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Abstract

This paper studies the least squares estimator (LSE) of the multiple-regime
threshold autoregressive model and establishes its large sample theory. It is
shown that the LSE is strongly consistent. When the autoregressive function
is discontinuous, the estimated thresholds are n-consistent and asymptoti-
cally independent, each of which converges weakly to the smallest minimizer
of a one-dimensional two-sided compound Poisson process. The remain-
ing parameters are

√
n-consistent and asymptotically normal. A simulation

method is proposed to implement the limiting distributions of the estimated
thresholds. Simulation studies are conducted to assess the performance of
the LSE in finite samples. The results are illustrated with an application to
the quarterly U.S. real GNP data over the period 1947-2009.
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1. Introduction

The threshold autoregressive (TAR) model, proposed by Tong (1978),
is one of the mature nonlinear time series models in the literature. It has
attracted considerable attention and has been widely used in diverse areas,
including biological sciences, econometrics, environmental sciences, finance,
hydrology, physics, population dynamics, and among others. The TAR model
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is capable of producing and modeling many nonlinear phenomena such as am-
plitude dependent frequencies, asymmetric limit cycle, chaos, harmonic dis-
tortion, jump resonance and so on. A very all-sided survey on TAR models
is available in Tong (1990) and a selective survey of the history of threshold
models is given by Tong (2010). In comparison with many other nonlinear
time series models, the success of TAR models is partially due to the fact
that it may typically produce a simple and easy-to-handle approximation to
complicate dynamic functions, perhaps more importantly, it can offer a rea-
sonable model-interpretation. The numerous applied econometrics literature
has also witnessed a growing interest in TAR models. For example, Koop
and Potter (1999) used a three-regime TAR model to capture the nonlinear-
ity in the U.S. unemployment rate of the period 1959–1996, and Tiao and
Tsay (1994) constructed a four-regime TAR model to fit the quarterly U.S.
real GNP data from February 1947 to January 1991.

Probabilistic structures of TAR models were studied by Chan et al.(1985),
Chan and Tong (1985) and Tong (1990). More related results can be found
in An and Huang (1996), Brockwell et al.(1992), Chen and Tsay (1991),
Cline and Pu (2004), Ling (1999), Liu and Suskov (1992) and so on. The
large sample theory of the LSE of two-regime TAR models was established
by Chan (1993) and Chan and Tsay (1998), see also Petruccelli (1985), Qian
(1998) and Tsay (1998). The most difficult part in TAR models is to study
the asymptotic properties of the estimated threshold. Chan (1993) showed
that the estimated threshold is n-consistent and its limiting distribution
is the smallest minimizer of a one-dimensional two-sided compound Pois-
son process for two-regime TAR models when the autoregressive function
is discontinuous. Hansen (1997, 2000) also studied the two-regime thresh-
old AR/regression model. Under the assumption that the threshold effect is
vanishingly small, he obtained the distribution- and parameter-free limit of
the estimated threshold. Seo and Linton (2007) proposed a smoothed least
squares estimation for the two-regime threshold AR/regression model. They
showed that the estimated threshold is asymptotically normal but its con-
vergence rate is less than n and depends on the bandwidth. Gonzalo and
Pitarakis (2002) considered the sequential estimation of a multiple-regime
TAR model and only obtained the consistency and n-convergence rate of the
estimated thresholds. Up to now, however, the large sample theory of the
estimator, particularly the limiting distributions of the estimated thresholds,
is still an open problem in the multiple-regime TAR model.

This paper studies the LSE of multiple-regime TAR models and devel-
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ops its large sample theory. Under some suitable conditions, it is shown
that the LSE is strongly consistent. More importantly, when the autoregres-
sive function is discontinuous over each threshold, the estimated thresholds
are n-consistent, and after a normalization, they are asymptotically inde-
pendent and each of them converges weakly to the smallest minimizer of a
one-dimensional two-sided compound Poisson process. The remaining para-
meters are

√
n-consistent and asymptotically normal. A simulation method

is proposed to implement the limiting distributions of the estimated thresh-
olds. Simulation studies are conducted to assess the performance of the LSE
in finite samples. To illustrate the results, an application to the quarterly
U.S. real GNP data over the period 1947-2009 is given.

The rest of the paper is organized as follows. Section 2 presents the model
and its estimation procedure. Section 3 states our main results. Section 4
provides a numerical method to implement the limiting distribution of the
estimated thresholds. Section 5 reports simulation results. Section 6 gives
an empirical example. All proofs of Theorems are given in Section 7.

2. Model and least squares estimation

A time series {yt} is said to be an m-regime TAR model (m ≥ 2) with
order p if it satisfies the equation

yt =
m∑

j=1

(Y′
t−1βj + σjεt)1(rj−1 < yt−d ≤ rj), (2.1)

where Yt−1 = (1, yt−1, ..., yt−p)
′, βj = (βj0, βj1, ..., βjp)

′ ∈ Rp+1, j = 1, ..., m,
−∞ = r0 < r1 < ... < rm = ∞; σj’s are positive numbers. The number m of
regimes and the order p of model (2.1) are positive integers. d is a positive
integer called the delay parameter. {r1, ..., rm−1} are threshold parameters.
The errors {εt} are independent and identically distributed (i.i.d.) random
variables with zero mean and unit variance, and εt is independent of the past
information {yt−j : j ≥ 1}. Throughout the paper, we assume that m and p
are known1.

1In practice, m and p are needed to be identified for a given dataset. For the specifi-
cation of m, see Gonzalo and Pitarakis (2002). When m is given, we can use the AIC to
select p, see Tsay (1998).
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Let r = (r1, ..., rm−1)
′ ∈ Rm−1 and θ = (β′, r′, d)′ = (β′1, ..., β

′
m, r′, d)′ ∈

Rm(p+1)+(m−1) × {1, ..., D0}, where D0 is a known positive integer. Sup-
pose that a sample {y1, ..., yn} is from model (2.1) with true value θ0 =
(β′10, ..., β

′
m0, r

′
0, d0)

′. Given the initial values {y0, ..., y1−p}, the sum of square
errors function Ln(θ) is defined as

Ln(θ) =
n∑

t=1

[yt − Eθ(yt|Ft−1)]
2,

where Ft is the σ-algebra generated by {y1−p, ..., yt} and Eθ(·|·) denotes the
conditional expectation assuming θ to be the true parameter. The minimizer
θ̂n of Ln(θ) is called a LSE of θ0, that is,

θ̂n = arg min
θ

Ln(θ).

Since Ln(θ) is discontinuous in r and d, a multi-parameter grid-search algo-

rithm is needed. The way to obtain θ̂n is as follows.

• Fix r ∈ Rm−1 and d ∈ {1, ..., D0}, then minimize Ln(θ) and get its

minimizer β̂n(r, d) and minimum L∗n(r, d) ≡ Ln(θ)|β=bβn(r,d).

