρ = 2, i.e., spending error ∝ (I/Imax)
2.

Information for a fixed sample test has to be inflated by R = 1.098.

So, we require Imax = 1.098 × 31.40 = 34.48, which needs a total of

4 × 34.48 ≈ 138 deaths.

32



'

&

$

%

Summary data and critical values for the Oropharynx trial

We construct error spending boundaries using the observed information levels.

This gives boundary values (a1, b1), . . . , (a5, b5) for the standardised logrank

statistics Z1, . . . , Z5.

Number Number

k entered of deaths Ik ak bk Zk

1 83 27 5.43 −1.41 3.23 −1.04

2 126 58 12.58 −0.21 2.76 −1.00

3 174 91 21.11 0.78 2.43 −1.21

4 195 129 30.55 1.68 2.16 −0.73

5 195 142 33.28 2.14 2.14 −0.87

This design would have led to termination at analysis 2 with acceptance of H0.
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Covariate adjustment in the Oropharynx trial

Covariate information was recorded for subjects:

institution (6), gender, initial condition,

T-staging, N-staging, tumour site (3).

Initial condition, T-staging and N-staging are continuous variables.

Proportional hazards regression model

Include treatment effect β1, strata l = 1, . . . , 6 for the six participating institutions,

and coefficients β2, . . . , β7 to model other variables.

The hazard rate for patient i is modelled as

hil(t) = h0l(t) e{β1I(Patient i on Trt B) + Σ7

j=2
xijβj}.

The objective is to test H0: β1 = 0 against the one-sided alternative β1 > 0.
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Covariate adjustment in the Oropharynx trial

Standard software for Cox regression will provide the maximum partial likelihood

estimate of the parameter vector, β, and its estimated variance.

We are interested in the treatment effect represented by the first component of β.

At stage k we have

β̂
(k)
1

vk = V̂ar(β̂
(k)
1 )

Ik = v−1
k

Zk = β̂
(k)
1 /

√
vk .

Theory: The standardised statistics Z1, . . . , Z5 have, approximately, the canonical

joint distribution.
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Covariate-adjusted analysis of the Oropharynx trial

Constructing the error spending test gives boundary values (a1, b1), . . . , (a5, b5)

for Z1, . . . , Z5.

k Ik ak bk β̂
(k)
1 Zk

1 4.11 −1.75 3.39 −0.79 −1.60

2 10.89 −0.44 2.85 −0.14 −0.45

3 19.23 0.59 2.50 −0.08 −0.33

4 28.10 1.45 2.24 0.04 0.20

5 30.96 2.23 2.23 0.01 0.04

Under this model and stopping rule, the study would have terminated — just —

at analysis 2.

NB: β1 is the log hazard ratio after covariate adjustment. For a positive treatment

effect, we should expect β1 > λ.
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Information monitoring in error spending designs

In a maximum information error spending design, the intent is to continue until

information level Imax is reached (unless a stopping boundary is crossed first).

For survival data, one may

a) conduct interim analyses at fixed calendar times,

b) specify analyses after given numbers of events.

In either case, it may be difficult to achieve I ≥ Imax if there is

• slow patient accrual,

• low failure rate,

• high loss of subjects to follow up.

One can specify a calendar time at which to terminate the trial and spend all

remaining error probability.

If I < Imax at this point, “under-running” occurs and power is reduced.
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Flexibility of information monitoring designs

Error spending tests protect the type I error rate conditional on the sequence {Ik}.

It is legitimate to make design changes which affect the observed Iks — as long

as these changes are not influenced by observed values of the Zks.

One might

• add more recruitment centres,

• extend the recruitment period,

• extend the duration of follow up.

To avoid suspicion of information levels being modified in response to observed

values Zk, the study protocol should state the strategy that will be followed.

Investigators may also wish to state a maximum calendar time at which the trial will

terminate, whatever the attained information level.
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4. Group sequential tests with a delayed response

Survival data

In a survival study, information continues to accrue as long as there are subjects

alive and uncensored. Our analyses of the oropharynx clinical trial data show it is

still possible to stop early and reduce the number of subjects recruited.

Even when a survival study continues beyond the accrual period, it can be

advantageous to reach a decision sooner, especially when the outcome is positive.

