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@ Selected topics from a monograph (2012, Springer):
Sequential Experimentation in Clinical Trials: Design and Analysis
Bartroff, Lai and Shih

@ Outline:
1. Brief survey of adaptive design

2. Theory of sequential testing

* Fully sequential design
* Group sequential design

3. Aflexible and efficient approach to adaptive design
4. Comparative studies
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1. Brief Survey
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@ Sequential learning and adaptation

» To address statistical problems for which there are no solutions
with fixed sample size

* Example: testing a normal mean Hp : 1 = po with unknown
variance o2 (Dantzig, 1940)

* Stein (1945) showed that a two-stage procedure can have
power independent of o2
» Adaptive designs

* Use data during the course of a trial to learn about unknown
parameters and thereby modify the design

* Beyond nuisance parameters and sample size re-estimation
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@ Examples of adaptation:

Sample size re-estimation based on observed effect size
Drop arms, select dose

Change objective (eg, superiority vs. non-inferiority)
Choose primary endpoint

Enrich study population

Outcome-adaptive randomization

v

v

v

v

v

v
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nature publishing group

TRANSLATIONAL MEDICINE

I-SPY 2: An Adaptive Breast Cancer Trial Design
in the Setting of Neoadjuvant Chemotherapy

AD Barker!, CC Sigmanz, GJ Kelloff!, NM Hylton3, DA Berry4 and L] Esserman?

I-SPY 2 (investigation of serial studies to predict your
therapeutic response with imaging and molecular analysis 2)
is a process targeting the rapid, focused clinical development
of paired oncologic therapies and biomarkers. The framework
is an adaptive phase II clinical trial design in the neoadjuvant
setting for women with locally advanced breast cancer.
I-SPY 2isa collaborative effort among academic investigators,
the National Cancer Institute, the US Food and Drug
Administration, and the pharmaceutical and biotechnology
industries under the auspices of the Foundation for the
National Institutes of Health Biomarkers Consortium.

treatment options remain limited. These patients continue
to represent a disproportionately large fraction of those who
die of their disease. Given that the standard of care for these
women increasingly includes neoadjuvant therapy prior to sur-
gical resection, this combination of group and setting represents
a unique opportunity to learn how to tailor the treatment to
patients with high-risk breast cancers.

Cancer research from the past decade has shown that breast
cancer is a number of heterogeneous diseases; this finding sug-
gests that directing drugs to molecular pathways that charac-
terize the disease in subsets of patients will improve treatment

Barker et al (2009)
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For the assignment of drugs to patients, Bayesian methods
of adaptive randomization!® will be used to achieve a higher
probability of efficacy. Drugs that do well within a specific
molecular signature will be preferentially assigned within that
signature and will progress through the trial more rapidly. Each
drug’s Bayesian predictive probability!? of being successful in a
phase III confirmatory trial will be calculated for each possible
signature. Drugs will be dropped from the trial for reasons of
futility when this probability drops sufficiently low for all sig-
natures. Drugs will be graduated at an interim point, should
this probability reach a sufficient level for one or more signa-
tures. Drugs that have high Bayesian predictive probability of
being more effective than standard therapy will graduate along
with their corresponding biomarker signatures, allowing these
agent-biomarker(s) combinations to be tested in smaller phase
III trials. When the drug graduates, its predictive probability
will be provided to the company for all the signatures tested.
Depending on the patient accrual rate, new drugs can be added
at any time during the trial as other drugs are either dropped
or graduated.

Barker et al (2009)
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@ Most of the literature on adaptive designs focus on the prototypical
problem of testing a normal mean when the variance is known.

@ When variance is unknown , we need “internal pilot” to estimate
the variance.