• Since L∗n(r, d) only takes finite possible values, one can get the mini-

mizer (r̂′n, d̂n)′ of L∗n(r, d) by the enumeration approach.

• Use a plug-in method, one can finally get β̂n(r̂n, d̂n) and θ̂n.

Generally, r̂n is taken as the form (y(i1), ..., y(im−1))
′, where i1 < · · · < im−1 and

{y(1), ..., y(n)} is the order statistics of the sample {y1, ..., yn}. If (y(j1), ..., y(jm−1))
′

is an estimator of r0, then L∗n(r, d̂n) is a constant over R, where

R = {r = (r1, ..., rm−1)
′ : ri ∈ [y(ji), y(ji+1)), i = 1, ..., m− 1}.

Thus, there exist infinitely many r such that Ln(·) can achieves its global
minimum and each r ∈ R can be considered as an estimator of r0. In this
case, we choose (y(j1), ..., y(jm−1))

′ as a representative of R and denote it as

the estimator of r0. According to the procedure for obtaining θ̂n, it is not
hard to show that θ̂n is the LSE of θ0.
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Let σj0 be the true value of σj for j = 1, ..., m. Once θ̂n is obtained, we
then can estimate σ2

j0 by

σ̂2
jn =

1

nj

n∑
t=1

(yt −Y′
t−1β̂jn)21(r̂j−1,n < yt−bdn

≤ r̂jn), (2.2)

where nj =
∑n

t=1 1(r̂j−1,n < yt−bdn
≤ r̂jn).

In order to get the global minimum of Ln(·) with m regimes and sample
size n, the required number of calculations is O(nm−1/(m − 1)!). When m
is large, however, the computational burden becomes substantial, requiring
multi-parameter grid-based search over all possible values of all threshold pa-
rameters taken together, and hence this algorithm is very time-consuming.
For a fixed m, the consumed time soars at an exponential rate as the sam-
ple size n increases. This problem is similar to the computational problem
arising from multiple change-point models investigated by Bai and Perron
(2003, 2006). Tsay (1989) transforms model (2.1) into a change-point model
and use the rearranged technique to localize possible positions of threshold
parameters. Similarly, using same rearranged technique, Coakley, Fuertes
and Pérez (2003) provides an efficient estimation approach which relies on
the computational advantages of QR factorizations of matrices. When m is
small, the grid-based search algorithm is an easy way to obtain the global
minimum of Ln(·).

3. Main results

Let Θ × {1, ..., D0} be the parameter space, where Θ = Θβ × Θr is a
compact subset of Rm(p+1) ×Rm−1 and Rm−1 = {(r1, ..., rm−1) : −∞ < r1 <
... < rm−1 < ∞}. The following result states the strong consistency of the

estimator θ̂n.

Theorem 3.1. Suppose that (i) {yt} satisfying (2.1) is strictly stationary
and ergodic, having finite second moments, (ii) βj0 6= βj+1,0 for j = 1, ..., m−
1, and (iii) ε1 admits a bounded, continuous and positive density on R. Then,

θ̂n → θ0 a.s. as n →∞ and so are σ̂2
jn’s.

The condition (ii) in Theorem 3.1 is required to guarantee the identifica-

tion of r0. The strong consistency of θ̂n holds regardless if the autoregressive
function is continuous over the thresholds or not. From Theorem 3.1, we
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know that d̂n equals d0 eventually. Thus, without loss of generality, we as-
sume that the delay parameter d0 is known for the remainder of this paper
and it is deleted from θ0, i.e., θ0 = (β′0, r

′
0)
′, and so is d̂n from θ̂n. The para-

meter space becomes Θ, accordingly, and we write d for d0 in what follows.
To obtain the convergence rate of r̂n and the asymptotic normality of

β̂n ≡ β̂n(r̂n), we first give three assumptions as follows.

Assumption 3.1. {εt} is a sequence of i.i.d. random variables with mean
0 and Eε4

t < ∞. ε1 has a bounded, continuous and positive density function
on R.

Assumption 3.2. {yt} is strictly stationary with Ey4
t < ∞.

Let Zt = (yt, ..., yt−p+1)
′. Then {Zt} is a Markov chain. Denote its l-step

transition probability by P l(z, A), where z ∈ Rp and A is a Borel set.

Assumption 3.3. {Zt} admits a unique invariant measure Π(·) such that
there exist K > 0 and ρ ∈ [0, 1), for any z ∈ Rp and any n, ‖Pn(z, ·) −
Π(·)‖v ≤ K(1 + ‖z‖)ρn, where ‖ · ‖v denotes the total variation norm.

Under Assumption 3.3, {Zt} is V -uniformly ergodic with V (z) = K(1 +
‖z‖), which is stronger than geometric ergodicity. For the concept of V -
uniform ergodicity, see Meyn and Tweedie (1993). If Assumption 3.1 holds
and max1≤i≤m

∑p
j=1 |βij| < 1, then Assumption 3.3 holds and Ey4

t < ∞, see
Chan (1989) and Chan and Tong (1985). If the initial value Z0 is from the
distribution Π(·), then Assumption 3.3 implies that {yt} is strictly stationary.

In order to obtain the n-convergence rate of r̂n and the limiting distrib-
ution of n(r̂n − r0), we need another assumption.

Assumption 3.4. There exist nonrandom vectors w∗
i = (1, wi1, ..., wip)

′ with
wid = ri0 such that (βi0 − βi+1,0)

′w∗
i 6= 0 for i = 1, ..., m− 1.

When p = 1, Assumption 3.4 implies that the autoregressive mean func-
tion is discontinuous at all thresholds {r1, ..., rm−1}. Assumption 3.4 in the
general case implies that ‖Y′

t−1(βi0 − βi+1,0)‖ is bigger than a positive con-
stant with a positive probability and plays a key role in obtaining the n-
convergence rate of r̂n and its limiting distribution.
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Theorem 3.2. If Assumptions 3.1-3.4 hold. Then,

(i). n‖r̂n − r0‖ = Op(1);

(ii).
√

n sup
‖r−r0‖<B/n

‖β̂n(r)− β̂n(r0)‖ = op(1) for any fixed B ∈ (0, +∞).

Furthermore,

√
n(β̂n − β0) =

√
n(β̂n(r0)− β0) + op(1) =⇒ N (0, Σ) as n →∞,

where Σ = diag(σ2
10Σ1, ..., σ

2
m0Σm) and

Σ−1
j = E[Yt−1Y

′
t−11(rj−1,0 < yt−d ≤ rj0)], j = 1, ..., m.

