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Survival analysis

I Clinical trials

I Epidemiological cohort studies

I Sociology (event history analysis)

I Microeconomics (unemployment duration)

I Marketing (product growth, brand switching)

I Finance (default probability, rating)

I Ecology (capture-recapture)

I Software engineering and reliability

I Education testing (response time analysis for speed test or
mixed speed-power)



Survival Data

I Usual statistical problems are about effects of X on Y .

I Modeling and analysis largely depend on Y .

I Y continuous: linear model, least squares and t test.

I Y binary: logistic, probit.



Survival Data

I Survival data: (T̃ ,∆), T̃ = min{T ,C} and ∆ = I (T ≤ C ).

I Outcome variables: T̃ -continuous, ∆-binary.

I Two approaches:

I (1) Accelerated failure time (AFT) model: extending the
linear model (continuous)

I (2) Mantel-Haenszel: conversion to binary outcomes.



Counting process/martingale

A revolutionary development is the counting process approach to
censored data, implicitly used by N. Mantel (1958) and D.R. Cox
(1972), and formalized by O. Aalen (1978).



Counting process

I Let Ti be the failure time for individual i .

I Observing random variable Ti is tantamount to observing
entire counting process Ni (t) = I (Ti ≤ t), t ≥ 0.

I Difference # 1: Ti is continuous but Ni binary.

I Difference # 2: 0-1 information accumulation vs. continuous
accumulation.



Compensator and martingale

I Let {Ft = σ(Ni (s), s ≤ t), t ≥ 0, i = 1, . . . , n} be the σ
filtration, representing information accumulation.

I We have P(dN(t) = 1|Ft−) = I (T ≥ t)λ(t)dt, where λ is
the hazard function of T .

I dN(t)-observed vs. λ(t)-expected.

I Doob-Meyer: M(t) = N(t)−
∫ t
0 I (T ≥ s)λ(s)ds is martingale

wrt to F .

I Modeling and inference about population reduce to those
about λ.



Censoring

I T -survival time, C -censoring time (omitting i)

I Observe T̃ = T ∧ C and ∆ = I (T ≤ C )

I Conversion to counting processes: N(t) = ∆I (T̃ ≤ t) and
Y (t) = I (T̃ ≥ t), t ≥ 0.

I Note that N(t) = I (T̃ ≤ t ∧ C ), which is I (T ≤ t) being
stopped at C .

I M(t) = N(t)−
∫ t
0 Y (s)λ(s)ds is now the original martingale

(for uncensored data) stopped at C .

I Noninformative censoring: C is a stopping time.



Cox Model

For regression analysis (with covariates Z ), the Cox model specifies
the Z -specific hazard function

λ(t|Z ) = eβZλ0(t)

I Two-sample comparison: Z = 0 for control and Z = 1 for
treatment.

I Control: λ0(t)

I Treatment: λ1(t) = eβλ0(t), where eβ is known as the
relative risk.



Partial Likelihood

Analysis of the Cox regression can be made through the partial
likelihood approach. Specifically, by maximizing the partial
likelihood function, one can estimate the regression parameter β.
In addition, one can differentiate the log-partial likelihood function
to get a score test statistic for H0 : β = β0. Suppose we have
simultaneous entry and the current time is t.



Partial Likelihood Score

I Score function for data up to time t:

U(β, t) =
n∑

i=1

∫ t

0

(
Zi −

∑
j Zje

βZjYj(s)∑
j e
βZjYj(s)

)
dNi (s)

I It can be written as a martingale integral (wrt a predictable
process):

U(β, t) =
n∑

i=1

∫ t

0

(
Zi −

∑
j Zje

βZjYj(s)∑
j e
βZjYj(s)

)
dMi (s)

where dMi (s) = dNi (s)− Yi (s)eβZiλ0(s)ds-“martingale
difference”.



