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Selected topics from a monograph (2012, Springer):
Sequential Experimentation in Clinical Trials: Design and Analysis
Bartroff, Lai and Shih

Outline:

1. Brief survey of adaptive design

2. Theory of sequential testing

F Fully sequential design
F Group sequential design

3. A flexible and efficient approach to adaptive design

4. Comparative studies
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1. Brief Survey
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Sequential learning and adaptation
I To address statistical problems for which there are no solutions

with fixed sample size

F Example: testing a normal mean H0 : µ = µ0 with unknown
variance σ2 (Dantzig, 1940)

F Stein (1945) showed that a two-stage procedure can have
power independent of σ2

I Adaptive designs

F Use data during the course of a trial to learn about unknown
parameters and thereby modify the design

F Beyond nuisance parameters and sample size re-estimation
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Examples of adaptation:
I Sample size re-estimation based on observed effect size
I Drop arms, select dose
I Change objective (eg, superiority vs. non-inferiority)
I Choose primary endpoint
I Enrich study population
I Outcome-adaptive randomization
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translational medicinenature publishing group

I-SPY 2 (investigation of serial studies to predict your 
therapeutic response with imaging and molecular analysis 2) 
is a process targeting the rapid, focused clinical development 
of paired oncologic therapies and biomarkers. The framework 
is an adaptive phase II clinical trial design in the neoadjuvant 
setting for women with locally advanced breast cancer. 
I-SPY 2 is a collaborative effort among academic investigators, 
the National Cancer Institute, the US Food and Drug 
Administration, and the pharmaceutical and biotechnology 
industries under the auspices of the Foundation for the 
National Institutes of Health Biomarkers Consortium.

I-Spy 2 RatIonale and BackgRound
The daunting statistics that currently define cancer incidence 
and mortality require innovative strategies that will address 
the prohibitive expenditures of time and cost associated with 
the development of new oncology drugs. Although there are 
many promising new oncology drugs in the pipeline, the cur-
rent process for development and regulatory review is ineffi-
cient and expensive, requiring a decade or more to complete. 
While biomarkers show promise for informing all aspects of 
oncology drug development, diagnosis, and treatment, clinical 
validation (qualification) has proved extremely difficult. The 
Cancer Steering Committee of the Foundation for the National 
Institutes of Health Biomarkers Consortium is taking several 
innovative approaches to remove this “biomarker barrier” in 
order to qualify both biomarkers and drugs for evidence-based 
development in clinical trials.

Over the past 20 years, significant progress has occurred in the 
detection and treatment of breast cancer. In fact, many women 
who present with stage I and II mammographically detected 
disease have excellent outcomes because of improved adjuvant 
therapy and lower risk of recurrence. Despite this progress, 
10–15% of newly diagnosed breast cancers present as locally 
advanced cancers, with the likelihood of favorable long-term 
outcomes being significantly lower.1 The absolute numbers 
of these cancers have not decreased over time, and successful 

treatment options remain limited. These patients continue 
to represent a disproportionately large fraction of those who 
die of their disease. Given that the standard of care for these 
women increasingly includes neoadjuvant therapy prior to sur-
gical resection, this combination of group and setting represents 
a unique opportunity to learn how to tailor the treatment to 
patients with high-risk breast cancers.

Cancer research from the past decade has shown that breast 
cancer is a number of heterogeneous diseases; this finding sug-
gests that directing drugs to molecular pathways that charac-
terize the disease in subsets of patients will improve treatment 
efficacy. Currently, however, most phase II and III trials of new 
breast cancer drugs are in the metastatic setting, followed by 
randomized phase III registration trials in the adjuvant setting. 
These trials do not reflect the fact that there is a wide range 
of molecular characteristics of the patient’s disease. Adjuvant 
trials require long-term follow-up and the enrollment of many 
thousands of patients,2 and it may take 10−20 years3 to gain 
marketing approval for successful drugs. Moreover, substantial 
investments of time and other resources are required for the 
development of drugs that ultimately fail. Although the use 
of biomarkers (molecular profiles, protein pathways, imaging, 
etc.) in the selection of patient populations for tailored studies 
of new drugs is promising, developing translational approaches 
in clinical trials for prediction of drug response presents a 
major challenge. The development and use of biomarkers for 
early measures of therapeutic response would facilitate the 
efficient evaluation of new agents in focused early clinical 
 trials4 and enable the development of more informed, smaller 
phase III trials.

I-SPY 2 represents a unique approach toward addressing the 
“biomarker barrier.” It will be performed as a neoadjuvant trial 
in women with large primary cancers of the breast (>3.0 cm), 
and the end point for response to treatment will be the measure-
ment of pathologic complete response. I-SPY 2 will also test, 
analytically validate, and qualify biomarkers as new drugs are 
tested; employ an adaptive trial design to enable efficient learning 
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in the Setting of Neoadjuvant Chemotherapy
AD Barker1, CC Sigman2, GJ Kelloff1, NM Hylton3, DA Berry4 and LJ Esserman3

1National Cancer Institute, Bethesda, Maryland, USA; 2CCS Associates, Mountain View, California, USA; 3University of California, San Francisco, California, USA; 
4MD Anderson Cancer Center, University of Texas, Houston, Texas, USA. Correspondence: AD Barker (barkera@mail.nih.gov)

Received 10 February 2009; accepted 30 March 2009; advance online publication 13 May 2009. doi:10.1038/clpt.2009.68

Barker et al (2009)

Tze Leung Lai (NY) Group Sequential Trials October 18, 2011 6 / 64



CliniCal pharmaCology & TherapeuTiCs 3

translational medicine

and treatment as the trial progresses. For example, HER2 
gene expression will be evaluated using the Agendia 44 k full 
genome microarray,11,12 and phosphorylated HER2 (pHER2) 
will be assayed using reverse phase protein microarray.13 Also, 
in view of the fact that I-SPY showed MRI volume to be the 
best predictor of residual disease after the administration of 
chemotherapy,14,15 the measurement of MR volume at baseline 
and during and after treatment will be automated and used to 
inform the randomization of patients as the trial proceeds.