From Theorem 3.2(i), we know that the convergence rate of r̂n is n. To
study the limiting distribution of n(r̂n−r0), we consider the following profile
sum of squares errors function:

L̃n(s) = Ln

(
β̂n(r0 +

s

n
), r0 +

s

n

)
− Ln

(
β̂n(r0), r0

)
, s ∈ Rm−1. (3.1)

Using Theorem 3.2 and Taylor’s expansion, we can show that L̃n(s) = ℘n(s)+
op(1), where

℘n(s) = Ln(β0, r0 +
s

n
)− Ln(β0, r0)

=
m−1∑
i=1

n∑
t=1

[ {
[Y′

t−1(βi0 − βi+1,0)]
2 + 2σi0εt[Y

′
t−1(βi0 − βi+1,0)]

}

× 1
(
ri0 +

si

n
< yt−d ≤ ri0

)
1(si < 0)

+
{
[Y′

t−1(βi+1,0 − βi0)]
2 + 2σi+1,0εt[Y

′
t−1(βi+1,0 − βi0)]

}

× 1
(
ri0 < yt−d ≤ ri0 +

si

n

)
1(si ≥ 0)

]

=
m−1∑
i=1

n∑
t=1

[
ξ

(i,i+1)
t 1

(
ri0 +

si

n
< yt−d ≤ ri0

)
1(si < 0)

+ ξ
(i+1,i)
t 1

(
ri0 < yt−d ≤ ri0 +

si

n

)
1(si ≥ 0)

]
,

where

ξ
(i,j)
t =

[
Y′

t−1(βi0 − βj0)
]2

+ 2σi0εtY
′
t−1(βi0 − βj0), i, j = 1, ..., m. (3.2)
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Let F(i,j)(·|r) be the conditional distribution function of ξ
(i,j)
t given yt−d =

r. We define a sequence of independent one-dimensional two-sided compound
Poisson processes {Pj(z), z ∈ R}m−1

j=1 as

Pj(z) = 1(z < 0)




N
(j)
1 (−z)∑

k=1

Y
(j,j+1)
k


 + 1(z ≥ 0)




N
(j)
2 (z)∑

k=1

Z
(j+1,j)
k


 , (3.3)

for j = 1, ..., m−1, where {N(j)
1 (z), z ≥ 0} and {N(j)

2 (z), z ≥ 0} are two inde-

pendent Poisson processes with N
(j)
1 (0) = N

(j)
2 (0) = 0 a.s. and with the same

jump rate π(rj0), where π(·) is the density function of y0. {Y (j,j+1)
k }∞k=1 are

i.i.d. random variables with the distribution F(j,j+1)(·|rj0), and {Z(j+1,j)
k }∞k=1

are i.i.d. with the distribution F(j+1,j)(·|rj0). {Y (j,j+1)
k }∞k=1 and {Z(j+1,j)

k }∞k=1

are mutually independent. Here, we work with the left continuous version
for {N(j)

1 (·)}m−1
j=1 and the right continuous version for {N(j)

2 (·)}m−1
j=1 .

We further define a spatial compound Poisson process ℘(s) as follows,

℘(s) =
m−1∑
j=1

Pj(sj), s = (s1, ..., sm−1)
′ ∈ Rm−1. (3.4)

Clearly, ℘(s) goes to +∞ a.s. when ‖s‖ → ∞ since EY
(i,i+1)
t = EZ

(i+1,i)
t >

0 by Assumption 3.4. Therefore, there exists a unique random (m − 1)-

dimensional cube [M−,M+) ≡ [M
(1)
− ,M

(1)
+ )×· · ·×[M

(m−1)
− ,M

(m−1)
+ ) on which

the process {℘(s), s ∈ Rm−1} attains its global minimum a.s. That is,

[M−,M+) = arg min
s∈Rm−1

℘(s).

From (3.4), the minimization above is equivalent to

[M
(j)
− ,M

(j)
+ ) = arg min

z∈R
Pj(z), j = 1, ..., m− 1.

Note that the processes {Pj(z)}m−1
j=1 are independent, so are {M (j)

− }m−1
j=1 . Now,

we can state our another result as follows.

Theorem 3.3. If Assumptions 3.1-3.4 hold, then n(r̂n−r0) converges weakly
to M− and its components are asymptotically independent as n → ∞. Fur-
thermore, n(r̂n − r0) is asymptotically independent of

√
n(β̂n − β0) which is

always asymptotically normal.
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When m = 2, Theorem 3.3 reduces to Theorem 2.2 of Chan (1993).
The limit distribution of M− does not have a closed form and depends on
the nuisance parameters and the distribution of εt. In next section, we will
describe how to do inference for r0 via a simulation method.

4. Numerical implementation of M−

From Theorem 3.3, we know that obtaining M− is equivalent to obtaining

each M
(j)
− separately for j = 1, ..., m−1. From (3.3), we know that two factors

determine M
(j)
− , that is, the jump rate π(rj0) and the jump distributions

F(j,j+1)(·|rj0) and F(j+1,j)(·|rj0). We can simulate M
(j)
− via simulating the

two-sided compound Poisson process (3.3) on the interval [−T, T ] for any
given T > 0 large enough. The algorithm is as follows.

Algorithm A:

Step A.1. Generate two independent Poisson r.v.s N
(j)
1 and N

(j)
2 with the

same parameter π(rj0)T which are the total number of jumps on the
intervals [−T, 0] and [0, T ], respectively.

Step A.2. Generate two independent jump time sequences: {U1, · · · , U
N

(j)
1
}

and {V1, · · · , V
N

(j)
2
}, where Ui’s and Vi’s are independently and uni-

formly distributed on [−T, 0] and [0, T ], respectively.

Step A.3. Generate two independent jump-size sequences: {Y1, · · · , Y
N

(j)
1
}

and {Z1, · · · , Z
N

(j)
2
} from F(j,j+1)(·|rj0) and F(j+1,j)(·|rj0), respectively.

For z ∈ [−T, T ], the trajectory of (3.3) is given by

Pj(z) = 1(z < 0)

N
(j)
1∑

i=1

1(Ui > z)Yi + 1(z ≥ 0)

N
(j)
2∑

j=1

1(Vj < z)Zj.

Then, we take the smallest minimizer of Pj(z) on [−T, T ] as one observed

value of M
(j)
− . Repeat above algorithm B times and use the nonparametric

kernel method, we can get the density of M
(j)
− numerically for j = 1, ..., m−1.