Other response types

Group sequential tests (GSTs) often assume a rapidly observed endpoint, so

responses are available from all treated patients at each interim analysis.

However, this is not always the case. Consider, for example, a study comparing

treatments for heart failure, where the primary endpoint is re-admission to hospital

or death within 30 days: if 50 patients are recruited per month, there will be about

50 treated patients with unknown responses at each interim analysis.
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Delayed response: General framework

Consider a trial with a delayed response, observed at time ∆t after treatment.

-

6

Time

N
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��
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��
��

Number
recruited

Number of
responses

�-
∆t Interim

analysis 3

Suppose a response is collected for each treated patient, even if there is a stopping

decision at an interim analysis when a patient has been treated but not observed.

We shall describe Delayed Response Group Sequential Tests (DR GSTs), planned

with these additional data in mind.
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Formulating group sequential tests for a delayed response

Reference: Hampson & Jennison “Group sequential tests for delayed response”,

submitted for publication.

At interim analysis k, with information Ik, compare Zk to values ak and bk .

If Zk < ak or Zk > bk , cease recruitment of new patients and wait until

responses have been obtained for all current patients.

At the final decision analysis, with information Ĩk , reject H0 if Z̃k > ck.

-

6

I

Zk

I1 Ĩ1 I2 Ĩ2 I3 Ĩ3 Ĩ4

•

•

•

•

•

•

b1

a1

c1

NB Whether Zk < ak or Zk > bk is only an indication of the likely final decision.
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Delayed Response Group Sequential Tests (DR GSTs)

For a particular sequence of observed responses, we apply boundary points at a

sequence of information levels of the form

I1, . . . , Ik, Ĩk.

In the example below, recruitment ceases at the second analysis and the final

decision is made with extra “pipeline” data bringing the information up to Ĩ2.

-

6

I

Zk

I1 I2 Ĩ2

•

•

∗
•

•

∗
∗

We can compute properties of a DR GST and optimise this type of design, using

the same computational methods as for standard group sequential tests.
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Example: Delayed Response Group Sequential Test

Hampson & Jennison (HJ) present an example of a trial comparing a new treatment

for cholesterol reduction against a control.

The primary endpoint is reduction in serum cholesterol after 4 weeks of treatment.

Responses are assumed to be normally distributed with variance σ2 = 2.

The treatment effect θ is the difference in mean response on treatment and control.

It is required to test H0: θ ≤ 0 against θ > 0 with

Type I error rate α = 0.025 at θ = 0,

Power 1 − β = 0.9 when θ = δ = 1.0.

A fixed sample test needs nfix = 86 subjects divided between the two treatments.

HJ consider designs with a maximum sample size of 96, assuming a recruitment

rate of 4 per week, giving 4 × 4 = 16 “pipeline” subjects at each interim analysis.
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Example: Delayed Response Group Sequential Test

All 96 subjects will be recruited in 24 weeks and provide responses by 28 weeks.

Interim analyses are planned after n1 = 28 and n2 = 54 observed responses.

Stopping recruitment at interim analysis 1 will lead to a decision analysis with

ñ1 = 44 responses.

Stopping recruitment at interim analysis 2 leads to a decision analysis with

ñ2 = 70 responses.

No interim analysis is needed prior to the final decision analysis with 96 responses.

HJ derive a DR GST that minimises

F =

∫
Eθ(N)f(θ)dθ,

where N is the total number of subjects treated and f(θ) is the density of a

N(0.5, 0.52) distribution. Optimisation is over all designs with the same interim

and decision analysis times, achieving the specified type I error rate and power.
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Example: Delayed Response Group Sequential Test

The critical values for statistics Zk for the optimised DR GST are shown below.

2.5

2

1.5

1

0.5

0
9670544428

Number of Responses

Zk b1
b2

c3c2
c1

a2

a1

1. Critical values c1 and c2 at decision analyses are well below b1 and b2, so the

probability of reversing the outcome expected when stopping recruitment is small.

2. Both c1 and c2 are less than 1.96. If desired, these values can be raised to

1.96 with little change to the design’s power curve.
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Example: Delayed Response Group Sequential Test

The figure shows expected sample size curves for the fixed sample design with

nfix = 85 patients, the optimised DR GST, and the GST for immediate response

with analyses after 32, 64 and 96 responses, optimised for the same criteria.
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The DR GST achieves savings in Eθ(N) below the fixed sample size, nfix at all

effect sizes θ. However, the delay in response means these savings are smaller

than they would be in the case of an immediate response.
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Group sequential tests for a delayed response

Hampson & Jennison (2011) assess how much of the reduction in expected sample

size achieved by group sequential testing is lost as the volume of “pipeline” data

increases.