@ Problem: Xy, Xz, ... ~ N(px,0?) and Yy, Yo, ... ~ N(py, 0?). Test
Ho : px = py vs. Ha @ pux # py
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Stein’s two-stage procedure: use first stage (internal pilot) to estimate
the variance

@ First stage: samples ng from each of the two normal populations
and computes the usual estimate s3 of o2
@ Second stage:
» Sample up to

2 282
n=noV |:(t2n0—2,a/2 + tny—2,4) 720

where at |ux — py| =4, 1 — S is the desired power level
» Reject Hj if

|Xn1 — Yn1|

> topy—2,a/2
\/2s3/m

@ Many modifications of Stein’s initial idea: different way to
re-estimate the total sample size based on s3
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Mid-Course Sample Size Re-Estimation

Re-estimate total sample size based on the data accumulate so far at
some interim

@ Suppose 0® =1/2,and § = pux — puy
@ n=original sample size
@ After rn observations, Sy = >, (X; — Y;),

n~128; ~ N(rov/n, r)

@ If change the second stage sample size to v(1 — r)n, and
So = Y il i1 (Xi — Vi), then given the first stage data,

(m)~"28, ~ N((1 = r)oy/An,1 1)
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Mid-Course Sample Size Re-Estimation

Under Hy : 8 = 0, Fisher’s (1998) test statistic

7281 +97128;) ~ N(0,1) (1)

@ Variance spending test: to ensure the variance r + (1 —r)

@ Jennison and Turnbull (2003): Fisher’s test perform poorly with
lower efficiency and power compared to group sequential tests.

@ The inefficiency is due to the non-sufficient “weighted” statistic (1)
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Mid-course modification of the maximum sample size

@ Raised by Cui, Hung, and Wang (1999)

@ Motivation example: observe at the interim that the drug achieved
a reduction that was only half of the target reduction assumed in
calculating maximum sample size M

@ Increased sample size to M

@ Allow the future group sizes to be increased of decreased at the
interim
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Optimal adaptive group sequential designs via
dynamic programming

Jennison and Turnbull (2006):

@ choose the jth group size and stopping boundary based on the
cumulative sample size n;_{ and sample sum Snj_1

@ Solve the problem numerically by backward induction algorithms

@ Optimality: minimize a weighted average of the expected sample
size subject to prescribed error probabilities

» Ex: (Eo(T) + Eo,(T) + E20,(T)) /3

@ Efficiency: non-adaptive group sequential tests with optimally
chosen first stage ~ optimal adaptive design (but more
complicated!)
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@ Trade-offs:
» Flexibility vs. efficiency:

* Tsiatis & Mehta (2003) showed that standard group sequential tests
based on the likelihood ratio statistic are uniformly more powerful
than certain adaptive designs, e.g., Cui et al (1999).

* Jennison & Turnbull (2003) gave a general weighted form of these
adaptive designs and demonstrated that they performed much worse
than group sequential tests.

* Jennison & Turnbull (2006a) introduced adaptive group sequential
tests that are optimal in the sense of minimizing a weighted average
of expected sample sizes over a collection of parameter values.

* Jennison & Turnbull (2006b) showed standard (non-adaptive) group
sequential tests with the first stage chosen optimally are nearly as
efficient.

» Complexity in study implementation and analysis
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2. Theory of Sequential Testing
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@ Sequential Analysis was born in response to demands for more

efficient testing of weapons during World War Il
@ Wald’s (1943) sequential probability ratio test (SPRT)

>

>

>

Suppose Xi, Xo, . .. "t
TestHy: f=fhyvs. Hy: f=H
Likelihood ratio R, = [T/ {fi(Xi)/lo(X)}

SPRT stops sampling at sample size
T=inf{n>1: Ry,>Bor R, <A}

Accepts Hy (or Hy) if Rr < A (or Ry > B).

Conjectured SPRT minimizes the expected sample size at
Hpy and H; among all tests satisfying type | and Il error rate
constraints

Wald’s approximations: A ~ log(72-), B ~ log(1=%)
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@ Wald & Wolfowitz (1948): Optimality of SPRT

» Minimizes both Eo(T) and E1(T) under error probability constraints
at Hy and H,

@ Issue:

> X1, Xo,. .. S fo, a one-parameter exponential family with natural
parameter 6.

> HQZGSG()VS. H1:9291(>00)

» The maximum expected sample size over 6 of SPRT can be
considerably larger than that of the optimal FSS test.
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@ Kiefer-Weiss (1957) problem:
» Minimize E,+(T) at a given 6*, subject to error probability
constraints at 6y and 6.
@ Hoeffding (1960):
» Gives a lower bound for Ey«( T) subject to error probability
constraints at 6y and 6.