overall clinical trial design
The overall trial design for I-SPY 2 (Figure 2) will feature two 
arms of a standard neoadjuvant chemotherapy regimen, starting 
with weekly paclitaxel (plus trastuzumab (Herceptin) for HER2+ 
patients) followed by doxorubicin (Adriamycin) and cyclophos-
phamide (Cytoxan). In the other arms, five new drugs will be 
tested simultaneously, each being added to standard therapy. On 
the basis of statistical models, each drug will be tested in a mini-
mum of 20 patients and a maximum of 120 patients. Following 
an initial core biopsy, MRI and blood sample draw to determine 
biomarker signature and eligibility (Figure 1), patients will be 
randomized to the novel drug agents, which will be administered 
weekly during the paclitaxel phase of the trial. After 3 weeks of the 
assigned treatment, patients will undergo a repeat MRI and core 
biopsy and continue treatment for 9 additional weeks. A third 
MRI and core biopsy will be performed prior to initiating stand-
ard chemotherapy with doxorubicin and cyclophosphamide, and 
a blood sample draw as well as a fourth MRI will be performed 
prior to surgery. Tumor tissue will be collected at surgery to assess 
whether the patient has pathologic complete response. This is 
the primary trial end point, but patients will also be followed for 
disease-free and overall survival for up to 10 years.

adaptive statistical design
Drugs will be evaluated against biomarker signatures consisting 
of combinations of hormone receptor + or −, HER2 + or −, and 
two levels of MammaPrint scores. Although this design produces 
256 possible signatures, most are biologically uninteresting or 
represent only small markets. Fourteen signatures of possible 

interest based on the biology they represent and their expected 
high prevalence in the study population have been character-
ized for I-SPY 2. Several of these signatures represent disease 
types for which there is a widely recognized need for improved 
treatment—for example, HER2+ tumors; hormone receptor and 
HER2− tumors (triple-negative disease); and tumors with poor 
prognosis on the basis of having the highest MammaPrint score 
level (Supplementary Table S1 online). In order to obtain infor-
mation about treatment effects as early as possible, relationships 
between pathologic complete response and baseline and longi-
tudinal markers will be modeled, and outcomes will be assessed 
continually during the trial. Randomization probabilities will 
be determined using the accumulating data pertaining to all 
the drugs in the trial. The trial is designed to “learn” over time 
which profiles predict response to each drug.

For the assignment of drugs to patients, Bayesian methods 
of adaptive randomization10 will be used to achieve a higher 
probability of efficacy. Drugs that do well within a specific 
molecular signature will be preferentially assigned within that 
signature and will progress through the trial more rapidly. Each 
drug’s Bayesian predictive probability10 of being successful in a 
phase III confirmatory trial will be calculated for each possible 
signature. Drugs will be dropped from the trial for reasons of 
futility when this probability drops sufficiently low for all sig-
natures. Drugs will be graduated at an interim point, should 
this probability reach a sufficient level for one or more signa-
tures. Drugs that have high Bayesian predictive probability of 
being more effective than standard therapy will graduate along 
with their corresponding biomarker signatures, allowing these 
agent–biomarker(s) combinations to be tested in smaller phase 
III trials. When the drug graduates, its predictive probability 
will be provided to the company for all the signatures tested. 
Depending on the patient accrual rate, new drugs can be added 
at any time during the trial as other drugs are either dropped 
or graduated.

Investigational drugs
In order to enter I-SPY 2, drugs must meet specific criteria 
relating to safety and efficacy (Table 1). A candidate drug is 
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MRI
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Figure 2 I-SPY 2 trial design. For HER2+ patients in the study, some new drugs with specific anti-HER2 activity may be administered in lieu of trastuzumab: 
anthracycline (AC) (e.g., doxorubicin) and cyclophosphamide (Cytoxan). HER2, human epidermal growth factor receptor 2; I-SPY 2, investigation of serial studies 
to predict your therapeutic response with imaging and molecular analysis 2; MRI, magnetic resonance imaging.

Barker et al (2009)

Tze Leung Lai (NY) Group Sequential Trials October 18, 2011 7 / 64



Most of the literature on adaptive designs focus on the prototypical
problem of testing a normal mean when the variance is known.
When variance is unknown , we need “internal pilot” to estimate
the variance.
Problem: X1,X2, ... ∼ N(µx , σ

2) and Y1,Y2, ... ∼ N(µY , σ
2). Test

H0 : µx = µY vs. HA : µx 6= µY
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Stein’s two-stage procedure: use first stage (internal pilot) to estimate
the variance

First stage: samples n0 from each of the two normal populations
and computes the usual estimate s2

0 of σ2

Second stage:
I Sample up to

n1 = n0 ∨
[(

t2n0−2,α/2 + t2n0−2,β
)2 2s2

0

δ2

]
where at |µX − µY | = δ, 1− β is the desired power level

I Reject H0 if
|X̄n1 − Yn1 |√

2s2
0/n1

> t2n0−2,α/2

Many modifications of Stein’s initial idea: different way to
re-estimate the total sample size based on s2

0
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Mid-Course Sample Size Re-Estimation

Re-estimate total sample size based on the data accumulate so far at
some interim

Suppose σ2 = 1/2, and θ = µX − µY

n=original sample size
After rn observations, S1 =

∑rn
i=1(Xi − Yi) ,

n−1/2S1 ∼ N(rθ
√

n, r)

If change the second stage sample size to γ(1− r)n, and
S2 =

∑n∗
i=rn+1(Xi − Yi), then given the first stage data,

(nγ)−1/2S2 ∼ N((1− r)θ
√
γn,1− r)
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Mid-Course Sample Size Re-Estimation

Under H0 : θ = 0, Fisher’s (1998) test statistic

n−1/2
(

S1 + γ−1/2S2

)
∼ N(0,1) (1)

Variance spending test: to ensure the variance r + (1− r)

Jennison and Turnbull (2003): Fisher’s test perform poorly with
lower efficiency and power compared to group sequential tests.
The inefficiency is due to the non-sufficient “weighted” statistic (1)
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Mid-course modification of the maximum sample size

Raised by Cui, Hung, and Wang (1999)
Motivation example: observe at the interim that the drug achieved
a reduction that was only half of the target reduction assumed in
calculating maximum sample size M
Increased sample size to M̃
Allow the future group sizes to be increased of decreased at the
interim
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Optimal adaptive group sequential designs via
dynamic programming

Jennison and Turnbull (2006):
choose the j th group size and stopping boundary based on the
cumulative sample size nj−1 and sample sum Snj−1

Solve the problem numerically by backward induction algorithms
Optimality: minimize a weighted average of the expected sample
size subject to prescribed error probabilities

I Ex: (E0(T ) + Eθ1 (T ) + E2θ1 (T )) /3

Efficiency: non-adaptive group sequential tests with optimally
chosen first stage ~ optimal adaptive design (but more
complicated!)
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Trade-offs:
I Flexibility vs. efficiency:

F Tsiatis & Mehta (2003) showed that standard group sequential tests
based on the likelihood ratio statistic are uniformly more powerful
than certain adaptive designs, e.g., Cui et al (1999).

