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Abstract: This paper studies a class of tests useful for testing goodness of fit of

a wide variety of time series models. These tests are based on a class of empiri-

cal processes marked by certain scores. Major advantages of these tests are that

they are easy to implement, require only weak conditions that are usually satisfied

in practical applications, the relevant critical values are readily available without

bootstrap, and are more powerful than the Ljung-Box test, the Li-Mak test and the

Koul-Stute test in all the cases we have tried. A comparison with the Fan-Zhang

test is included. We also extend the class of tests to include score-like statistics.

Some key words: Empirical process, goodness-of-fit test, nonlinear time series, score,

time series models

1 Introduction

Let {yt : t = 0,±1,±2, · · ·} be a strictly stationary sequence of real-valued random

variables defined on the probability space (Ω,F , P ); let Ft be the σ−field generated
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by {yt, yt−1, · · ·}. We assume that the mean and the variance of yt are both finite.

Suppose we wish to summarize the information contained in a finite number of

observations of the time series by building a parametric model. Now, goodness-of-

fit tests constitute an essential stage in parametric modelling and there are numerous

tests available in the literature, see, e.g., Li (2004) for a fairly comprehensive account.

Formally, we postulate that the time series is generated by the model

yt = µt(θ) + ηt

√
ht(θ) ,(1.1)

where θ ∈ Θ, Θ being a proper subset of the p−dimensional Euclidean space, µt(θ)

and ht(θ) are, respectively, the conditional mean function and the conditional vari-

ance function of yt given Ft−1, {ηt, t = 0,±1, . . .} is a sequence of independent and

identically distributed (i.i.d.) random variables with a common distribution F , zero

mean and unit variance, and ηt is independent of Ft−1. Note that sometimes θ is

called the nuisance parameter with its true value denoted by θ0.

Within such a framework, a goodness-of-fit test tests the (composite) null hy-

pothesis that the given data follow model (1.1). The alternative hypothesis is merely

that the null hypothesis does not hold; the test is sometimes called an omnibus test

or a portmanteau test, accordingly. Given an alternative parametric model other

tests would be more relevant, e.g. the likelihood ratio test. The likelihood ratio test

can be generalised to cover the case of an alternative non-parametric model such as

yt = µt(·) + ηt

√
ht(·) ,(1.2)

where µt(·) and ht(·) are respectively the conditional mean function and the con-

ditional variance function of yt given Ft−1, {ηt, t = 0,±1, . . .} is as defined above.

With suitable constructions, χ2-asymptotics can be retained, in which the degrees

of freedom tend to infinity as the sample size increases to infinity. (Fan and Yao

(2003)). Fan and Zhang (2004) introduced some important developments with this

approach; for implementation, they resorted to bootstrapping for the critical values.
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For likelihood ratio tests, generalised or not, the case of a mis-specified alternative

hypothesis remains challenging.

Todate, many of the goodness-of-fit tests in time series are residual-based. For

example, the classic portmanteau test of Box and Pierce (1970) and its improvement

by Ljung and Box (1978) are based on the sample autocorrelations of the residuals.

In the context of goodness of fit of nonlinear time series models, the McLeod-Li test

(1983) and the Li-Mak test (1994) are based on the sample autocorrelations of the

squared residuals. Based on a generalized spectral approach of the residuals, Hong

and Lee (2003) and Escanciano (2008) proposed some new diagnostic tests for model

(1.1). The former focuses on the independence assumption of the ’noise process’; the

latter requires us to approximate the critical values by bootstrap, but allows non-i.i.d

variables and checks for many lags in Ft−1. More recently, perhaps influenced by the

empirical distribution function approach in the goodness-of-fit test for independent

observations, substantial developments for time series data have taken place in the

form of tests based on empirical processes marked by certain residuals, see, e.g., Stute

(1997), Koul and Stute (1999), Stute, Quindimil, Manteiga, and Koul (2006), and

Escanciano (2007). Of course, the use of marked empirical processes in hypothesis

testing in time series has a longer history; see, e.g., An and Cheng (1991). In all

these developments, residuals play a pivotal role.