@ Lorden (1976):
» An asymptotic solution to the Kiefer-Weiss problem is a 2-SPRT:

N=inf{n=1: H’;"* '>Aooer > A
90 91

» In the case of normal mean, it reduces to the triangular test of
Anderson (1960), which is close to the optimal boundary in Lai
(1973).
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@ Ideally 6* should be chosen to be true 6

@ Sequential generalized likelihood ratio (GLR) test:
» Replace 6* with 4, at stage n
» The test of Hy : 6 < 0y versus H; : 6 > 64 stops at

o0 = A

1

n
f, (
N = |nf{n>1 Hf >A(” or
90

= i=1

\n

s

» With Ay (n — A = 1/c, it is an asymptotic solution to the Bayes
problem of testing Hy versus Hy with 0-1 loss and cost ¢, as ¢ — 0
(Schwartz, 1962).
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@ Chernoff (1961, 1965) derived an approximation to the Bayes test
of Hy : 0 < 6y versus Hj : 6 > 6.

@ Lai (1988): One-parameter exponential family

n
N = |nf{n>1 max [H W i: , H; i: } cn)}’

where g(t) ~ logt~' as t — 0.
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@ In 1950’s, it was recognized that sequential hypothesis testing
might be useful in clinical trials (Armitage 1960).

@ Armitage, McPherson and Rowe (1969) introduced repeated
significance test (RST):

» Rationale: the strength of evidence is indicated by the results of a
conventional significance test

» For testing a normal mean . with known variance o2, the RST of
Hp : v = 0 has the form
T =inf{n < M:|S,| > bav/n},
rejecting Ho if T < Morif T = M and |Sy| > bov/'M, where
Sh=Xi+--- X,

» Developed a recursive numerical integration to compute overall
significance level.

@ Haybittle (1971) proposed a modification to increase power:
» Reject Hy if T < Morif T =M and |Sy| > cav/M, where b > c.
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@ Pocock (1977)

» In clinical trials, it is typically not feasible to arrange for continuous
examination of data

» Introduced a “group sequential” version of RST:
T =inf{n < M :|S,| > bov/n},

where X, is an approximately normally distributed statistic of data
of the nth group, and M is the maximum number of looks.

@ O’Brien and Fleming (1979)
» Proposed a constant stopping boundary

T =inf{n<M:|S,| > b}.

» Corresponds to the group sequential version of an SPRT
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Pocock (1977) O'Brien—-Fleming (1979)
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Pocock (1977) O'Brien-Fleming (1979)
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For a group sequential design:

Xi, Xz, ..., Xu indep. N(y,0?)
Wanttotest Hy: p=0vs. Hy : n#0
Let Sp= Xy + -+ Xp, Xo = Sp/n
(Sp — nu) NV no? ~ N(0, 1)

Suppose there are k looks, with equal group sizes m

Let n = im, M = km.
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@ Pocock (1977): Stop and reject Hy if
|Sn,| > bov/nj
@ O’Brien and Fleming (1979): Stop and reject Hy if
|Sn| > b

@ Wang and Tsiatis (1987): Stop and reject Hy if
i\o-2

> —

>ob (k) ,

» 5 =1/2:Pocock; 6 = 0 : O'Brien-Fleming

7
N

where 0 < § < 0.7
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For one-sided hypothesis H} : 11 < g

@ Want to stop not only when S, exceeds an upper boundary
(leading to rejection of Hy), but also when S, falls below a lower
boundary (suggesting “futility”)

@ Futility boundary can be determined by considering an alternative
M1 > o
@ Without loss of generality, assume po = —pq

@ Power family and triangular tests
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@ Power family
» Emerson and Fleming (1989), Pampallona and Tsiatis (1994)
» Stop sampling at look i < k — 1 if

Sp, + pu1ni > bio, rejecting Ho,
or S, — pn; < ajo, accepting Hp.
» |f stopping does not occur before look k,
reject Hp if S, + p1nk > byo.
» The boundaries have the form
bi=c(6)i°m'/2,  a; = {2i61 /o — ca(8)i°} m"/2,

where 0 < 4§ < 1/2.
(6 = 0: O’'Brien-Fleming; 6 = 1/2: Pocock)
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@ Triangular tests
Whitehead and Stratton (1983)

Stop atlook i < k — 1if |Sp,| > bjo, where

b = <i> log <l> _0.583m'/2 — k1
141 2c 20

If stopping does not occur before look k,

v

v

v

reject Hp if S, > 0.

v

This is a special case of Lorden’s (1976) 2-SPRT.
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The Lan-DeMets (1983) error spending approach

@ In practice group sizes are usually unknown in advance and uneven

@ Key observation: (S,/vo2M, 1 < n < M) has the same distribution
as (B, te {1/M,...,1}).