Substantial savings are still present for a small number of pipeline subjects.

However, as this number increases to 25% of the total sample size, about half the

benefits of group sequential testing are lost.

Strategies are available to restore some of this efficiency:

Recruiting subjects more slowly,

Incorporating data on short term responses which are correlated with the

longer term, primary endpoint.
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5. An alternative type of group sequential test

Reference: Lehmacher and Wassmer (Biometrics, 1999)

Let Z(i) denote the Z-statistic from data in group i alone, i = 1, . . . , K.

Define the Z-statistic based on all the data up to analysis k to be

Zk =
1√
k

k∑

i=1

Z(i). (1)

Under θ = 0, each Z(i) ∼ N(0, 1) and the sequence of statistics {Zk} has the

joint distribution that arises when group sizes are equal and each Zk is the usual

statistic based on the cumulative data at analysis k.

Thus, we can use constants from a standard group sequential test to define a

boundary {(ak, bk)} for the {Zk} giving a test with specified type I error rate α.

The definition (1) can be used for statistics Z(i) with quite general definitions.

This provides a tool that enables flexible and adaptive sequential design.
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Lehmacher and Wassmer’s method

Group sequential t-tests

For normal data with unknown variance, we can compute a t-statistic from the

group i data, convert this to a one-sided P -value Pi, and take the normal deviate

Z(i) = Φ−1(1 − Pi).

The Z(i) are then independent and distributed as N(0, 1) under H0.

Sample size adaptation

It is still the case that the Z(i) are independent N(0, 1) under H0 if future group

sizes are modified on the basis of estimates of the response variance.

This gives a method for sample size re-estimation to achieve a pre-specified power

(but note that groups of different size are given equal weight in the overall Zk).

A combination test

This way of combining the group summaries, Z(i), produces a K-stage version of

the combination tests proposed by Bauer & Köhne (Biometrics, 1994).
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6. Adapting the target population: Enrichment designs

Consider a new treatment developed to disrupt a disease’s biological pathway.

Patients with high levels of a biomarker associated with this pathway should gain

particular benefit, but the treatment’s wider action may also help the general patient

population.

As an example, it is recognised that only a portion of the patient population appears

to respond to some current cancer treatments. However, we are only just learning

how to identify such sub-populations through genetic characteristics.

For new therapies, a target population may be specified — and also a smaller

sub-population, in which the treatment is expected to be particularly effective.

The aim in an “enrichment design” is to learn whether there is a differential

treatment effect in patient subgroups and, if appropriate, change the focus of the

trial to those subgroups in which there is greatest potential benefit.
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Enrichment designs

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

In a clinical trial with enrichment we

Start by comparing the new treatment against control in the full population.

Examine responses at an interim stage.

If there is no evidence of treatment effect, stop for futility.

If the new treatment appears effective in the full population, continue as before.

If the new treatment appears to benefit just the subgroup, recruit only from the

subgroup and increase the numbers in this subgroup.

Results may support a licence for the full population or just the sub-population.
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Enrichment designs

"!
# 
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

Denote the treatment effect:

In the sub-population by θ1,

In the complement of the sub-population by θ2,

Aggregated over the whole population by θ3 = λ1θ1 + λ2θ2.

The null hypothesis for the sub-population is H1: θ1 ≤ 0.

The null hypothesis for the full target population is H3: θ3 ≤ 0.

We may wish to test either of the two null hypotheses H1 and H3 against

one-sided alternatives, θ1 > 0 and θ3 > 0.
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Testing multiple hypotheses

Closed testing procedures

Suppose there are k null hypotheses, Hi: θi ≤ 0 for i = 1, . . . , k.

A procedure’s familywise error rate under a set of values (θ1, . . . , θk) is

Pr{Reject Hi for some i with θi ≤ 0} = Pr{Reject any true Hi}.

The familywise error rate is controlled strongly at level α if this error rate is at

most α for all possible combinations of θi values. Then

Pr{Reject any true Hi} ≤ α for all (θ1, . . . , θk).