F Jennison & Turnbull (2003) gave a general weighted form of these
adaptive designs and demonstrated that they performed much worse
than group sequential tests.

F Jennison & Turnbull (2006a) introduced adaptive group sequential
tests that are optimal in the sense of minimizing a weighted average
of expected sample sizes over a collection of parameter values.

F Jennison & Turnbull (2006b) showed standard (non-adaptive) group
sequential tests with the first stage chosen optimally are nearly as
efficient.

I Complexity in study implementation and analysis
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2. Theory of Sequential Testing
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Sequential Analysis was born in response to demands for more
efficient testing of weapons during World War II

Wald’s (1943) sequential probability ratio test (SPRT)

I Suppose X1,X2, . . .
iid∼ f

I Test H0 : f = f0 vs. H1 : f = f1
I Likelihood ratio Rn =

∏n
i=1 {f1(Xi )/f0(Xi )}

I SPRT stops sampling at sample size

T = inf {n ≥ 1 : Rn ≥ B or Rn ≤ A}

Accepts H0 (or H1) if RT ≤ A (or RT ≥ B).
I Conjectured SPRT minimizes the expected sample size at

H0 and H1 among all tests satisfying type I and II error rate
constraints

I Wald’s approximations: A ≈ log( α̃
1−α ), B ≈ log( 1−α̃

α )

Tze Leung Lai (NY) Group Sequential Trials October 18, 2011 16 / 64



Wald & Wolfowitz (1948): Optimality of SPRT
I Minimizes both E0(T ) and E1(T ) under error probability constraints

at H0 and H1

Issue:
I X1,X2, . . .

iid∼ fθ, a one-parameter exponential family with natural
parameter θ.

I H0 : θ ≤ θ0 vs. H1 : θ ≥ θ1(> θ0)

I The maximum expected sample size over θ of SPRT can be
considerably larger than that of the optimal FSS test.
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Kiefer-Weiss (1957) problem:
I Minimize Eθ∗(T ) at a given θ∗, subject to error probability

constraints at θ0 and θ1.

Hoeffding (1960):
I Gives a lower bound for Eθ∗(T ) subject to error probability

constraints at θ0 and θ1.

Lorden (1976):
I An asymptotic solution to the Kiefer-Weiss problem is a 2-SPRT:

Ñ = inf
{

n ≥ 1 :
n∏

i=1

fθ∗(Xi )

fθ0 (Xi )
≥ A0 or

n∏
i=1

fθ∗(Xi )

fθ1 (Xi )
≥ A1

}
I In the case of normal mean, it reduces to the triangular test of

Anderson (1960), which is close to the optimal boundary in Lai
(1973).
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Ideally θ∗ should be chosen to be true θ

Sequential generalized likelihood ratio (GLR) test:
I Replace θ∗ with θ̂n at stage n
I The test of H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 stops at

Ñ = inf
{

n ≥ 1 :
n∏

i=1

fθ̂n
(Xi )

fθ0 (Xi )
≥ A(n)

0 or
n∏

i=1

fθ̂n
(Xi )

fθ1 (Xi )
≥ A(n)

1

}
I With A(n)

0 = A(n)
1 = 1/c, it is an asymptotic solution to the Bayes

problem of testing H0 versus H1 with 0-1 loss and cost c, as c → 0
(Schwartz, 1962).
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Chernoff (1961, 1965) derived an approximation to the Bayes test
of H ′0 : θ < θ0 versus H ′1 : θ > θ0.

Lai (1988): One-parameter exponential family

N̂ = inf
{

n ≥ 1 : max
[ n∏

i=1

fθ̂n
(Xi )

fθ0 (Xi )
,

n∏
i=1

fθ̂n
(Xi )

fθ1 (Xi )

]
≥ eg(cn)

}
,

where g(t) ∼ log t−1 as t → 0.
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In 1950’s, it was recognized that sequential hypothesis testing
might be useful in clinical trials (Armitage 1960).

Armitage, McPherson and Rowe (1969) introduced repeated
significance test (RST):

I Rationale: the strength of evidence is indicated by the results of a
conventional significance test

I For testing a normal mean µ with known variance σ2, the RST of
H0 : µ = 0 has the form

T = inf{n ≤ M : |Sn| ≥ bσ
√

n},

rejecting H0 if T < M or if T = M and |SM | ≥ bσ
√

M, where
Sn = X1 + · · ·Xn.

I Developed a recursive numerical integration to compute overall
significance level.

Haybittle (1971) proposed a modification to increase power:
I Reject H0 if T < M or if T = M and |SM | ≥ cσ

√
M, where b ≥ c.
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Pocock (1977)
I In clinical trials, it is typically not feasible to arrange for continuous

examination of data
I Introduced a “group sequential” version of RST:

T = inf{n ≤ M : |Sn| ≥ bσ
√

n},

where Xn is an approximately normally distributed statistic of data
of the nth group, and M is the maximum number of looks.

O’Brien and Fleming (1979)
I Proposed a constant stopping boundary

T = inf{n ≤ M : |Sn| ≥ b}.
I Corresponds to the group sequential version of an SPRT
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For a group sequential design:

X1,X2, . . . ,XM indep. N(µ, σ2)

Want to test H0 : µ = 0 vs. H1 : µ 6= 0

Let Sn = X1 + · · ·+ Xn, X̄n = Sn/n

(Sn − nµ)/
√

nσ2 ∼ N(0,1)

Suppose there are k looks, with equal group sizes m

Let ni = im, M = km.
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Pocock (1977): Stop and reject H0 if

|Sni | ≥ bσ
√

ni

O’Brien and Fleming (1979): Stop and reject H0 if

|Sni | ≥ b

Wang and Tsiatis (1987): Stop and reject H0 if

∣∣∣∣ Sni√
ni

∣∣∣∣ ≥ σb
(

i
k

)δ− 1
2
,

where 0 ≤ δ ≤ 0.7

I δ = 1/2 : Pocock; δ = 0 : O’Brien-Fleming
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For one-sided hypothesis H ′0 : µ ≤ µ0

Want to stop not only when Sni exceeds an upper boundary
(leading to rejection of H ′0), but also when Sni falls below a lower
boundary (suggesting “futility”)

Futility boundary can be determined by considering an alternative
µ1 > µ0

Without loss of generality, assume µ0 = −µ1

Power family and triangular tests
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Power family
I Emerson and Fleming (1989), Pampallona and Tsiatis (1994)

I Stop sampling at look i ≤ k − 1 if

Sni + µ1ni ≥ biσ, rejecting H0,

or Sni − µ1ni ≤ aiσ, accepting H0.