@ Given any stopping rule 7 associated with a sequential test of the drift
of a continuous Brownian motion, one can obtain a corresponding
stopping rule for mean of X;.

@ Letn(t)=Po(r <t)fort<1.

@ Given an error spending function 7(t), one can transform it to stopping
boundaries for S, via

Po {|Sn| > an, |Sn| < an for 1 <j<i} =n(ni/M)—x(ni_1/M)

for1 <i<k-—1.
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@ Some examples:
m(t) = min{2 - 2®(z,/2/V1),a} O'Brien-Fleming
m(t) = min{alog[1+ (e —1)t],a} Pocock
w(f) = amin{t’;1},p>0

0.04
I

Pocock

Alpha

0.01
I

0.00
I

T
0.0 02 0.4 06 0.8 1.0

Information fraction
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Group sequential GLR tests with modified Haybittle-Peto
boundaries

@ First consider a one-parameter exponential family
fy(x) = exp (0x — 1 (0))

@ Test Hy : 6 < 6y at significance level «
@ No more than M observations

@ Consider group sequential tests with k analyses and group sizes
Mn,No—ny,...,Nk— Nk_q1 (Where ng = M)

@ Let Sp=Xi + -+ Xy, Xp=Sp/n
@ The Kullback-Leibler information number is

I(v,0) = E; [log {£,(X))/fs(Xi)}] = (v — 0)'(6) — {v(v) — ¥(6)} -
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@ Fixed sample size (FSS) test that rejects Hy if Sy > ¢, has maximal
power at any alternative 6 > 6,.

@ Ideally, want group sequential tests to
» allow early stopping
» attain nearly minimal expected sample size

» have small loss in power compared to FSS test

@ Let §(M)= “implied” alternative by M at which the FSS test with M
observations has power 1 — &
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Group sequential GLR test of Hy : 6 < 69, with modified Haybittle-Peto
boundary, proceeds as follows:

@ Atthe ith interim analysis with1 </ < k —1,

> By, = (¢')""(Xp,) = MLE of 6 based on X, ..., X,

i

» Stop the trial at ith analysis if
0n > 00 and nil(0,,60) > b (rejecting Hp),
or 0, < (M) and n;l(d,,0(M)) > b (accepting Hp).
@ If stopping does not occur before kth analysis,

reject Hp if S, > c.
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@ The thresholds b, b, ¢ are chosen such that
> Py, (test rejects Hp) = o

» Pym)(test rejects Hp) does not differ much from the power
1 — g of the FSS test at 6(M).
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@ Choose 0 < ¢ < } and define b by

Pocu) {én, < O(M) and n;/ (én,, H(M)) > bforsome 1 <i<k— 1} = 8.

@ After determining b, define b and then c by
k—1

Z Pgo {énj > 6y and n;/ (é,,/.,eo) > b, nil (éni,eo) 1{én,>90} < band

=1
nil (@n,ﬁ(M)) 106, <omyy < bfori <j} = ea,

Py, {S,,k >c, nil (9,,,.,00> 104, >0, < band
il (én,,O(M)) 160 <oy < Dfori < k} =(1—-ea.