In the above algorithm, the key is how to generate the jump-size sequences
from F(j,j+1)(·|rj0) and F(j+1,j)(·|rj0) in Step A.3. When p = 1, it is easy
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because the conditional distributions F(j,j+1)(·|rj0) and F(j+1,j)(·|rj0) become
the unconditional ones. When p > 1, it is more complicate. Note that

F(j,j+1)(x|rj0) =

∫

Rp

P(ξ(j,j+1)
p ≤ x|yp−d = rj0,Zp−d−1 = z)

π(rj0|z)
π(rj0)

G(dz)

≈ 1

K

K∑
i=1

P(ξ(j,j+1)
p ≤ x|yp−d = rj0,Zp−d−1 = zi)

π(rj0|zi)

π(rj0)

≈
K∑

i=1

P(ξ(j,j+1)
p ≤ x|yp−d = rj0,Zp−d−1 = zi)

π(rj0|zi)∑K
l=1 π(rj0|zl)

by the property of the conditional expectation, the law of large numbers (that
is, K →∞), and E[π(rj0|Zp−d−1)] = π(rj0), where Zp−d−1 = (yp−d−1, ..., y−d)

′,
zi ∈ Rp, G(·) is the distribution of Zp−d−1, and π(rj0|z) is the conditional
density of yp−d given Zp−d−1 = z. Let

h(Yt−1, θ) =
m∑

j=1

Y′
t−1βj1(rj−1 < yt−d ≤ rj),

σ(Yt−1, θ) =
m∑

j=1

σj01(rj−1 < yt−d ≤ rj).

Then,

π(rj0|zi) = [σ(yi, θ0)]
−1fε([σ(yi, θ0)]

−1[rj0 − h(yi, θ0)]),

where yi = (1, z′i)
′ and fε(·) is the density of εt.

When θ0, σj0, π(rj0), fε(·) and G(·) are known, the following algorithm
describes how to sample an observation Y1 from F(j,j+1)(x|rj0).

Algorithm B:

Step B.1. Choose a sufficiently large positive integer K and then draw a
sample {z1, ..., zK} from G(·).

Step B.2. Calculate π(rj0|zi)’s, and generate a random variable U , inde-

pendent of yp−d and Zp−d−1, such that P(U = i) =
π(rj0|zi)PK

l=1 π(rj0|zl)
for

i = 1, ..., K.
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Step B.3.2 For each fixed i ∈ {1, ..., K}, given the initial values yp−d = rj0

and Yp−d−1 = (1, z′i)
′, generate {yp−d+1, ..., yp−1} by iterating equation

(2.1) (d − 1)-times and εp from fε(·) , and then use them to calculate

ξ
(j,j+1)
p in (3.2) and write the value as ζi.

Step B.4. Obtain an observation Y1 = ζU .

In practice, however, since only one sample {y1, ..., yn} is available, we can

use θ̂n, σ̂j0, π̂(r̂j0) and f̂ε(·) to replace θ0, σj0, π(rj0) and fε(·), respectively,

where π̂(·) and f̂ε(·) are the kernel density estimators of π(·) and fε(·), respec-
tively. In Step B.1, we can let K = n− p + 1 and zi = (yi+p−1, ..., yi)

′. Then,
by Algorithm B, we can get an observation Y1 from F(j,j+1)(·|rj0) approxi-
mately. Similarly, we draw an observation Z1 from F(j+1,j)(·|rj0). Simulation
studies show that the simulation method above does work well for simulating
the distribution of M−.

5. Simulation studies

To assess the performance of the LSE of θ0 in finite samples, we use
sample sizes n = 300, 600, 900 and 1200, each with replications 1000 for the
following three-regime TAR model:

yt =





β10 + β11yt−1 + εt, yt−1 ≤ r1,
β20 + β21yt−1 + εt, r1 < yt−1 ≤ r2,
β30 + β31yt−1 + εt, yt−1 > r2,

(5.1)

with the true value θ0 = (β10, β11, β20, β21, β30, β31, r1, r2)
′ = (1,−0.4, 0.6, 1,

−1,−0.2,−0.8, 0.5)′ and εt ∼ i.i.d.N (0, 1). Clearly, the autoregressive func-
tion is not continuous over two thresholds {−0.8, 0.5}.

Table 1 summarizes the bias, the empirical standard deviation (ESD)

and the asymptotic standard deviation (ASD). Here, the ASD’s of β̂n are
computed by using Σ in Theorem 3.2 and the ASD of r̂n is obtained by the
simulation method in Section 4. From Table 1, we can see that the larger the
sample size, the closer the ESDs and ASDs on the whole. We also see that
the ESDs of r̂n are smaller than those of β̂n. This partially illustrates the
n-consistency of the estimated thresholds, under which they would approach
the true thresholds much faster than other estimated parameters.

2When d = 1, the iteration is not necessary since yp is not needed.
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[Table 1 about here.]

It is well known that the stationarity of the multiple-regime TAR(1)
model is determined by the extreme left and the extreme right regimes, see
Chan et al. (1985) and Chen and Tsay (1991). In model (5.1), although
β21 = 1, {yt} is not a unit-root process even not a partial unit-root process

in Liu et al. (2010).
√

n(β̂21,n − β21,0) is still asymptotically normal. Fig

1 displays the densities of
√

n(β̂21,n − β21,0) and N (0, 5.352) when n = 300
and 600, respectively. The number 5.352 is the estimator of the asymptotic
variance of β̂21,n in Theorem 3.2 (ii). From Fig 1, we see that they are very
close each other when n = 600.

[Figure 1 about here.]

We now study the coverage probabilities of r10 and r20. Using the sim-
ulation method in Section 4, we first obtain the empirical quantiles of M

(1)
−

and M
(2)
− by 20,000 replication. When the significance level α equals 0.5%,

1%, 2.5%, 5%, 95%, 97.5%, 99% and 99.5%, the values are given in Table 2.

[Table 2 about here.]

Based on the critical values in Table 2, the coverage probabilities of r10

and r20 are reported in Table 3 when n = 300, 600, 900 and 1200, respectively.
It can be seen that the coverage probability is rather accurate.

[Table 3 about here.]

To see the overall approximation of the estimated thresholds, Fig 2 shows
the density functions of n(r̂jn − rj0) and M

(j)
− , j = 1, 2, when n = 900. It

is plotted by the software R. A nonparametric kernel method is used and
the bandwidth is chosen automatically. From Fig 2, we see that the density
functions of both n(r̂jn− rj0) and M

(j)
− are very close. We also note that the

density of M
(j)
− is leptokurtic and asymmetric, skewing towards the left hand

side of the origin. In fact, the skewness is −0.04 and the kurtosis is 12.51 for
M

(1)
− , and the skewness is −0.18 and the kurtosis is 9.37 for M

(2)
− . Owing to

the skewness, an extreme caution should be taken in constructing confidence
intervals of thresholds in practice.

[Figure 2 about here.]

12



By Theorem 3.3, n(r̂1n − r10) and n(r̂2n − r20) are asymptotically inde-
pendent as n → ∞. To check this fact empirically in finite samples, the
multivariate independence test is used, which is based on the empirical cop-
ula process and is proposed by Genest and Rémillard (2004). This test can be
implemented by the functions “indepTestSim” and “indepTest” contained
within the package copula in the software R. The p-value of the test is sum-
marized in Table 4 when n = 300, 600, 900 and 1200. From Table 4, one can
see that n(r̂1n−r10) and n(r̂2n−r20) are indeed independent at 5% significant
level. This is a further evidence of Theorem 3.3 to a certain extent.