I If stopping does not occur before look k ,

reject H0 if Snk + µ1nk ≥ bkσ.

I The boundaries have the form

bi = c1(δ)iδm1/2, ai =
{

2iθ1/σ − c2(δ)iδ
}

m1/2,

where 0 ≤ δ ≤ 1/2.
(δ = 0: O’Brien-Fleming; δ = 1/2: Pocock)
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Triangular tests
I Whitehead and Stratton (1983)

I Stop at look i ≤ k − 1 if |Sni | ≥ biσ, where

bi =

(
σ

µ1

)
log
(

1
2α

)
− 0.583m1/2 − imµ1

2σ
.

I If stopping does not occur before look k ,

reject H0 if Snk > 0.

I This is a special case of Lorden’s (1976) 2-SPRT.
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The Lan-DeMets (1983) error spending approach

In practice group sizes are usually unknown in advance and uneven

Key observation: (Sn/
√
σ2M, 1 ≤ n ≤ M) has the same distribution

as (Bt , t ∈ {1/M, . . . ,1}).
Given any stopping rule τ associated with a sequential test of the drift
of a continuous Brownian motion, one can obtain a corresponding
stopping rule for mean of Xi .

Let π(t) = P0(τ ≤ t) for t < 1.

Given an error spending function π(t), one can transform it to stopping
boundaries for Sni via

P0
{
|Sni | ≥ ani ,

∣∣Snj

∣∣ < anj for 1 ≤ j < i
}

= π(ni/M)− π(ni−1/M)

for 1 ≤ i ≤ k − 1.
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Some examples:

π(t) = min{2− 2Φ(zα/2/
√

t), α} O’Brien-Fleming

π(t) = min{α log[1 + (e − 1)t ], α} Pocock

π(t) = αmin{tρ,1}, ρ > 0

Some examples:

π(t) = min{2− 2Φ(zα/2/
√

t), α} O’Brien-Fleming

π(t) = min{α log[1 + (e − 1)t ], α} Pocock

π(t) = αmin{tρ,1}, ρ > 0Alpha-spending functions

Information fraction = n/N (number randomized at that point / total sample 
size expected)  or d/D (observed events/ expected total events)
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Group sequential GLR tests with modified Haybittle-Peto
boundaries

First consider a one-parameter exponential family

fθ(x) = exp (θx − ψ(θ))

Test H0 : θ ≤ θ0 at significance level α

No more than M observations

Consider group sequential tests with k analyses and group sizes
n1,n2 − n1, . . . ,nk − nk−1 (where nk = M)

Let Sn= X1 + · · ·+ Xn, X n= Sn/n

The Kullback-Leibler information number is

I(γ, θ) = Eγ [log {fγ(Xi )/fθ(Xi )}] = (γ − θ)ψ′(θ)− {ψ(γ)− ψ(θ)} .
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Fixed sample size (FSS) test that rejects H0 if SM ≥ cα has maximal
power at any alternative θ > θ0.

Ideally, want group sequential tests to

I allow early stopping
I attain nearly minimal expected sample size
I have small loss in power compared to FSS test

Let θ(M)= “implied” alternative by M at which the FSS test with M
observations has power 1− α̃
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Group sequential GLR test of H0 : θ ≤ θ0, with modified Haybittle-Peto
boundary, proceeds as follows:

At the i th interim analysis with 1 ≤ i ≤ k − 1,

I θ̂ni = (ψ′)−1(X ni ) = MLE of θ based on X1, . . . ,Xni

I Stop the trial at i th analysis if

θ̂ni > θ0 and ni I(θ̂ni , θ0) ≥ b (rejecting H0),

or θ̂ni < θ(M) and ni I(θ̂ni , θ(M)) ≥ b̃ (accepting H0).

If stopping does not occur before k th analysis,

reject H0 if Snk ≥ c.
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The thresholds b, b̃, c are chosen such that

I Pθ0 (test rejects H0) = α

I Pθ(M)(test rejects H0) does not differ much from the power
1− β of the FSS test at θ(M).
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Choose 0 < ε ≤ 1
2 and define b̃ by

Pθ(M)

{
θ̂ni < θ(M) and ni I

(
θ̂ni , θ(M)

)
≥ b̃ for some 1 ≤ i ≤ k − 1

}
= εβ.

After determining b̃, define b and then c by

k−1∑
j=1

Pθ0

{
θ̂nj > θ0 and nj I

(
θ̂nj , θ0

)
≥ b, ni I

(
θ̂ni , θ0

)
1{θ̂ni>θ0} < b and

ni I
(
θ̂ni , θ(M)

)
1{θ̂ni<θ(M)} < b̃ for i < j

}
= εα,

Pθ0

{
Snk ≥ c, ni I

(
θ̂ni , θ0

)
1{θ̂ni>θ0} < b and

ni I
(
θ̂ni , θ(M)

)
1{θ̂ni<θ(M)} < b̃ for i < k

}
= (1− ε)α.
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For Xi
iid∼ N(θ,1),

I I(θ, λ) = (θ − λ)2/2

I ni I(θ̂ni ,0) = ni X̄ 2
ni
/2 = S2

ni
/(2ni )

To test H0 : θ = 0, Haybittle (1971) and Peto et al (1976) proposed

I for 1 ≤ i ≤ k − 1, stop & reject H0 if |Sni |/
√

ni ≥ 3

I for i = k , reject H0 if |Snk |/
√

nk ≥ c

The above group sequential GLR test is in spirit similar

I called “modified Haybittle-Peto” test
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Group sequential GLR test of H0 : θ ≤ θ0, with modified Haybittle-Peto
boundary, proceeds as follows:

At the i th interim analysis with 1 ≤ i ≤ k − 1,

I θ̂ni = (ψ′)−1(X ni ) = MLE of θ based on X1, . . . ,Xni

I Stop the trial at i th analysis if

θ̂ni > θ0 and ni I(θ̂ni , θ0) ≥ b (rejecting H0),

or θ̂ni < θ(M) and ni I(θ̂ni , θ(M)) ≥ b̃ (accepting H0).

If stopping does not occur before k th analysis,

reject H0 if Snk ≥ c.
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Two-sided tests without futility boundaries

At the i th interim analysis with 1 ≤ i ≤ k − 1, stop the trial if

ni I(θ̂ni , θ0) ≥ b (rejecting H0).