Tze Leung Lai (NY) Group Sequential Trials October 18, 2011 36 /64



@ For X; % N(0,1),
> 1(0,)) = (0 — \)?/2

> nil(0,,0) = nX2/2 = S2/(2n;)

@ Totest Hp : 6 = 0, Haybittle (1971) and Peto et al (1976) proposed
» for1 <i< k-1, stop&reject Hyif|S,|/v/ni>3
» fori =Kk, reject Hp if |Sp,|/v/Nk > €

@ The above group sequential GLR test is in spirit similar
» called “modified Haybittle-Peto” test
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Group sequential GLR test of Hy : 6 < 69, with modified Haybittle-Peto
boundary, proceeds as follows:

@ Atthe ith interim analysis with1 </ < k —1,

> By, = (¢')""(Xp,) = MLE of 6 based on X, ..., X,

i

» Stop the trial at ith analysis if
0n > 00 and nil(0,,60) > b (rejecting Hp),
or 0, < (M) and n;l(d,,0(M)) > b (accepting Hp).
@ If stopping does not occur before kth analysis,

reject Hp if S, > c.
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Two-sided tests without futility boundaries

@ At the ith interim analysis with 1 < i < k — 1, stop the trial if
nil(6,,,600) > b (rejecting Hp).
@ If stopping does not occur before kth analysis,

reject Hy if nkl(f,,,00) > c.
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Two-sided tests with futility boundaries

@ At the ith interim analysis with 1 < < k — 1, stop the trial if
nil(0n,,00) > b (rejecting Hp),
or
nil(0n,,00) < b and {n,l(én,,e_(M)) >b_ or nil(fn,0.(M)) > 5+}
(accepting Hp).
@ If stopping does not occur before kth analysis,

reject Hy if ngl(6y,,60) > c.
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The modified Haybittle-Peto test
@ Uses more flexible boundary b, b, ¢

@ Generalizes to exponential families
> n;l(8,, )) =GLR statistic for testing 6 = A
» Uses efficient statistics for the null and alternative
» Applies to multi-armed and multi-parameter problems
> for testing u(¢) = uo, GLR statistic is infy(g)—y, Ni/(0n;, 0)

@ Related to the Kiefer-Weiss problem for fully sequential tests

» Attains the asymptotically minimal value of the expected sample
size at every fixed 6, and has power at (M) comparable to its
upper bound 1 — .
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Theory: Lai & Shih (2004 Biometrika)
Appendix A of Bartroff, Lai & Shih

Theorem A.1. Suppose the possible values of T are ny < --- < ny, such that
liminf(n; —n;—1)/|log(ct+ B)] > 0 (A.14)

as a+ B — 0, where o and B are the type I and type I error probabilities of the
test at Oy and 8. Let mg g(8) = min{|loga|/1(6,60),|log B|/1(8,61)}. Let e,
be positive numbers such that €, 5 — 0 as ot + B — 0, and let v be the smallest
J(L k) such that nj > (1 — €y g)mg g(0), defining v to be k if no such j exists. Then
for fixed 0,6y and 6, > 0y, as oo+ 3 — 0,

Py(T >ny) — 1;

If furthermore v < k, |mq g (0) 7nv\/mllx/z(9) — 0and

ma,ﬁ(e)
max {|log | /1(6, 69), [logB|/1(6,61)}

then Po(T > ny41) > % +o(1).

limsup <1, (A.15)
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Theorem A.2. Let 6y < 0* < 0y be such that I(0*,60) =1(6*,6;). Let oo+ — 0
such that log o ~ log 3.

(i) The sample size n* of the Neyman—Pearson test of 0y versus 0; with error
probabilities o and B satisfies n* ~ |loga|/I1(6*,6p).

(ii) For L > 1, let Fy g be the class of stopping times associated with group
sequential tests with error probabilities not exceeding o and 3 at 6y and 6,
and with k groups and prespecified group sizes such that (A.14) holds and
ny =n*+L. Then, for given 0 and L, there exists T € Ty g 1 that stops sampling

when
6 —60)S,, —ni {w(0) — ()} >b
(6 —60)Sy;, —ni{w(0) —w(6)} > ) (A16)
or (0—61)Sy, —ni{y(6)—y(6))} =b
for 1 <i<k—1,withb~ |loga| ~ b, and such that
Eo(T)~ inf Eg(T)~ny+p(0)(ny+1—ny), (A.17)

Te?a,,“

where v and mq, g (8) are defined in Theorem A.1 and 0 < p(8) < 1.