In the 1980s, unification of numerous classical goodness-of-fit tests, such as those

developed by Quenouille (1947, 1949), Walker (1950, 1952), Bartlett and Diananda

(1950), as well as some of the later ones such as the Box-Pierce test, was achieved

by the observation that a Lagrangian multiplier (LM) test with an appropriately

chosen alternative hypothesis results in a test that is the large-sample equivalent

of the above goodness-of-fit tests. For example, Newbold (1980) showed that the

LM test for an ARMA(p, q) model against the alternative of an ARMA(p + m, q)

model is asymptotically equivalent to a goodness-of-fit test based on the first m

sample autocorrelations of the residuals. For more details of the unification, see,
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e.g., Hosking (1978, 1980) and Godfrey (1979). For extension of the idea to tests for

linearity see, e.g., Tong (1990, §5.3). This unification is significant. It suggests that

a score (statistic) may be a fundamentally more useful pivot in the construction

of goodness-of-fit tests since an LM test uses the score evaluated under the null

hypothesis. This paper develops goodness-of-fit tests for time series that are based

on empirical processes marked by certain scores; we later generalise the approach to

include their equivalents.

This paper is organized as follows. Section 2 gives the generic form of the test

statistic, then gives explicit expressions for various commonly used models. Section

3 presents the null distribution, with critical values evaluated, and studies the local

power of our tests. Section 4 reports simulation results, including some comparative

studies. Section 5 illustrates our approach with the Hang Seng Index. Section 6

draws some conclusions.

2 Score-based empirical process approach to goodness-

of-fit tests

Given observations {y1, · · · , yn} from model (1.1) and initial values {ys : s ≤ 0}, let

θ̂n denote the maximum likelihood estimator of θ0 under H0.

Assumption 2.1

√
n(θ̂n − θ0) = Σ−1

n∑

t=1

Dt(θ0)/
√

n + op(1),(2.1)

where Dt(θ0) is the score of θ evaluated at θ0 and Σ = E[Dt(θ0)D
′
t(θ0)], the infor-

mation matrix.

This is a mild condition for maximum likelihood estimation of parameters in

time series models and is generally satisfied under standard conditions. We return

to this point later.

Let I{B} denote the indicator function of the event B. Our test statistic is based
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on the score-marked empirical process

Tn(x, θ) =
1√
n

n∑

t=1

Dt(θ)I{yt−1 ≤ x}.(2.2)

Since θ0 is usually not fully specified in practice we replace it by θ̂n, noting As-

sumption 2.1, and study Tn(x, θ̂n). Let Σx = E[Dt(θ0)D
′
t(θ0)I{yt−1 ≤ x}] and

A = inf{x : Σ = Σx}. When yt has a support on R, then we have A = ∞, generally.

Let Σ̂nx =
∑n

t=1[Dt(θ̂n)D′
t(θ̂n)I{yt−1 ≤ x}]/n and Σ̂n be the estimators of Σx and

Σ, respectively, where Σ̂n = Σ̂nA. We define our generic test statistic via a linear

transformation of Tn(x, θ̂n) as

Sa
n = max

a≤x≤A

[β′Σ̂−1
nxTn(x, θ̂n)]2

β′(Σ̂−1
na − Σ̂−1

n )β
,(2.3)

where β is a nonzero p × 1 constant vector. When p = 1, Sa
n is equivalent to the

weighted LR-test for H0 : yt = µt(θ)+ εt with Gaussian white noise {εt} against the

alternative

yt = µ(θ, yt−1) + µ(θ1, yt−1)I{yt−1 ≤ x}+ εt,(2.4)

with weight (1− ΣΣ−1
x )/(1− ΣΣ−1

a ), where θ1 ∈ Θ is another unknown parameter.