If stopping does not occur before k th analysis,

reject H0 if nk I(θ̂nk , θ0) ≥ c.
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Two-sided tests with futility boundaries

At the i th interim analysis with 1 ≤ i ≤ k − 1, stop the trial if

ni I(θ̂ni , θ0) ≥ b (rejecting H0),

or

ni I(θ̂ni , θ0) < b and
{

ni I
(
θ̂ni , θ−(M)

)
≥ b̃− or ni I

(
θ̂ni , θ+(M)

)
≥ b̃+

}
(accepting H0).

If stopping does not occur before k th analysis,

reject H0 if nk I(θ̂nk , θ0) ≥ c.
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The modified Haybittle-Peto test

Uses more flexible boundary b, b̃, c

Generalizes to exponential families

I ni I(θ̂ni , λ) =GLR statistic for testing θ = λ

I Uses efficient statistics for the null and alternative
I Applies to multi-armed and multi-parameter problems

. for testing u(θ) = u0, GLR statistic is infu(θ)=u0 ni I(θ̂ni , θ)

Related to the Kiefer-Weiss problem for fully sequential tests

I Attains the asymptotically minimal value of the expected sample
size at every fixed θ, and has power at θ(M) comparable to its
upper bound 1− β.
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Theory: Lai & Shih (2004 Biometrika)
Appendix A of Bartroff, Lai & Shih
Theory: Lai & Shih (2004 Biometrika)
Appendix A of Bartroff, Lai & Shih
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In practice, one often imposes an upper bound M and also a lower bound m on
the total number of observations. With M/m→ b > 1 and logα ∼ logβ , we can
replace the time-varying boundary g(εn) in (A.11) by a constant threshold c since
g(t)∼ log t−1 and logn = logm+O(1) for m≤ n≤M. The test of H0 : θ = θ0 with
stopping rule

Ñ = inf

{
n≥ m :

[
n

∏
i=1

f
θ̂n
(Xi)

]/[
n

∏
i=1

fθ0(Xi)

]
≥ ec

}
∧M, (A.12)

which corresponds to (A.11) with θ1 = θ0, g(εn) replaced by c, and n restricted be-
tween m and M, is called a repeated GLR test. The test rejects H0 if the GLR statistic
exceeds ec upon stopping. The repeated significance test of Armitage et al (1969)
described in Section 1.2 is a special case of repeated GLR tests. Whereas (A.12) con-
siders the simple null hypothesis θ = θ0 in the univariate case, it is straightforward
to extend the repeated GLR test to multivariate θ and composite null hypothesis
H0 : θ ∈Θ0, by simply replacing ∏

n
i=1 fθ0(Xi) in (A.12) by supθ∈Θ0 ∏

n
i=1 fθ (Xi).

A.6 Modifications for Group Sequential Testing

Lai and Shih (2004) have modified the preceding theory of fully sequential tests for
group sequential tests in a one-parameter exponential family fθ (x) = eθx−ψ(θ) of
density functions, for which Hoeffding’s lower bound (A.8) can be expressed as

Eθ (T )≥−ζ
−1 log(α +β )−

(
ζ
−2

σ/2
){

(σ/4)2−ζ log(α +β )
} 1

2

+ζ
−2

σ
2/8 (A.13)

where σ2 = (θ1 − θ0)
2ψ
′′
(θ) = Varθ{(θ1 − θ0)Xi}, ζ = max{I(θ ,θ0), I(θ ,θ1)}

and I(θ ,λ ) = Eθ [log{ fθ (Xi)/ fλ (Xi)}] is the Kullback–Leibler information number.
The lower bound (A.13) does not take into consideration the fact that T can assume
only several possible values in the case of group sequential tests. The first step of
Lai and Shih (2004, p. 509) is to take this into consideration in providing a sharper
asymptotic lower bound, in probability, for T in the following theorem. Let n0 = 0.

Theorem A.1. Suppose the possible values of T are n1 < · · ·< nk, such that

liminf(ni−ni−1)/| log(α +β )|> 0 (A.14)

as α +β → 0, where α and β are the type I and type II error probabilities of the
test at θ0 and θ1. Let mα,β (θ) = min{| logα|/I(θ ,θ0), | logβ |/I(θ ,θ1)}. Let εα,β

be positive numbers such that εα,β → 0 as α + β → 0, and let ν be the smallest
j(≤ k) such that n j ≥ (1−εα,β )mα,β (θ), defining ν to be k if no such j exists. Then
for fixed θ ,θ0 and θ1 > θ0, as α +β → 0,
A.6 Modifications for Group Sequential Testing 137

Pθ (T ≥ nν)→ 1;

If furthermore ν < k, |mα,β (θ)−nν |/m1/2
α,β (θ)→ 0 and

limsup
mα,β (θ)

max{| logα|/I(θ ,θ0), | logβ |/I(θ ,θ1)}
< 1, (A.15)

then Pθ (T ≥ nν+1)≥ 1
2 +o(1).

The n j in Theorem A.1 can in fact be random variables independent of X1,X2, . . . .
In this case we can still apply the preceding argument after conditioning on (n1, . . . ,nk).
The next step of Lai and Shih (2004, p. 510) is to extend Lorden’s result on the
asymptotic optimality of the 2-SPRT to the group sequential setting in the follow-
ing.

Theorem A.2. Let θ0 < θ ∗ < θ1 be such that I(θ ∗,θ0) = I(θ ∗,θ1). Let α +β → 0
such that logα ∼ logβ .

(i) The sample size n∗ of the Neyman–Pearson test of θ0 versus θ1 with error
probabilities α and β satisfies n∗ ∼ | logα|/I(θ ∗,θ0).

(ii) For L ≥ 1, let Tα,β ,L be the class of stopping times associated with group
sequential tests with error probabilities not exceeding α and β at θ0 and θ1
and with k groups and prespecified group sizes such that (A.14) holds and
nk = n∗+L. Then, for given θ and L, there exists τ ∈Tα,β ,L that stops sampling
when

(θ −θ0)Sni −ni {ψ(θ)−ψ(θ0)} ≥ b

or (θ −θ1)Sni −ni {ψ(θ)−ψ(θ1)} ≥ b̃
(A.16)

for 1≤ i≤ k−1, with b∼ | logα| ∼ b̃, and such that

Eθ (τ)∼ inf
T∈Tα,β ,L

Eθ (T )∼ nν +ρ(θ)(nν+1−nν), (A.17)

where ν and mα,β (θ) are defined in Theorem A.1 and 0≤ ρ(θ)≤ 1.