Theorem A.3. Let a+ 3 — 0 such that log o, ~ log 8. Suppose that the k group sizes
satisfy (A.14) with ny = M ~ |loga|/1(0*,60), where 8y < 6* < 6(M) is defined
by 1(6*,60) =1(6*,0(M)).
(i) For every fixed 0, Eg(%) ~ ny + p(0)(ny+1 —ny), where v and p(0) are the
same as in Theorem A.2 with 6, = 6(M).
(ii) pooay = 1 = B — (ke +0(1)) B, where ke ~ {14 (8(M) —6%) /(6" — 6p) }€ as
€—0.
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@ Numerical example:

\4

Test Hp : p1 = p2 in a randomized two-armed trial
k=5 M=100

The sample size nj for the two treatments can be different at
the jth analysis

v

v

v

The group size n; = nyj 4 ny; can vary over j
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Power (%) and expected sample size (in parentheses) of two-sided group sequential
tests of Hp : p» — p1 = 0 without futility boundaries.

P2 — p1
0 0.15 0.2 0.24 0.27 0.30

(a) Equal group sizes, adaptive treatment allocation
o 6.1 (99.0) 34.4(93.7) 52.2(89.6) 69.0(84.2) 78.1(80.0) 85.5(75.6)
aj 7.1(97.3) 29.2(90.1) 45.9(83.4) 59.4(77.4) 68.6(73.3) 78.5(66.0)
ModHP 55(98.9) 36.1(93.1) 55.9(89.0) 69.6(83.7) 79.4(78.6) 86.2(74.1)

(b) Unequal group sizes, even treatment allocation
o 5.0(99.4) 36.8(94.0) 59.0(89.0) 72.6(84.8) 81.3(80.7) 87.2(76.9)
aj 7.2(97.3) 33.3(88.9) 51.0(81.3) 64.7(76.1) 76.7(70.6) 82.8(65.7)
ModHP 5.3(98.7) 38.2(93.0) 58.1(88.0) 72.9(82.5) 80.9(77.7) 88.4(72.5)

(c) Unequal group sizes, adaptive treatment allocation

o (99 3) 35.3(94.2) 55.0(89.7) 70.6(85.0) 79.1(81.5) 86.2(77.5)
aj 9(97.1) 27.9(90.6) 45.1(84.4) 59.8(77.6) 69.5(73.7) 78.9(67.9)
ModHP 6(98.6) 35.2(93.0) 55.3(87.9) 68.5(84.0) 77.8(78.8) 86.7(74.1)
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@ The thresholds b, b, ¢ can be calculated via recursive numerical
integration.

@ Consider the prototype model X; ~ N(6,1):
> T = min{i <Kk: Sn,- ¢ (a;,b;)} ANk
» Let fi(x) = (d/dx)Pg{r > i, Sp, < x}
» Then fi(x) = ¢((x — 0)//m) for a1 < x < by

» Fori>1anda < x < bj,

00— [ b ()6 (X Y B - ”"‘)) d.

Vi — Ni—4
» Moreover,
bi_
, - aiy9(nin/—1)>
P(r=1i) = fi— o
e=n= [ ) {e (220
b,-—y—&(n,-—n,-_1)>}
+1-0 dy.
( N g
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@ A major reason why a normal random walk is used as a prototypical
case is that the multivariate distribution of many group sequential test
statistics has a limiting normal distribution with independent
increments.

» Jennison & Turnbull (1999), Scharfstein & Tsiatis (1997): all
sequentially computed Wald statistics based on efficient estimates
of the parameter of interest have the above asymptotic distribution.

» The signed root likelihood ratio statistic

W; = sign(u(d,,) — to) v/2niN;,
in which the GLR statistic A; is
N = n; {é;l)_(n/ - (én,)} — (Segjp n; {HT)_(m — w(&)}
ul =Up

- gt ()

is approximately normal with mean 0 and variance n; under
Ho : u(f) = up, and that the increments W, — W,_y are
approximately independent under Hg.
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3. An efficient approach to adaptive designs
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Efficient adaptive designs and GLR tests

@ Bartroff & Lai (2008a):
» Efficient tests with at most 3 stages
» Consider a one-parameter exponential family

fo(x) = exp (6x —(0))
» Want to test Hy : 6 < 6, with no more than M observations
» Group sizes:
— Stage1: ny=m
— Stage 2: n, = mV {M/\ [(1 + pm)N (9,”)1 } with
n(0) = min {|log | / /(0. 60). | log &I /1(6, 61)}
— Stage 3 (ifno < M): ng =M
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Rejection and futility boundaries are similar to Lai & Shih (2004).