[Table 4 about here.]

Finally, we see whether the simulation method in Section 4 works well.
We generate a single sample {y1, ..., y300} from model (5.1). Fig 3 exhibits

the densities of M
(j)
− obtained when all parameters used in the algorithm

are known and unknown, respectively. It shows that two curves are almost
identical.

[Figure 3 about here.]

6. An empirical example

In economics, to characterize the dynamics of macroeconomic variables,
some researchers suggested that two-regime TAR models may be appropriate
for expansion and recession, see Tiao and Tsay (1994). Others (e.g., Koop
and Potter 1999), however, argued that perhaps three-regime TAR models,
encompassing bad times, good times and normal times, should be more rea-
sonable. Following this suggestion, we use a three-regime TAR model (2.1)
to fit the quarterly U.S. real GNP data over the period 1947-2009 with a
total of 252 observations.

Let y1, ..., y252 denote the original data. We consider the growth rate
series

xt = 100(log yt − log yt−1), t = 2, ..., 252.

The data {yt} and the growth rate series {xt} are plotted in Fig 4.

[Figure 4 about here.]
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Setting m0 = max{p1, p2, p3} ≤ 10 and 1 ≤ d ≤ max{m0, 1}, the AIC
selects the following TAR model:

xt =





β10 +
6∑

i=1

β1ixt−i + εt, xt−6 ≤ 1.2029,

β20 +
7∑

i=1

β2ixt−i + εt, 1.2029 < xt−6 ≤ 2.4266,

β30 +
10∑
i=1

β3ixt−i + εt, xt−6 > 2.4266.

(6.1)

The coefficients {βij} with their standard deviations are summarized in Table
5.

[Table 5 about here.]

β14, β22, β31 and β37 are not significant at the 5% level. The standard devi-
ation of εt is 0.7976. The Ljung-Box test statistics Q(6) = 0.998 and the
Li-Mak test statistics Q2(6) = 0.518, which suggest that model (6.1) is ade-
quate for {xt}. The number of data {xt} in three regimes are 79, 121 and 51,
respectively. The 95% confidence intervals of r10 and r20 are (1.0546, 1.3388)
and (2.2719, 2.5432), respectively. Based on the procedure in Section 4, the
densities of the estimated thresholds are plotted Fig 5.

[Figure 5 about here.]

According to model (6.1), the normal growth rate of the U.S. GNP is
in the interval (1.2029, 2.4266]. The growth rate is considered as the high
one if it is bigger than 2.4266. Otherwise, it is regarded as the low one if
it is smaller than 1.2029. In each regime, the growth rate can be fitted by
different AR models, respectively.

7. Proofs of Theorems 3.1-3.3

7.1. Proof of Theorem 3.1

The proof of Theorem 3.1 is similar to that of Theorem 1 in Chan (1993)
by the following lemma and hence it is omitted.

Lemma 7.1. If the conditions in Theorem 3.1 hold, then E[yt−Eθ(yt|Ft−1)]
2

≥ E[yt − Eθ0(yt|Ft−1)]
2 for all θ ∈ Θ × {1, ..., D0} and the equality holds if

and only if θ = θ0.
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Proof. For simplicity, we consider the case when m = 3 and the proof is
similar when m > 3. Clearly,

E[yt − Eθ(yt|Ft−1)]
2 = E[yt − Eθ0(yt|Ft−1) + Eθ0(yt|Ft−1)− Eθ(yt|Ft−1)]

2

= E[yt − Eθ0(yt|Ft−1)]
2 + E{[Eθ0(yt|Ft−1)− Eθ(yt|Ft−1)]

2}
≥ E[yt − Eθ0(yt|Ft−1)]

2.

If the equality holds for some θ∗, then, Eθ0(yt|Ft−1) = Eθ∗(yt|Ft−1) a.s., or

Y′
t−1

[ 3∑
j=1

β∗j1(r∗j−1 < yt−d∗ ≤ r∗j )−
3∑

j=1

βj01(rj−1,0 < yt−d0 ≤ rj0)
]

= 0 a.s.

which is equivalent to

3∑
i=1

3∑
j=1

(βi0 − β∗j )1(rj−1,0 < yt−d0 ≤ rj0, r
∗
j−1 < yt−d∗ ≤ r∗j ) = 0

with r∗0 = −∞ and r∗3 = ∞. Using the orthogonality among the indicator
functions above, we have

3∑
i=1

3∑
j=1

‖βi0 − β∗j‖P(ri−1,0 < yt−d0 ≤ ri0, r
∗
j−1 < yt−d∗ ≤ r∗j ) = 0. (7.1)

The first step is to prove that d∗ = d0. If not, without loss of generality,
suppose that d∗ > d0. Using the independence of εt−d0 and {Yt−d0−1, yt−d∗}
and the condition (iii) in Theorem 3.1, then, for any i, j = 1, 2, 3,

P(ri−1,0 < yt−d0 ≤ ri0, r
∗
j−1 < yt−d∗ ≤ r∗j )

= P(ri−1,0 < εt−d0 + h(Yt−d0−1, θ0) ≤ ri0, r
∗
j−1 < yt−d∗ ≤ r∗j ) > 0.

Thus, by (7.1), β10 = β20 = β30 = β∗1 = β∗2 = β∗3, which is a contradiction
with the condition (ii). Thus, d∗ ≤ d0. Similarly, one can prove that d∗ ≥ d0.
Therefore, d∗ = d0.

The second step is to show that r∗1 = r10. Suppose that r∗1 < r10. If
r∗2 ≤ r10, then we have

P(r20 < yt−d0 ≤ r30, r
∗
2 < yt−d0 ≤ r∗3) = P(yt−d0 > r20) > 0,

P(r10 < yt−d0 ≤ r20, r
∗
2 < yt−d0 ≤ r∗3) = P(r10 < yt−d0 ≤ r20) > 0,
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since the density of yt−d0 is continuous and positive on R. Thus, by (7.1), we
have β20 = β∗3 = β30. Similarly, if r∗2 > r10, then we can show that β10 = β20.
Both cases result in a contradiction with the condition (ii). Hence, r∗1 ≥ r10.
Similarly, one can show r∗1 ≤ r10. Thus, r∗1 = r10. Using the same way, one
can get r∗2 = r20 and in turn get β∗i = βi0 for i = 1, 2, 3. Thus, θ∗ = θ0. ¤

7.2. Proof of Theorem 3.2

(i). Since θ̂n is consistent by Theorem 3.1, we restrict the parameter space
to an open neighborhood of θ0. To this end, define Vδ = {θ ∈ Θ : ‖β−β0‖ <
δ, |rj − rj0| < δ, j = 1, ..., m− 1} for some 0 < δ < 1 to be determined later.
Choose δ small enough so that {r : |r− rj−1,0| < δ} ∩ {r : |r− rj0| < δ} = ∅
for j = 2, ..., m − 1. It suffices to prove that for any ε > 0, there exists a
B > 0 such that with probability greater than 1− ε,

Ln(β, r)− Ln(β, r0) > 0 for ‖r− r0‖ > B/n and θ ∈ Vδ.