Whereas the group sequential 2-SPRT in Theorem A.2 requires specification of
θ , the group sequential GLR in Section 2.2 replaces θ at the ith interim analysis
by the maximum likelihood estimate θ̂ni . The third step of Lai and Shih (2004,
pp. 511–512) is to show that the group sequential GLR in Section 2.2.2 still attains
the asymptotic lower bound (A.17) at every fixed θ and that its power is comparable
to the upper bound 1−β at the implied alternative θ(M), under the assumption that
the group sizes satisfy (A.14) with nk = M ∼ | logα|/I(θ ∗,θ0), as α +β → 0 such
that logα ∼ logβ .

Lai and Shih (2004) make use of Theorem A.1 and Theorem A.2 to establish the
asymptotic optimality of the group sequential GLR test introduced in Section 2.2.2
for testing H0 : θ ≤ θ0 in a one-parameter exponential family. Let τ̃ denote the
sample size of the test and pθ denote its power at θ > θ0. The following theorem
shows that Eθ (τ̃) attains its asymptotically minimal value, assuming known θ , of
the expected sample size in Theorem A.2 and that pθ(M) is close to the power of
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Pθ (T ≥ nν)→ 1;

If furthermore ν < k, |mα,β (θ)−nν |/m1/2
α,β (θ)→ 0 and

limsup
mα,β (θ)

max{| logα|/I(θ ,θ0), | logβ |/I(θ ,θ1)}
< 1, (A.15)

then Pθ (T ≥ nν+1)≥ 1
2 +o(1).

The n j in Theorem A.1 can in fact be random variables independent of X1,X2, . . . .
In this case we can still apply the preceding argument after conditioning on (n1, . . . ,nk).
The next step of Lai and Shih (2004, p. 510) is to extend Lorden’s result on the
asymptotic optimality of the 2-SPRT to the group sequential setting in the follow-
ing.

Theorem A.2. Let θ0 < θ ∗ < θ1 be such that I(θ ∗,θ0) = I(θ ∗,θ1). Let α +β → 0
such that logα ∼ logβ .

(i) The sample size n∗ of the Neyman–Pearson test of θ0 versus θ1 with error
probabilities α and β satisfies n∗ ∼ | logα|/I(θ ∗,θ0).

(ii) For L ≥ 1, let Tα,β ,L be the class of stopping times associated with group
sequential tests with error probabilities not exceeding α and β at θ0 and θ1
and with k groups and prespecified group sizes such that (A.14) holds and
nk = n∗+L. Then, for given θ and L, there exists τ ∈Tα,β ,L that stops sampling
when

(θ −θ0)Sni −ni {ψ(θ)−ψ(θ0)} ≥ b

or (θ −θ1)Sni −ni {ψ(θ)−ψ(θ1)} ≥ b̃
(A.16)

for 1≤ i≤ k−1, with b∼ | logα| ∼ b̃, and such that

Eθ (τ)∼ inf
T∈Tα,β ,L

Eθ (T )∼ nν +ρ(θ)(nν+1−nν), (A.17)

where ν and mα,β (θ) are defined in Theorem A.1 and 0≤ ρ(θ)≤ 1.

Whereas the group sequential 2-SPRT in Theorem A.2 requires specification of
θ , the group sequential GLR in Section 2.2 replaces θ at the ith interim analysis
by the maximum likelihood estimate θ̂ni . The third step of Lai and Shih (2004,
pp. 511–512) is to show that the group sequential GLR in Section 2.2.2 still attains
the asymptotic lower bound (A.17) at every fixed θ and that its power is comparable
to the upper bound 1−β at the implied alternative θ(M), under the assumption that
the group sizes satisfy (A.14) with nk = M ∼ | logα|/I(θ ∗,θ0), as α +β → 0 such
that logα ∼ logβ .

Lai and Shih (2004) make use of Theorem A.1 and Theorem A.2 to establish the
asymptotic optimality of the group sequential GLR test introduced in Section 2.2.2
for testing H0 : θ ≤ θ0 in a one-parameter exponential family. Let τ̃ denote the
sample size of the test and pθ denote its power at θ > θ0. The following theorem
shows that Eθ (τ̃) attains its asymptotically minimal value, assuming known θ , of
the expected sample size in Theorem A.2 and that pθ(M) is close to the power of
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the fixed sample size whose sample size M is chosen so that it has power 1−β at
θ(M)> θ0.

Theorem A.3. Let α+β→ 0 such that logα ∼ logβ . Suppose that the k group sizes
satisfy (A.14) with nk = M ∼ | logα|/I(θ ∗,θ0), where θ0 < θ ∗ < θ(M) is defined
by I(θ ∗,θ0) = I(θ ∗,θ(M)).

(i) For every fixed θ , Eθ (τ̃) ∼ nν +ρ(θ)(nν+1− nν), where ν and ρ(θ) are the
same as in Theorem A.2 with θ1 = θ(M).

(ii) pθ(M) = 1−β − (κε +o(1))β , where κε ∼ {1+(θ(M)−θ ∗)/(θ ∗−θ0)}ε as
ε → 0.

A.7 Application to Adaptive Design Theory

Bartroff and Lai (2008b) have proved the asymptotic optimality of the adaptive de-
signs in Section 3.2.1.This is the content of the following theorem.
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Numerical example:
I Test H0 : p1 = p2 in a randomized two-armed trial
I k = 5, M = 100
I The sample size nij for the two treatments can be different at

the j th analysis
I The group size nj = n1j + n2j can vary over j
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Power (%) and expected sample size (in parentheses) of two-sided group sequential
tests of H0 : p2 − p1 = 0 without futility boundaries.

p2 − p1
0 0.15 0.2 0.24 0.27 0.30

(a) Equal group sizes, adaptive treatment allocation
α∗1 6.1 (99.0) 34.4 (93.7) 52.2 (89.6) 69.0 (84.2) 78.1 (80.0) 85.5 (75.6)
α∗2 7.1 (97.3) 29.2 (90.1) 45.9 (83.4) 59.4 (77.4) 68.6 (73.3) 78.5 (66.0)
ModHP 5.5 (98.9) 36.1 (93.1) 55.9 (89.0) 69.6 (83.7) 79.4 (78.6) 86.2 (74.1)

(b) Unequal group sizes, even treatment allocation
α∗1 5.0 (99.4) 36.8 (94.0) 59.0 (89.0) 72.6 (84.8) 81.3 (80.7) 87.2 (76.9)
α∗2 7.2 (97.3) 33.3 (88.9) 51.0 (81.3) 64.7 (76.1) 76.7 (70.6) 82.8 (65.7)
ModHP 5.3 (98.7) 38.2 (93.0) 58.1 (88.0) 72.9 (82.5) 80.9 (77.7) 88.4 (72.5)

(c) Unequal group sizes, adaptive treatment allocation
α∗1 5.6 (99.3) 35.3 (94.2) 55.0 (89.7) 70.6 (85.0) 79.1 (81.5) 86.2 (77.5)
α∗2 6.9 (97.1) 27.9 (90.6) 45.1 (84.4) 59.8 (77.6) 69.5 (73.7) 78.9 (67.9)
ModHP 5.6 (98.6) 35.2 (93.0) 55.3 (87.9) 68.5 (84.0) 77.8 (78.8) 86.7 (74.1)

Tze Leung Lai (NY) Group Sequential Trials October 18, 2011 45 / 64



The thresholds b, b̃, c can be calculated via recursive numerical
integration.