@ Stop at stage i < 2 and reject Hy if

n < M, 5,,, > 6, and n;l(@n,,eo) > b.
@ Stop at stage i < 2 and accept Hj if

ni <M, 5,,, <6y, and n,-l(§,,,.,61) > b.
@ Reject Hy at stage i =2 or 3 if

nj=M, §M > 6y, and MI(§M,90) > c,

accepting Hy otherwise.
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@ The original idea to use

ne = mv {MA[(1+ pm)n (8n) |}

as the second-stage sample size and to allow the possibility of a third
stage to account for uncertainty in the estimate 6, (and hence ny) is
due to Lorden (1983).

@ It can be shown that the three-stage test is asymptotically optimal:
If N is the sample size of the three-stage test above, then

llogal
)~ v W 0 )

asa+a—0,loga ~loga, pm — 0 and pm\/m/logm — oo; and if

T is the sample size of any test of Hy : 6 < 6y whose error

probabilities at 6, and 01 do not exceed o and &, respectively, then
Eo(T) > (14 0(1))Es(N)

simultaneously for all 6.
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@ Bartroff & Lai (2008b):

» Allow the possibility of increasing the maximum sample size
from M to M

» Efficient tests with at most 4 stages
» Group sizes:
— Stage1: ny=m

— Stage2: m=myv {MA {(1 + pm)n (émﬂ}
— Stage3: m=n v {M’ A [(1 + pm)n (9,,2ﬂ} with
n(#) = min {|log |/ /(6. 6o), |log &| /10, 62) }

— Stage 4 (ifns < M): ny =M

Tze Leung Lai (NY) Group Sequential Trials October 18, 2011 52/64



4. Comparative Studies

o = = = = 9Dac
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Example: Randomized phase Il cancer trial

@ Thall & Simon (1994):

» Phase Il trial for treatment of AML

» Control (standard): fludarabine + ara-C
Experimental: fludarabine + ara-C + G-CSF

» From prior data, control response rate py ~ 0.5
» Interested in improvement of p1 — pg = 0.2

@ a=0.05a=0.2
em=25 M=78
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@ Thall et al (1988)

» Ho: p1 < povs. Hi:p1 > po

Z; = approx. normally distributed test statistic at the end of
stagei(i=1,2)

At stage 1, stop for futility if Z; < yq; otherwise continue

v

v

v

At stage 2, reject Hy if Zo > y»
Choose ny, no, yy, y» to minimize

v

1
AVSS = ;[ E(N | py = po) + E(N | pr = po + 9)]

subject to type | and type Il error probability constraints.
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Expected sample size, power (in parentheses), expected number of stages (in
brackets) and average expected sample size (AvSS).

q p ADAPT Opt2

4 3 333 (04%) [L.1] 378 (0.2%) [L.1]
4 461 (53%) [15] 489 (5.3%) [14]
5 57.5 (32.3%) [1.8] 63.3 (35.6%) [1.7]
.6 56.4  (76.0%) [1.8] 73.5  (78.9%) [1.9]
7 43.8 (97.0%) [L.5] 773 (97.7%) [2.0]

AvS 51.3 61.2

54 347 (04%) [L.2] 382 (0.2%) [L.1]
5 473 (5.0%) [L.5] 49.0  (5.6%) [1.4]
.6 57.5 (32.2%) [1.8] 63.3 (35.5%) [L.7]
7 55.1 (77.8%) [1.8] 73.7 (80.4%) [1.9]
.8 41.0 (97.6%) [1.4] 775 (98.2%) [2.0]

AvSS 51.2 61.4

6 5 347 (04%) [12] 382 (0.2%) [L1]
6 46.0 (5.2%) [L.5] 489 (5.3%) [14]
7 55.8  (33.2%) [1.7] 63.3 (35.6%) [L.7]
8 52.3  (81.1%) [1.7] 744 (84.2%) [1.9]
9 35.9 (98.5%) [1.3] 778 (99.4%) [2.0]

AvSS 49.2 61.7
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@ Proschan & Hunsberger (1995):

» For testing two normal means

» Two-stage design: uses information about the treatment
difference from the first stage to determine the number of

additional observations needed and the critical value to use
at the end of the study.