Two-sample Log-rank Test
I For testing β = 0 or λ1 = λ0,

U(t) = U(0, t) =
n∑
i

∫ t

0

(
Zi −

∑
j ZjYj(s)∑
j Yj(s)

)
dNi (s)

=
∑

i :T̃i≤t

∆i

(
Zi −

# at risk in treatment group at Ti

total # at risk at Ti

)
I Information at t ≈ variance ≈ predictable variation at t

〈U〉t =
n∑

i=1

∫ t

0

(
Zi −

∑
j ZjYj(s)∑
j Yj(s)

)2

Yi (s)λ0(s)ds

≈
∑

i :T̃i≤t

∆i

(
Zi −

# at risk in treatment group at Ti

total # at risk at Ti

)2



Two-sample Log-rank Test

I Information at t:

〈U〉t ≈
∑

i :T̃i≤t

∆i

(
Zi −

# at risk in treatment group at Ti

total # at risk at Ti

)2

I For randomized balanced design, under the null of no
treatment difference, the information at t becomes

I (t) ≈ 1

4
× number of events up to t



Simultaneous entry with interim analyses

I Basic fact: a continuous sample path (locally square
integrable) martingale W can be expressed as time re-scaled
Brownian motion:

W (t) = B(〈W 〉t)

I Therefore, for U(t), we have

U(t) ≈ B(I (t))

and sequential boundaries for the Brownian motion can be
applied with information (number of events) as the new clock.

I The test is valid (α-level protected) without the Cox model
assumption, but power (sample size) calculation does require
the assumption.



Covariate Adjustment

I Suppose, in addition to treatment Z , we also have baseline
covariates X .

I Assume the Cox model

λ(t|Z ,X ) = eβZ+γXλ0(t).

I Score test for β = 0 is the score for β with γ replaced by its
estimator γ̂(0).



Covariate Adjustment

I Score for testing β = 0 at t:

n∑
i=1

∫ t

0

(
Zi −

∑
j Zje

γXjYj(s)∑
j e
γXjYj(s)

)
dNi (s)



Covariate Adjustment

I Information (for testing β = 0) at t:

Iββ(t)− Iβ,γ(t)I−1
γ,γ(t)Iγ,β(t)

I Here Iβ,γ(t) =

n∑
i=1

∫ t

0

(
Zi −

∑
j Zje

γXjYj(s)∑
j e
γXjYj(s)

)(
Xi −

∑
j Xje

γXjYj(s)∑
j e
γXjYj(s)

)
dNi (s)

which is approximation 0 (divided by n), since Z is
independent of X , N and Y .



Covariate Adjustment

I Also

Iββ(t) =
n∑

i=1

∫ t

0

(
Zi −

∑
j Zje

γXjYj(s)∑
j e
γXjYj(s)

)2

dNi (s)

which is approximately 4−1×#{events up to t}.
I Therefore, information at t is again 4−1×#{events up to t},

same as without covariate adjustment (no efficiency
improvement!).

I TO ADJUST OR NOT TO ADJUST?



Covariate Adjustment

I If non-trivial Cox model is true, then the marginal hazard ratio
is NOT proportional.

I Both adjusted and unadjusted log-rank test statistics are
unbiased (0-mean) due to randomization.

I If the independence assumption between T and C
(non-informative censorship) is violated, but the conditional
independence given X holds, then the adjusted log-rank is still
ok.



Covariate Adjustment

I Adjusted log-rank is at least as powerful as the unadjusted
log-rank.

I If Cox model specification on X is not correct, then standard
variance estimation may not be correct for the adjusted, but
ok for the unadjusted.

I More complicated if censoring depends on treatment.



Staggered Entry Survival Data

In reality, the Ui , patients entry times, are different. At the
(calendar) time of analysis, one can write down the partial
likelihood score (log-rank statistic) for the survival experience.

I Analysis at (calendar) time t

I Ti censored by Ci and (t − Ui )
+

I In other words, Ci (t) = Ci ∧ (t − Ui )
+ are the effective

censoring times.

I Define N(t, s) = I (T ≤ s ∧ Ci (t))

I M(t, ds) ≡ N(t, ds)− I (T ∧ Ci (t) ≥ s)λ(s)ds is martingale
difference in s ∈ [0, t] wrt (t-specific) σ-filtration Ft,s ,
0 ≤ s ≤ t.



Survival time 

Censoring 

Failure 

Observations under survival time 

Entry time 



Calendar time 

Censoring 

Failure 

Entry time 

Observations under calendar time and entry time 



Sellke and Siegmund (1983, Biometrika)

I The partial likelihood score is NOT a martingale, even though
the full likelihood is (has to be).

I In technical terms,

n∑
i=1

∫ t

0
[Zi − Z̄ (t, s)]Ni (t, ds), t ≥ 0

is not a martingale. Here

Z̄ (t, s) ≡
∑

j ZjYj(t, s)∑
j Yj(t, s)

is the # at risk at survival time s from available data at
calendar time t.



Sellke and Siegmund (1983, Biometrika)

I However, at the diagonal s = t,

M(t, t) ≡ N(t, t)− A(t, t))

is a martingale.