Consider the prototype model Xi ∼ N(θ,1):
I τ = min{i ≤ k : Sni 6∈ (ai ,bi )} ∧ k

I Let fi (x) = (d/dx)Pθ{τ > i , Sni ≤ x}
I Then f1(x) = φ((x − θ)/

√
n1) for a1 < x < b1

I For i > 1 and ai < x < bi ,

fi (x) =

∫ bi−1

ai−1

fi−1(y)φ

(
x − y − θ(ni − ni−1)√

ni − ni−1

)
dy .

I Moreover,

P(τ = i) =

∫ bi−1

ai−1

fi−1(y)

{
Φ

(
ai − y − θ(ni − ni−1)√

ni − ni−1

)
+1− Φ

(
bi − y − θ(ni − ni−1)√

ni − ni−1

)}
dy .
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A major reason why a normal random walk is used as a prototypical
case is that the multivariate distribution of many group sequential test
statistics has a limiting normal distribution with independent
increments.

I Jennison & Turnbull (1999), Scharfstein & Tsiatis (1997): all
sequentially computed Wald statistics based on efficient estimates
of the parameter of interest have the above asymptotic distribution.

I The signed root likelihood ratio statistic

Wi = sign
(
u(θ̂ni )− u0

)√
2ni Λi ,

in which the GLR statistic Λi is

Λi = ni

{
θ̂T

ni
X̄ni − ψ

(
θ̂ni

)}
− sup

u(θ)=u0

ni
{
θT X̄ni − ψ(θ)

}
= inf

u(θ)=u0

ni I
(
θ̂ni , θ

)
,

is approximately normal with mean 0 and variance ni under
H0 : u(θ) = u0, and that the increments Wi −Wi−1 are
approximately independent under H0.
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3. An efficient approach to adaptive designs

Tze Leung Lai (NY) Group Sequential Trials October 18, 2011 48 / 64



Efficient adaptive designs and GLR tests

Bartroff & Lai (2008a):
I Efficient tests with at most 3 stages
I Consider a one-parameter exponential family

fθ(x) = exp (θx − ψ(θ))

I Want to test H0 : θ ≤ θ0, with no more than M observations
I Group sizes:

– Stage 1: n1 = m

– Stage 2: n2 = m ∨
{

M ∧
⌈

(1 + ρm)n
(
θ̂m

)⌉}
with

n(θ) = min
{
| logα|

/
I(θ, θ0), | log α̃|

/
I(θ, θ1)

}
– Stage 3 (if n2 < M): n3 = M
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Rejection and futility boundaries are similar to Lai & Shih (2004).

Stop at stage i ≤ 2 and reject H0 if

ni < M, θ̂ni > θ0, and ni I(θ̂ni , θ0) ≥ b.

Stop at stage i ≤ 2 and accept H0 if

ni < M, θ̂ni < θ1, and ni I(θ̂ni , θ1) ≥ b̃.

Reject H0 at stage i = 2 or 3 if

ni = M, θ̂M > θ0, and MI(θ̂M , θ0) ≥ c,

accepting H0 otherwise.
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The original idea to use

n2 = m ∨
{

M ∧
⌈

(1 + ρm)n
(
θ̂m

)⌉}
as the second-stage sample size and to allow the possibility of a third
stage to account for uncertainty in the estimate θ̂m (and hence n2) is
due to Lorden (1983).

It can be shown that the three-stage test is asymptotically optimal:
If N is the sample size of the three-stage test above, then

Eθ(N) ∼ m ∨
{

M ∧ | logα|
I(θ, θ0) ∨ I(θ, θ1)

}
as α+ α̃→ 0, logα ∼ log α̃, ρm → 0 and ρm

√
m/ log m→∞; and if

T is the sample size of any test of H0 : θ ≤ θ0 whose error
probabilities at θ0 and θ1 do not exceed α and α̃, respectively, then

Eθ(T ) ≥ (1 + o(1))Eθ(N)

simultaneously for all θ.
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Bartroff & Lai (2008b):
I Allow the possibility of increasing the maximum sample size

from M to M̃
I Efficient tests with at most 4 stages
I Group sizes:

– Stage 1: n1 = m

– Stage 2: n2 = m ∨
{

M ∧
⌈

(1 + ρm)n
(
θ̂m

)⌉}
– Stage 3: n3 = n2 ∨

{
M ′ ∧

⌈
(1 + ρm)ñ

(
θ̂n2

)⌉}
with

ñ(θ) = min
{
| logα|

/
I(θ, θ0), | log α̃|

/
I(θ, θ2)

}
– Stage 4 (if n3 < M̃): n4 = M̃
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4. Comparative Studies
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Example: Randomized phase II cancer trial

Thall & Simon (1994):

I Phase II trial for treatment of AML
I Control (standard): fludarabine + ara-C

Experimental: fludarabine + ara-C + G-CSF
I From prior data, control response rate p0 ≈ 0.5
I Interested in improvement of p1 − p0 = 0.2

α = 0.05, α̃ = 0.2

m = 25, M = 78
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Thall et al (1988)
I H0 : p1 ≤ p0 vs. H1 : p1 > p0

I Zi = approx. normally distributed test statistic at the end of
stage i (i = 1,2)

I At stage 1, stop for futility if Z1 ≤ y1; otherwise continue
I At stage 2, reject H0 if Z2 > y2

I Choose n1,n2, y1, y2 to minimize

AvSS =
1
2

[
E(N | p1 = p0) + E(N | p1 = p0 + δ)

]
subject to type I and type II error probability constraints.
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Expected sample size, power (in parentheses), expected number of stages (in
brackets) and average expected sample size (AvSS).

Expected sample size, power (in parentheses), expected number of stages (in
brackets) and average expected sample size (AvSS).