This connection is similar to the situation pertaining to the classic goodness-of-fit

tests in time series mentioned earlier. For general p, we can replace the threshold

variable yt−1 in I{yt−1 ≤ x} by yt−r or by θ̂′n(yt−1, · · · , yt−p)
′ as in Stute, Quindimil,

Manteiga, and Koul (2006). In fact, we can replace it by any function ξt−1 =

g(yt−1, yt−2, · · ·) and our theory still holds as long as ξt−1 has a positive conditional

density given {yt−2, yt−3, · · ·}; see Ling and Tong (2006). This assumption is usually

satisfied. We have chosen yt−1 to keep the procedure simple, in the absence of a

general theory for an optimal choice. Our approach can be extended to multivariate

time series models with yt−1 replaced by a suitable choice of ξt−1.

Typically, the quantity a is taken as an early quantile of the process values. It

should, however, ensure that Σ̂−1
na exists. Unlike Chan (1991), the limiting distri-

bution of Sa
n does not depend on the choice of a since the weight function cancels
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out the related component. Note that maxβ Sa
n does not have a limiting distribution

as simple as that of Sa
n; the latter is described by Theorem 3.2 in Section 3. Note

also that Sa
n is invariant with respect to ‖β‖. If we denote the normalized score

Σ̂−1
nxTn(x, θ̂n) by Un(x) = (u1(x), · · · , up(x))′, then β′Un(x) =

∑p
i=1 βiui(x) can be in-

terpreted as a weighted score, and each ui(x) is the marked-score along the direction

of the i−th coordinator in θ. The optimal choice of β remains an open problem. A

simple choice for β is (1, · · · , 1)′, which means that we attach equal weight to each

ui(x). The simulation in Section 4 suggests that this choice together with a around

the 5p% quantile of data produces good power. Another choice is β = θ̂n, but the

simulation results in Section 4 suggest that this is not as good.

When the alternative of model (1.1) is its threshold counterpart, Tn(x, θ̂n) is

precisely the score function in the LR test. However, the LR test is a quadratic

form of Tn(x, θ) and its limiting distribution is a functional of a Brownian bridge

with a complicated covariance matrix. In this case, except for AR models in Chan

(1990, 1991) and Chan and Tong (1990), we have to use a simulation method to

obtain its critical values case by case; see, e.g., Wong and Li (1997, 2000). We should

mention that the initial values {ys : s ≤ 0} are typically not available and are usually

replaced by some constants. However, for most stationary models such as ARMA

or GARCH models, the initial values do not affect the asymptotic properties of the

estimated parameters or our test S(a)
n ; see Assumption 4 of Hong and Lee (2003).

We can always construct the test Sa
n because we have Dt(θ) from the model

fitting stage. Since Sa
n is generally just the maximum of n different numbers, it is

as easy to implement as the Ljung-Box test and the McLeod-Li test.

Example 2.1. Consider the double AR (DAR) model defined by

yt =
p∑

i=1

φiyt−i + ηt

√√√√ω +
p∑

i=1

αiy2
t−i,

where ω, αi > 0, t ∈ {−p, · · · , 0, 1, 2, · · ·}, and {ηt} is an independent random se-

quence with ηt ∼ N(0, 1). Here, θ = (θ′1, θ
′
2)
′ with θ1 = (φ1, · · · , φp)

′ and θ2 = (ω, α1,
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· · · , αp)
′. We take θ̂n as the MLE of θ0. Under conditions for strict stationarity,

Ling (2004, 2007) shows that (2.1) holds and

Dt(θ) =
{Y ′

1t−1εt(θ)

θ′2Y2t−1

,− Y ′
2t−1

2θ′2Y2t−1

[
1− ε2

t (θ)

θ′2Y2t−1

]}′
,

where εt(θ) = yt − θ′1Y1t−1, Y1t = (yt, · · · , yt−p+1)
′ and Y2t = (1, y2

t , · · · , y2
t−p+1)

′.

The expansion (2.1) holds since the information matrix is Σ in maximum likelihood

estimation.