» Conditional power/error:

CPy = Py(reject Hy | test statistic at first stage)
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@ Choose a conditional error function A(-) € [0, 1], such that

/_oo A(Z1)¢)(Z1)d21 = Q.

A(z1)

z1
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@ Choose a conditional error function A(-) € [0, 1], such that
/ Az1) 6(z1) dzt = a.
» For a chosen ny, set CPy(n., c|z1) = A(z) to find ¢(n2, z1).
This guarantees a-level procedure:
Type | error = / CPo(na,c| z1) ¢(z1) dzy.

(Muller & Schafer, 2004)

» Set CPy(nz,c(n2, z1) | z1) =1 — B4 to find na(z;) to guarantee
conditional power of 1 — 31 to detect 6. May use observed
treatment difference for 6.

Tze Leung Lai (NY) Group Sequential Trials October 18, 2011 59/64



@ Li et al (2002):
» Let A(zy) has the form

0 zZ1 < h
A(z1) =< CPo(mo,clzi) h<zi <k
1 Z4 > k

» The overall type | error probability is

k
a = Oé1+/h A(Z1)¢(Z1)d21
k
— et [ [1 - o( BT B oz

» For given ¢, choose n, = ny(zy, ¢) to have conditional power
CPy(nz,clz1) =1 — B

» For given a4, h, k, choose ¢ such that the above equation holds
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Power, expected sample size, and efficiency ratio (in parentheses and at p. > py) of

the tests of Hy : p2 < py.

o p L PH ADAPT
020 015 0.7% 0.7% 0.3%
63.4 63.0 98.6
020 52% 5.2% 5.0%
75.8 745 158.2
0.30 53.0% 51.8% 81.8%
102.0 (89.7) 97.2(90.8) 206.1 (100)
035 77.1% 76.2% 97.4%
95.3(73.3)  90.7 (75.1) 160.5 (100)
025 020 08% 1.0% 0.4%
64.7 64.5 111.2
025 5.2% 5.1% 5.0%
77.3 75.8 171.2
035 48.3% 47.0% 79.2%
97.7(90.5)  93.3(91.9) 213.1(100)
040 72.7% 71.7% 96.7%
94.1(74.1)  89.7(76.3) 170.3 (100)
030 025 09% 0.9% 0.4%
65.5 64.7 122.2
030 5.1% 5.0% 5.0%
75.1 73.7 177.0
0.40 45.3% 44.3% 76.6%
96.4(92.7)  92.0(95.1) 218.3 (100)
045 70.9% 69.9% 96.2%
96.1(752) 91.4(77.6) 176.9 (100)
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Conclusions

@ GLR statistics are efficient statistics for adaptation

» Comparable to the benchmark optimal adaptive test of Jennison
and Turnbull (2006a,b)

» The benchmark test needs to assume a specified alternative.

» Fulfills the seemingly disparate requirements of flexibility and
efficiency on a design.

» Rather than achieving exact optimality at a specified collection
of alternatives through dynamic programming, they achieve
asymptotic optimality over the entire range of alternatives,
resulting in near-optimality in practice.

@ Versatility of GLR tests

» Phase I-1l and phase II-1ll trials
» Development and validation of biomarker-guided therapies
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Conclusions

@ Major drawback of conditional power approach to two-stage
adaptive designs is that the estimated alternative at the end of the
first stage can be quite different from the actual alternative; it may
even fall in Hy and mislead one to stop for futility, resulting in
substantial lose of power. The three-stage test makes use of M to
come up with an implied alternative and adjust for the uncertainty
in the parameter estimates. Moreover, we estimate the
second-stage sample size by using an approximation to
Hoeffding’s lower bound rather than the conditional power.
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Conclusions

@ This new approach to adaptive design is built on the foundation of
sequential testing theory. it can serve to bridge the gap between
the "efficiency camp" in the adaptive design estimation with the
"flexibility camp" that focuses on addressing the difficulty of
comping up with realistic alternative at the design stage. An
important innovation is that it uses the Markov property to
compute error probabilities when the fixed sample size is replaced
by a data-dependent sample size that is based on an estimated
alternative at the end of the first stage, like the "flexibility camp".
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