Table 3. Expected sample size, power (in parentheses), expected number of stages (in

brackets) and average expected sample size (22) (denoted by AvSS) of 2-arm phase II designs.

q p ADAPT Opt2

.4 .3 33.3 (0.4%) [1.1] 37.8 (0.2%) [1.1]

.4 46.1 (5.3%) [1.5] 48.9 (5.3%) [1.4]

.5 57.5 (32.3%) [1.8] 63.3 (35.6%) [1.7]

.6 56.4 (76.0%) [1.8] 73.5 (78.9%) [1.9]

.7 43.8 (97.0%) [1.5] 77.3 (97.7%) [2.0]

AvSS 51.3 61.2

.5 .4 34.7 (0.4%) [1.2] 38.2 (0.2%) [1.1]

.5 47.3 (5.0%) [1.5] 49.0 (5.6%) [1.4]

.6 57.5 (32.2%) [1.8] 63.3 (35.5%) [1.7]

.7 55.1 (77.8%) [1.8] 73.7 (80.4%) [1.9]

.8 41.0 (97.6%) [1.4] 77.5 (98.2%) [2.0]

AvSS 51.2 61.4

.6 .5 34.7 (0.4%) [1.2] 38.2 (0.2%) [1.1]

.6 46.0 (5.2%) [1.5] 48.9 (5.3%) [1.4]

.7 55.8 (33.2%) [1.7] 63.3 (35.6%) [1.7]

.8 52.3 (81.1%) [1.7] 74.4 (84.2%) [1.9]

.9 35.9 (98.5%) [1.3] 77.8 (99.4%) [2.0]

AvSS 49.2 61.7

in this case are chosen to minimize (22), yet there is substantial savings both when p = q

and p = q + δ. ADAPT and Opt2 have similar expected number of stages near the null

hypothesis, with ADAPT decreasing as p − q increases while Opt2 steadily increases to 2,

again due to its early stopping only for futility. The power functions of the tests are similar,

with Opt2 having slightly higher power. Note that the Type I error probability of Opt2

is inflated above α = .05 at p = q = .5 due to the normal approximations to Zi used to

compute the design parameters.

14
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Proschan & Hunsberger (1995):
I For testing two normal means

I Two-stage design: uses information about the treatment
difference from the first stage to determine the number of
additional observations needed and the critical value to use
at the end of the study.

I Conditional power/error:

CPθ = Pθ(reject H0 | test statistic at first stage)
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Choose a conditional error function A( · ) ∈ [0,1], such that∫ ∞
−∞

A(z1)φ(z1) dz1 = α.

z1

A(z1)

1

−1 0 1 2 3 4
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Choose a conditional error function A( · ) ∈ [0,1], such that∫ ∞
−∞

A(z1)φ(z1) dz1 = α.

I For a chosen n2, set CP0(n2, c | z1) = A(z1) to find c(n2, z1).
This guarantees α-level procedure:

Type I error =

∫ ∞
−∞

CP0(n2, c | z1)φ(z1) dz1.

(Muller & Schafer, 2004)

I Set CPθ(n2, c(n2, z1) | z1) = 1− β1 to find n2(z1) to guarantee
conditional power of 1− β1 to detect θ. May use observed
treatment difference for θ.
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Li et al (2002):

I Let A(z1) has the form

A(z1) =

 0 z1 < h
CP0(n2, c|z1) h ≤ z1 < k
1 z1 ≥ k

I The overall type I error probability is

α = α1 +

∫ k

h
A(z1)φ(z1)dz1

= α1 +

∫ k

h

[
1− Φ(

c
√

n1 + n2 − z1
√

n1√
n2

)
]
φ(z1)dz1

I For given c, choose n2 = n2(z1, c) to have conditional power
CPθ(n2, c|z1) = 1− β1

I For given α1,h, k , choose c such that the above equation holds
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Power, expected sample size, and efficiency ratio (in parentheses and at p2 > p1) of
the tests of H0 : p2 ≤ p1.

Power, expected sample size, and efficiency ratio (in parentheses and at p2 > p1) of
the tests of H0 : p2 ≤ p1.

p1 p2 L PH ADAPT
0.20 0.15 0.7% 0.7% 0.3%

63.4 63.0 98.6
0.20 5.2% 5.2% 5.0%

75.8 74.5 158.2
0.30 53.0% 51.8% 81.8%

102.0 (89.7) 97.2 (90.8) 206.1 (100)
0.35 77.1% 76.2% 97.4%

95.3 (73.3) 90.7 (75.1) 160.5 (100)
0.25 0.20 0.8% 1.0% 0.4%

64.7 64.5 111.2
0.25 5.2% 5.1% 5.0%

77.3 75.8 171.2
0.35 48.3% 47.0% 79.2%

97.7 (90.5) 93.3 (91.9) 213.1 (100)
0.40 72.7% 71.7% 96.7%

94.1 (74.1) 89.7 (76.3) 170.3 (100)
0.30 0.25 0.9% 0.9% 0.4%

65.5 64.7 122.2
0.30 5.1% 5.0% 5.0%

75.1 73.7 177.0
0.40 45.3% 44.3% 76.6%

96.4 (92.7) 92.0 (95.1) 218.3 (100)
0.45 70.9% 69.9% 96.2%

96.1 (75.2) 91.4 (77.6) 176.9 (100)
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Conclusions

GLR statistics are efficient statistics for adaptation
I Comparable to the benchmark optimal adaptive test of Jennison

and Turnbull (2006a,b)
I The benchmark test needs to assume a specified alternative.
I Fulfills the seemingly disparate requirements of flexibility and

efficiency on a design.
I Rather than achieving exact optimality at a specified collection

of alternatives through dynamic programming, they achieve
asymptotic optimality over the entire range of alternatives,
resulting in near-optimality in practice.

Versatility of GLR tests
I Phase I-II and phase II-III trials
I Development and validation of biomarker-guided therapies
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Conclusions

Major drawback of conditional power approach to two-stage
adaptive designs is that the estimated alternative at the end of the
first stage can be quite different from the actual alternative; it may
even fall in H0 and mislead one to stop for futility, resulting in
substantial lose of power. The three-stage test makes use of M to
come up with an implied alternative and adjust for the uncertainty
in the parameter estimates. Moreover, we estimate the
second-stage sample size by using an approximation to
Hoeffding’s lower bound rather than the conditional power.
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Conclusions

This new approach to adaptive design is built on the foundation of
sequential testing theory. it can serve to bridge the gap between
the "efficiency camp" in the adaptive design estimation with the
"flexibility camp" that focuses on addressing the difficulty of
comping up with realistic alternative at the design stage. An
important innovation is that it uses the Markov property to
compute error probabilities when the fixed sample size is replaced
by a data-dependent sample size that is based on an estimated
alternative at the end of the first stage, like the "flexibility camp".
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