Using such a procedure, the probability of choosing to focus on the parameter θi∗

and then falsely claiming significance for null hypothesis Hi∗ is at most α.

Closed testing procedures (Marcus et al, Biometrika, 1976) provide strong control

by combining level α tests of each Hi and of intersections of these hypotheses.
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Closed testing procedures

For each subset I of {1, . . . , k}, define the intersection hypothesis

HI = ∩i∈I Hi.

Construct a level α test of each intersection hypothesis HI , i.e., a test which rejects

HI with probability at most α whenever all hypotheses specified in HI are true.

Closed testing procedure

The simple hypothesis Hj : θj ≤ 0 is rejected if, and only if, HI is rejected for

every set I containing index j.

Proof of strong control of familywise error rate

Let Ĩ be the set of indices of all true hypotheses Hi. For a familywise error to be

committed, HĨ must be rejected.

Since HĨ is true, Pr{Reject HĨ} = α and, thus, the probability of a familywise

error is no greater than α.
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The enrichment design problem

A trial is to investigate whether a new treatment is beneficial to the full population

or, failing that, in a sub-population.

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

The treatment effect is θ1 in the sub-population, θ2 in its complement, and the

average effect in the full population is θ3 = λ1θ1 + λ2θ2.

We wish to test:

The null hypothesis for the full population, H3: θ3 ≤ 0 vs θ3 > 0,

The null hypothesis for the sub-population, H1: θ1 ≤ 0 vs θ1 > 0.
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The benefits of enrichment

&%
'$
θ1 θ2Sub-population

(proportion λ1)

Rest of the population

(proportion λ2)

First, consider a design testing for a whole population effect, θ3 = λ1θ1 + λ2θ2.

The design has two analyses and one-sided type I error probability 0.025.

Sample size is set to achieve power 0.9 at θ3 = 20.

Data in each stage are summarised by a Z-value:

Stage 1 Stage 2 Overall

H3: θ3 ≤ 0 Z1,3 Z2,3 Z3 = 1√
2Z1,3 + 1√

2Z2,3
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The benefits of enrichment

Two stage design testing for a whole population effect, θ3.

Stage 1 Stage 2 Overall

H3: θ3 ≤ 0 Z1,3 Z2,3 Z3 = 1√
2Z1,3 + 1√

2Z2,3

Decision rules:

If Z1,3 < 0 Stop at Stage 1, Accept H3

If Z1,3 ≥ 0 Continue to Stage 2, then

If Z3 < 1.95 Accept H3

If Z3 ≥ 1.95 Reject H3
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The benefits of enrichment

Assume the sub-population comprises half the total population, so λ1 = λ2 = 0.5.

Properties of design for the whole population effect, θ3:

θ1 θ2 θ3 Power for

H3: θ3 ≤ 0

20 20 20 0.90

10 10 10 0.37

20 0 10 0.37

Is it feasible to identify at Stage 1 that θ3 is low but θ1 may be higher, so one might

switch resources to test a sub-population?
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The benefits of enrichment

We wish to be able to consider two null hypotheses:

H3: θ3 ≤ 0 Treatment is not effective in the whole population,

H1: θ1 ≤ 0 Treatment is not effective in the sub-population.

Since θ3 = 0.5 θ1 + 0.5 θ2, either of H1 and H3 may be true on its own.

In applying a closed testing procedure, we also test the intersection hypothesis

H13: θ1 ≤ 0 and θ3 ≤ 0.

Then to reject H1 overall, while protecting the family-wise type I error rate, we need

to reject both H1 and H13 in individual tests at significance level α.

Similarly, we can reject H3 overall if both H3 and H13 are rejected in level α tests.
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An adaptive design

At Stage 1, if θ̂3 < 0, stop to accept H3: θ3 ≤ 0.

If θ̂3 > 0 and the trial continues:

If θ̂2 < 0 and θ̂1 > θ̂2 + 8 Restrict to sub-population 1 and test H1 only,

needing to reject H1 and H13.

Else, Continue with full population and test H3,

needing to reject H3 and H13.

The same total sample size for Stage 2 is retained in both cases, increasing the

numbers for the sub-population when enrichment occurs.
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An adaptive design

Each null hypothesis, Hi say, is tested in a 2-stage group sequential test.