By a simple calculation, we have the following decomposition, which plays a
key role in the proof so that we can use the results about two-regime TAR
models to obtain counterparts of multiple-regime ones,

Ln(β, r)− Ln(β, r0) =
m−1∑
j=1

L(j)
n (β, rj),

where r = (r1, ..., rm−1)
′ ∈ Rm−1 and

L(j)
n (β, rj) =

n∑
t=1

{
sign(rj − rj0)

[
(yt −Y′

t−1βj)
2 − (yt −Y′

t−1βj+1)
2
]

× 1(rj ∧ rj0 < yt−d ≤ rj ∨ rj0)
}

.

For each L
(j)
n (β, rj), it suffices to prove that for any εj > 0, there exists a

Bj > 0 such that with probability greater than 1− εj,

L(j)
n (β, rj) > 0 for |rj − rj0| > Bj/n and θ ∈ Vδ. (7.2)

Following the idea of the proof of Proposition 1 in Chan (1993) and we only
need to verify same inequalities as (4.4a)-(4.4c) in (1993). These inequali-
ties still hold under Assumptions 3.1-3.4 since their proofs only require the
V -uniform ergodicity of {Zt} and discontinuity of the autoregressive mean
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function h(x, θ0) =
∑m

j=1 x′βj01(rj−1,0 < xd ≤ rj0) over each hyperplane
xd = ri0 for j = 1, ..., m − 1. Hence, (7.2) holds and n|r̂jn − rj0| = Op(1),
j = 1, ..., m− 1, i.e., n‖r̂n − r0‖ = Op(1). This completes the proof of (i).

As for (ii), the proof is similar to that of Theorem 4 in Qian (1998), and
hence it is omitted. ¤

7.3. Proof of Theorem 3.3

For simplicity, we only deal with the case when m = 3 and the proof is
similar when m > 3. First of all, we consider the case s1 ≥ 0, s2 ≥ 0. By a
calculation, it follows that

℘n(s) = Ln(β0, r0 +
s

n
)− Ln(β0, r0)

=
n∑

t=1

[
ξ

(2,1)
t 1

(
r10 < yt−d ≤ r10 +

s1

n

)
+ ξ

(3,2)
t 1

(
r20 < yt−d ≤ r20 +

s2

n

)]
,

where s = (s1, s2)
′ ∈ R2 and ξ

(i,j)
t is defined in (3.2). Without loss of gener-

ality, we assume ξ
(i,j)
t is bounded. Otherwise, use the truncating technique

in Li et al. (2010) to truncate ξ
(i,j)
t and then consider a truncated process.

Consider the weak convergence of the process ℘n(s) on the rectangle T =
[0, T ] × [0, T ]. The tightness of ℘n(s) can be easily shown by Theorem 5 in
Kushner (1984, page 32) by Assumption 3.1. The key step is to describe
convergence of finite dimensional distributions. To do this, for any si =
(si1, si2)

′ ∈ T, satisfying s1j ≤ s2j < s3j ≤ s4j, i = 1, ..., 4, j = 1, 2, and for
any constants c1 and c2, the linear combination of the increments of ℘n(s) is

Sn ≡ c1{℘n(s2)− ℘n(s1)}+ c2{℘n(s4)− ℘n(s3)}

=
n∑

t=1

{
ξ

(2,1)
t

[
c11

(1,1)
t + c21

(1,3)
t

]
+ ξ

(3,2)
t

[
c11

(2,1)
t + c21

(2,3)
t

]}
,

where

1
(i,j)
t = 1

(
ri0 +

sji

n
< yt−d ≤ ri0 +

sj+1,i

n

)
, i = 1, 2, j = 1, 3.

Let

Jt = ξ
(2,1)
t

[
c11

(1,1)
t + c21

(1,3)
t

]
+ ξ

(3,2)
t

[
c11

(2,1)
t + c21

(2,3)
t

]
.
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We first verify Assumptions A.1-A.3 in Appendix A in Li et al. (2010) for
Jt. By Assumption 3.3, we have

λ = lim
ε→0

n→∞
ε−1Pε

k(J
ε
n 6= 0) = π(r10)[(s21 − s11) + (s41 − s31)]

+ π(r20)[(s22 − s12) + (s42 − s32)].
(7.3)

By the stationarity of {yt} and Assumption 3.3 again, for any Borel set B,
it follows that

Q∗(B) =
4∑

i=1

wiQ∗i (B), (7.4)

where

w1 = π(r10)(s21 − s11)/λ, w2 = π(r10)(s41 − s31)/λ,

w3 = π(r20)(s22 − s12)/λ, w4 = π(r20)(s42 − s32)/λ,

and

Q∗1(B) = P(c1ξ
(2,1)
t ∈ B|yt−d = r10), Q∗2(B) = P(c2ξ

(2,1)
t ∈ B|yt−d = r10),

Q∗3(B) = P(c1ξ
(3,2)
t ∈ B|yt−d = r20), Q∗4(B) = P(c2ξ

(3,2)
t ∈ B|yt−d = r20).

Similarly, we can verify that, for any f ∈ Ĉ 2
0 , a space of functions with

compact support and continuous second derivative, and a scalar x,

lim
n→∞

Eε
k{f(x + Jε

n)− f(x)|Jε
n 6= 0} = lim

n→∞
E{f(x + Jε

n)− f(x)|Jε
n 6= 0}

=

∫
[f(x + u)− f(x)]Q∗(du). (7.5)

By (7.3)-(7.5), Assumptions A.1-A.3 in Li et al. (2010) hold. Furthermore,
by their Theorem A.1, we claim that Sn weakly converges to a compound
Poisson random variable J with jump rate λ and the jump distribution Q∗.
The characteristic function fJ(t) of J can be written as

fJ(t) = exp

{
−λ

[
1−

∫

R
eitxQ∗(dx)

]}
=

4∏
i=1

exp

{
−λwi

[
1−

∫

R
eitxQ∗i (dx)

]}
,
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which is equal to that of the linear combination c1{P(s2)−P(s1)}+c2{P(s4)−
P(s3)} of the independent increments of a spatial compound Poisson process

P(s) =

N
(1)
(2,1)

(s1)∑
i=1

ζ
(2,1)
1,i +

N
(1)
(3,2)

(s2)∑
i=1

ζ
(3,2)
1,i , s1 ≥ 0, s2 ≥ 0,

that is, the finite dimensional distribution of ℘n(s) converges weakly to those
of P(s) as s1 ≥ 0 and s2 ≥ 0.