I Sellke and Siegmund (1983) showed that if Z̄ (t, s) converges
to a limit z(s) (large t) that does not depend on t, then the
partial likelihood score U(t, t) is approximated by a time
re-scaled Brownian motion.

I Assumption of Z̄ (t, s)→ z(s): (1) large t vs. large n; (2)
dependence between entry time of treatment allocation.



Sellke and Siegmund (1983)

I Technical reason for the partial likelihood score not being a
martingale is the term Z̄ (t, s), which is not predictable.

I Their approach is to approximate Z̄ (t, s) by its limit z̄(s) and
to show that the partial likelihood score process is
asymptotically equivalent to, uniformly in t,

n∑
i=1

∫ t

0
[Zi − z̄(s)]Mi (t, ds).



Gu and Lai (1983, Annals)

I Consider both survival and calendar times (s, t), i.e.,

U(t, s) =
n∑

i=1

∫ s

0
[Zi − Z̄ (t, u)]Ni (t, du)

I Show weak convergence to a Gaussian random field.

I Useful for the weighted log-rank statistics (such as the
Wilcoxon):

UW (t, t) =

∫ t

0
W (s)U(t, ds)

where W is a weight function.



Gu and Lai (1983, Annals)

I Exponential inequalities to obtain justification.

I Empirical process theory can be used to provide a general
theory (Bilias, Gu and Y., 1997)



Gu and Lai (1983), Bialis et al. (1997)

I The empirical process theory requires i.i.d. sampling
assumption.

I Such an assumption may be violated in adaptive designs.

I Not as elegant as the martingale approach, which is natural in
terms of information accumulation and likelihood paradigm.



Adaptive Designs

I Sample size re-estimation: sample size may be adjusted
through conditional power analysis, or other considerations.

I Covariate-adjusted allocation schemes: to balance treatment
allocations in subgroups.

I Outcome-dependent treatment allocation schemes: for ethical
and other considerations.



Sample Size Re-estimation

If a re-estimation scheme is used, then log-rank statistic needs to
be modified accordingly.



Covariate-adjusted Allocations (“individualized medicine”)

I Covariate-adjusted allocation scheme to balance treatment
allocations in subgroups.

I Adjusted analysis vs. unadjusted analysis.

I Perspectives of (1) FDA regulation, (2) statistical validity, (3)
robustness when assumptions are violated.



Calendar time vs. survival time: 2-dim random field

I Joint analysis of calendar and survival times

I Normally, we would consider primarily along the survival time.

I Under an outcome dependent adaptive design, there may
NOT be a martingale structure.

I Empirical process theory may not be applicable either, at least
directly, since observations are not independent.



Survival time 

Censoring 

Failure 

Survival time 

Censoring 

Failure 

Left: observations up to calendar time t1.       Right: observations up to calendar time t2. 

Calendar time t1 
Calendar time t2 



Calendar time 

Censoring 
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t1 t2 

Observations under calendar time and entry time 
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Observations under calendar time and entry time 
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Calendar time vs. entry time: 2-dim random field

I Simultaneous consideration of calendar and entry times

I Asymptotic independent increments along both calendar time
and entry time.

I Such independent increments structure continue to hold under
adaptive designs.

I Martingale inequalities may be applied to obtain a large
sample theory.



Extensions to Transformation Models

I Class of transformation models

H(T ) = βZ + γX + ε

H-unknown monotone function, ε-completely specified
distribution.

I ε ∼ extreme value: Cox model.

I ε ∼ logistic: proportional odds model.

I ε ∼ normal: extension of Box-Cox.



Extensions to Transformation Models

I Profile likelihood approach (Zeng and Lin, 2007)

I Sequentially calculated score from the time-sequential profile
likelihood function

I Still has (asymptotically) independent increments.

I Brownian approximation.

I Theory ?



Conclusions

I Survival endpoints are common in long-term clinical trials in
which sequential methods are very relevant.

I Counting process formulation is natural for sequential analysis.

I Martingale structure implies time-sequentially calculated score
has (asymptotically) independent increments, leading towards
Brownian approximation and standard group sequential
boundaries.

I Adaptive designs (covariate adjusted, outcome dependent
etc.) pose some technical challenges for theoretical
developments.

I Consider calendar and entry times simultaneously.

I Violation of independent censoring needs to be studiesd.

I Extensions to alternatives to the Cox model.



Thank You!