With Z-statistics Z1 and Z2 from Stages 1 and 2, Hi is rejected if

Z1 ≥ 0 and 1√
2Z1 + 1√

2Z2 ≥ 1.95.

When continuing with the full population, we use Z-statistics:

Stage 1 Stage 2

H3 Z1,3 Z2,3

H13 Z1,3 Z2,3

where Zi,3 is based on θ̂3 from responses in Stage i.

With these definitions, there is no change from the original test of H3. This should

help maintain power to reject H3 and identify an effect in the full population.
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An adaptive design

With Z-statistics Z1 and Z2 from Stages 1 and 2, Hi is rejected if

Z1 ≥ 0 and 1√
2Z1 + 1√

2Z2 ≥ 1.95.

When switching to the sub-population, we use:

Stage 1 Stage 2

H1 Z1,1 Z2,1

H13 Z1,3 Z2,1

where Zi,j is based on θ̂j from responses in Stage i.

The need to reject the intersection hypothesis H13 adds an extra requirement to

the simple test of H1.
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Simulation results: Power of non-adaptive and adaptive des igns

Non-adaptive Adaptive

θ1 θ2 θ3 Full popn Sub-popn Full Total

only popn

1. 30 0 15 0.68 0.43 0.42 0.85

2. 20 0 10 0.37 0.24 0.26 0.51

3. 20 20 20 0.90 0.03 0.87 0.90

4. 20 10 15 0.68 0.11 0.60 0.71

Cases 1 & 2: Testing focuses (correctly) on H1, but it is still possible to find

an effect (wrongly) for the full population. Overall power is increased.

Case 3: Restricting to the sub-population reduces power for finding an effect in

the full population.

Case 4: Adaptation improves overall power a little.
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Increasing power for finding a sub-population effect

In order to achieve greater power for finding an effect in the sub-population, we

could use Z1,1 rather than Z1,3 as the Stage 1 statistic in the test of H13.

However, this choice is detrimental to power when there is a good treatment effect

across the whole population, as in the previous table’s

Case 3: θ1 = 20, θ2 = 20,

Case 4: θ1 = 20, θ2 = 10.

A compromise between these two options is provided by

Z̃1,13 = (Z1,3 + Z1,1)/
√

(2 +
√

2),

which has a N(0, 1) distribution under H13.
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Increasing power for finding a sub-population effect

Taking the Stage 1 statistic for the test of H13 to be

Z̃1,13 = (Z1,3 + Z1,1)/
√

(2 +
√

2),

leads to the following results:

Non-adaptive Adaptive

θ1 θ2 θ3 Full popn Sub-popn Full Total

only popn

1. 30 0 15 0.68 0.47 0.41 0.88

2. 20 0 10 0.37 0.33 0.25 0.58

3. 20 20 20 0.90 0.04 0.83 0.87

4. 20 10 15 0.68 0.15 0.57 0.72

Use of Z̃1,13 has increased power to find a treatment effect in the sub-population in

Cases 1 & 2 at the cost of a small drop in power for Case 3.
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The benefits of enrichment

In defining an enrichment design, the rules for staying with the full population or

switching to the sub-population can be adjusted to favor specific goals.

However, we cannot eliminate the probability of making an error in these decisions.

This is to be expected. The standard error of the interim estimates θ̂1 and θ̂2

is 12.3 — much higher than the differences between θ1 and θ2 that interest us.

Similar problems are liable to arise in any adaptive procedure which uses noisy

interim data as the basis of mid-study modifications.

So, although restricting attention to a sub-population can be effective in improving

power, higher overall sample size is needed for accurate sub-population inference.
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7. Conclusions

• Group sequential tests are valuable in monitoring clinical trials with a view to

early stopping for efficacy or futility.

• The general framework of group sequential designs accommodates a wide

variety of response distributions and types of stopping rule.

• Error spending designs can handle unpredictable increments in information

about the primary endpoint while maintaining statistical efficiency.

• Extensions of the standard form of group sequential test have been developed

to give efficient designs when there is a delay in observing patients’ responses.

• Adaptive designs offer an alternative approach to updating sample size in

response to estimates of nuisance parameters, such as the response variance.

• Combination tests used in conjunction with closed testing procedures provide a

methodology for testing an adaptively selected hypothesis.
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