Similarly, we can deal with other cases, respectively. Thus, as n →∞,

℘n(s) =⇒





N
(1)
(2,1)

(s1)∑
i=1

ζ
(2,1)
1,i +

N
(1)
(3,2)

(s2)∑
i=1

ζ
(3,2)
1,i




1(s1 ≥ 0, s2 ≥ 0)

+





N
(2)
(2,1)

(s1)∑
i=1

ζ
(2,1)
2,i +

N
(1)
(2,3)

(−s2)∑
i=1

ζ
(2,3)
1,i




1(s1 ≥ 0, s2 < 0)

+





N
(1)
(1,2)

(−s1)∑
i=1

ζ
(1,2)
1,i +

N
(2)
(3,2)

(s2)∑
i=1

ζ
(3,2)
2,i




1(s1 < 0, s2 ≥ 0)

+





N
(2)
(1,2)

(−s1)∑
i=1

ζ
(1,2)
2,i +

N
(2)
(2,3)

(−s2)∑
i=1

ζ
(2,3)
2,i




1(s1 < 0, s2 < 0),

where {N (k)
(i+1,i)(z)} and {N (k)

(i,i+1)(z)} are independent Poisson processes with

the jump rate π(ri0) for k, i = 1, 2, {ζ(i,j)
k,l }∞l=1 are i.i.d random variables

from F(i,j)(·|ri∧j,0). All random variables and processes defined above are

independent. Since {N (1)
(2,1)(z)} and {N (2)

(2,1)(z)} have the same jump rate

π(r10) and ζ
(2,1)
1,i and ζ

(2,1)
2,i have the same distribution, there exist the process

N
(1)
2 (z) and the i.i.d. random variables {V (2,1)

k }, defined by (3.3), such that

1(s1 ≥ 0, s2 ≥ 0)

N
(1)
(2,1)

(s1)∑
i=1

ζ
(2,1)
1,i + 1(s1 ≥ 0, s2 < 0)

N
(2)
(2,1)

(s1)∑
i=1

ζ
(2,1)
2,i

d
= 1(s1 ≥ 0)

N
(1)
2 (s1)∑

k=1

V
(2,1)
k ,
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where “X
d
= Y ” indicates that the random elements X and Y have the same

distribution. Similarly, using the same way to combine the other terms, we
can get

℘n(s) =⇒ ℘(s), as n →∞,

where ℘(s) is defined in (3.4). Thus, L̃n(s), defined in (3.1), converges weakly
to ℘(s) as n →∞. Using Skorohod embedding, we may assume for simplicity
that the convergence is almost sure convergence. Since r̂n = r0 + Op(n

−1),
it is readily seen that n(r̂n − r0) converges weakly to M−, where [M−,M+)
is the unique (m − 1)-dimensional random cube over which ℘(s) attains its
global minimum. The remainder of the proof is similar to that of Theorem
2 in Chan (1993). ¤
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Coakley, J., Fuertes, A. and Pérez, M. (2003). Numerical issues in
threshold autoregressive modeling of time series. J. Econom. Dynam.
Control 27 2219–2242.

Fan, J. and Yao, Q. (2003). Nonlinear time series: Nonparametric and
parametric methods. Springer, New York.

Gonzalo, J. and Pitarakis, J.-Y. (2002). Estimation and model se-
lection based inference in single and multiple threshold models. J.
Econometrics 110 319–352.

Genest, C. and Rémillard, B. (2004). Tests of independence and ran-
domness based on the empirical copula process. Test 13 335–369.

Hansen, B. E. (1997). Inference in TAR models. Stud. Nonlinear Dyn.
Econom. 2 1–14.

21



Hansen, B. E. (2000). Sample splitting and threshold estimation. Econo-
metrica 68 575–603.

Huber, P.J. (1967). The behavior of maximum likelihood estimates under
nonstandard conditions. Proc. Fifth Berkeley Symp. Math. Statist.
Probab. 1 221–233. Univ. California Press, Berkeley.

Koop, G. and Potter, S.M. (1999). Dynamic asymmetries in U.S. un-
employment. J. Bus. Econom. Statist. 17 298–312.

Kushner, H.J. (1984). Approximation and Weak Convergence Methods
for Random Processes, with Applications to Stochastic Systems Theory.
MIT.

Li, D., Ling, S. and Li, W.K. (2010). Least square estimation of the
threshold moving-average model. Working paper in HKUST.

Ling, S. (1999). On the probabilistic properties of a double threshold
ARMA conditional heteroskedastic model. J. Appl. Probab. 36 688–
705.

Liu, J. and Susko, E. (1992). On strict stationarity and ergodicity of a
nonlinear ARMA model. J. Appl. Probab. 29 363–373.

Liu, W., Ling, S. and Shao, Q. (2010). On non-stationary threshold
autoregressive models. To appear in Bernoulli

Meyn, S.P. and Tweedie, R.L. (1993). Markov Chains and Stochastic
Stability. Springer, New York.

Petruccelli, J.D. (1986). On the consistency of least squares estimators
for a threshold AR(1) model. J. Time Ser. Anal. 7 269–278.

Potter, S.M. (1995). A nonlinear approach to US GNP. J. Appl. Econo-
metrics 2 109–125.

Qian, L. (1998). On maximum likelihood estimators for a threshold au-
toregression. J. Statist. Plann. Inference 75 21–46.

Seo, M. H. and Linton, O. (2007). A smoothed least squares estimator
for threshold regression models. J. Econometrics 141 704–735.

22



Tiao, G.C. and Tsay, R.S. (1994). Some advances in nonlinear and
adaptive modeling in time series. J. Forecast. 13 109–131.

Tong, H. (1978). On a threshold model. In Pattern Recognition and Signal
Processing. (Chen, C.H., ed.). Sijthoff and noordhoff, Amsterdam.
575–586.

Tong, H. (1990). Non-linear Time Series: A Dynamical System Approach.
Oxford University. Press, New York.

Tong, H. (2010). Threshold models in time series analysis — 30 years on.
Manuscript.

Tsay, R.S. (1989). Testing and modeling threshold autoregressive processes.
J. Amer. Statist. Assoc. 84 231–240.

Tsay, R. S. (1998). Testing and modeling multivariate threshold models.
J. Amer. Statist. Assoc. 93 1188–1202.

23



List of Figures

1 The density functions of
√

n(β̂21,n − 1) and N (0, 5.352). (a) The sample
size is 300 and (b) The sample size is 600. . . . . . . . . . . . . . . . 25

2 (a) The density functions of n(r̂1n − r10) and M
(1)
− . (b) The density

functions of n(r̂2n − r20) and M
(2)
− . The sample size is 900. . . . . . . . 26

3 The densities of M
(i)
− , i = 1, 2, when the parameters used in the algorithm

are known and unknown, respectively. . . . . . . . . . . . . . . . . . 27
4 The original data and the growth rate. . . . . . . . . . . . . . . . . 28
5 The densities of the normalized estimated thresholds. (a) for the esti-

mated threshold 1.2029 and (b) for 2.4266. . . . . . . . . . . . . . . 29

24



−20 −10 0 10 20

0.
00

0.
02

0.
04

0.
06

0.
08

(a)  n=300

D
en

si
ty

n(β̂21n − 1)

N(0, 5.352)

−20 −10 0 10 20

0.
00

0.
02

0.
04

0.
06

0.
08

(b) n=600

D
en

si
ty

n(β̂21n − 1)

N(0, 5.352)

Figure 1: The density functions of
√

n(β̂21,n − 1) and N (0, 5.352). (a) The sample size is
300 and (b) The sample size is 600.

25



−60 −40 −20 0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

The density of n( r̂1n − r10)

(a)

D
en

si
ty

n( r̂1n − r10)

M_(1)

−40 −30 −20 −10 0 10 20 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

The density of n( r̂2n − r20)

(b)

D
en

si
ty

n( r̂2n − r20)

M_(2)

Figure 2: (a) The density functions of n(r̂1n − r10) and M
(1)
− . (b) The density functions

of n(r̂2n − r20) and M
(2)
− . The sample size is 900.

26



−60 −40 −20 0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

The density of M_(1)

(a)

D
en

si
ty

Unknown

Known

−40 −30 −20 −10 0 10 20 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

The density of M_(2)

(b)

D
en

si
ty

Unknown

Known

Figure 3: The densities of M
(i)
− , i = 1, 2, when the parameters used in the algorithm are

known and unknown, respectively.

27



Quarterly US real GNP data

1950 1960 1970 1980 1990 2000 2010

0
50

00
10

00
0

15
00

0

Growth rate

1950 1960 1970 1980 1990 2000 2010

−
2

0
2

4
6

Figure 4: The original data and the growth rate.

28



−60 −40 −20 0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

(a)

D
en

si
ty

−60 −40 −20 0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

(b)

D
en

si
ty

Figure 5: The densities of the normalized estimated thresholds. (a) for the estimated
threshold 1.2029 and (b) for 2.4266.

29



List of Tables

1 Simulation studies for model (5.1) with the true value θ0 =
(β10, β11, β20, β21, β30, β31, r1, r2)

′ = (1,−0.4, 0.6, 1,−1,−0.2,−0.8, 0.5)′. 31

2 Empirical quantiles for M
(1)
− and M

(2)
− under model (5.1). . . . 32

3 Coverage probabilities of r10 and r20. . . . . . . . . . . . . . . 33
4 p-values for the multivariate independence test. . . . . . . . . 34
5 The coefficients for model (6.1). . . . . . . . . . . . . . . . . . 35

30



Table 1: Simulation studies for model (5.1) with the true value θ0 =
(β10, β11, β20, β21, β30, β31, r1, r2)′ = (1,−0.4, 0.6, 1,−1,−0.2,−0.8, 0.5)′.

n β10 β11 β20 β21 β30 β31 r1 r2

Bias 0.0315 0.0119 0.0003 0.0153 -0.0183 0.0091 -0.0178 -0.0125
300 ESD 0.2924 0.1508 0.1503 0.3609 0.2083 0.1042 0.0760 0.0533

ASD 0.2716 0.1409 0.1261 0.3087 0.2024 0.1041 0.0468 0.0312
Bias 0.0071 0.0023 0.0035 0.0115 -0.0022 0.0013 -0.0070 -0.0073

600 ESD 0.1972 0.1014 0.0864 0.2304 0.1428 0.0735 0.0267 0.0153
ASD 0.1922 0.0996 0.0892 0.2186 0.1430 0.0737 0.0234 0.0156
Bias 0.0018 0.0003 0.0013 0.0187 0.0011 -0.0002 -0.0034 -0.0059

900 ESD 0.1561 0.0837 0.0756 0.1919 0.1162 0.0609 0.0164 0.0100
ASD 0.1569 0.0814 0.0730 0.1785 0.1168 0.0601 0.0156 0.0104
Bias 0.0090 0.0033 0.0015 0.0085 -0.0034 0.0021 -0.0030 -0.0041

1200 ESD 0.1400 0.0730 0.0656 0.1599 0.0987 0.0501 0.0135 0.0078
ASD 0.1358 0.0704 0.0631 0.1547 0.1011 0.0521 0.0117 0.0078
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Table 2: Empirical quantiles for M
(1)
− and M

(2)
− under model (5.1).

α 0.5% 1% 2.5% 5% 95% 97.5% 99% 99.5%

M
(1)
− -58.5 -47.4 -33.8 -25.7 17.8 27.0 39.4 48.6

M
(2)
− -37.5 -31.4 -24.3 -19.4 9.2 14.7 22.8 27.9
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Table 3: Coverage probabilities of r10 and r20.
α 300 600 900 1200

0.01 0.972 0.989 0.984 0.990
r10 0.05 0.928 0.928 0.936 0.943

0.10 0.864 0.878 0.874 0.895
0.01 0.987 0.988 0.992 0.989

r20 0.05 0.941 0.959 0.939 0.952
0.10 0.890 0.916 0.885 0.917
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Table 4: p-values for the multivariate independence test.
n 300 600 900 1200
p-value 0.394 0.827 0.608 0.715
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Table 5: The coefficients for model (6.1).
Regime β

βi0 βi1 βi2 βi3 βi4 βi5 βi6 βi7 βi8 βi9 βi,10

1 0.7566 0.6585 0.3831 -0.4261 -0.0278† -0.2160 0.1542

(0.2146) (0.0849) (0.0903) (0.0942) (0.1001) (0.0788) (0.1253)

2 -0.4939 0.3094 0.0190† 0.1196 0.1633 -0.2680 0.6696 0.2105

(0.4447) (0.0935) (0.0935) (0.1034) (0.0897) (0.0975) (0.2593) (0.0949)

3 0.9404 0.0707† 0.3516 -0.1627 0.1802 0.1333 -0.2506 -0.0215† -0.2449 0.2391 0.4087

(0.6764) (0.1344) (0.1285) (0.1186) (0.1726) (0.1497) (0.1971) (0.1228) (0.1177) (0.1360) (0.1090)

Note: Standard errors are in parentheses and † denotes that the coefficient is not significant at the 5% level.
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