In some applications, instead of MLE, practitioners may prefer to use least

squares estimation, or quasi-Gaussian MLE. For these, the test statistic Sa
n can

still apply provided the score Dt(θ) is replaced by the derivative of a relevant loss

function, the specific form of which is usually obvious as we show in the following

examples. By an abuse of notation, we denote this derivative also by Dt(θ). Note

that the information matrix is then usually of the form E[Dt(θ)D
′
t(θ)]/γ, where γ is

a positive constant, the exact value of which depends on the method of estimation,

as also shown in the examples below. Thus, Assumption 2.1 remains essentially the

same as stated, but with Σ replaced by Σ/γ.

Example 2.2. Consider the ARMA (p, q) model

yt =
p∑

i=1

φiyt−i −
q∑

i=1

ψiεt−1 + εt,

where εt’s are i.i.d. with mean zero and a finite variance σ2. Here, θ = (φ1, · · · , φp, ψ1,

· · · , ψq)
′. Under the usual stationarity and invertibility conditions (e.g. Weiss

(1986), the conditional LSE, θ̂n, of θ0 satisfies the expansion (2.1) with γ = σ2,

and Dt(θ) = [∂εt(θ)/∂θ]εt(θ), where εt(θ) = ψ−1(B)φ(B)yt. In particular, for the

AR(2) model (p = 2 and q = 0), we have Dt(θ) = (yt−1, yt−2)
′(yt−φ1yt−1−φ2yt−2).

Example 2.3. The TAR(p, q) model is

yt = I{yt−d ≤ r}(φ10 +
p∑

i=1

φ1iyt−i) + I{yt−d > r}(φ20 +
p∑

i=1

φ2iyt−i) + εt,

where maxi=1,2
∑p

j=1 |φij| < 1 and εt’s are i.i.d. with Eε4
t < ∞. Assume that the AR

function is discontinuous and d > 0 is a known integer. Here, θ = (φ10, φ11, · · · , φ1p,
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φ20, φ21, · · · , φ2p)
′. Let (θ̂n, r̂n) be the LSE of (θ0, r0), where r0 is the true value of r.

From Chan (1993), we have n(r̂n − r0) = Op(1) and (2.1) holds with γ = σ2,

Dt(θ) = D̃t(θ, r0) and D̃t(θ, r) = [Y ′
t−1I{yt−d ≤ r}, Y ′

t−1I{yt−d > r}]′εt(θ, r),

where εt(θ, r) = yt−I{yt−d ≤ r}(φ10+
∑p

i=1 φ1iyt−i)−I{yt−d > r}(φ20+
∑p

i=1 φ2iyt−i)

and Yt−1 = (1, yt−1, · · · , yt−p)
′. We can show that

∑n
t=1 ‖D̃t(θ̂n, r̂n)−Dt(θ̂n)‖/√n =

op(1). Thus, Sa
n has asymptotically the same distribution when r0 is replaced by r̂n.

Example 2.4. Consider the GARCH(r, s) model defined by

yt = ηt

√
ht and ht = α0 +

r∑

i=1

αiy
2
t−i +

s∑

i=1

βiht−i,

where the ηt are i.i.d. with Eη2
t = 1 and Eη4

t < ∞, α0 > 0, α′is ≥ 0, αr 6= 0, β′js ≥ 0,

and βs 6= 0. Here, θ = (α0, α1, · · · , αr, β1, · · · , βs)
′. Let θ̂n be the quasi-maximum

likelihood estimator of θ0. Under the standard strict stationarity condition, Francq

and Zaköıan (2004) show that (2.1) holds with γ = Eη4
t − 1, and

Dt(θ) = [2ht(θ)]
−1[y2

t /ht(θ)− 1][∂ht(θ)/∂θ],

where ht(θ) = α0 +
∑r

i=1 αiy
2
t−i +

∑s
i=1 βiht−i(θ). For the important special case

of the GARCH(1,1) model, ht(θ) = α0 + α1y
2
t−1 + β1ht−1(θ) and ∂ht(θ)/∂θ =

[1, y2
t−1, ht−1(θ)]

′ + β1∂ht−1(θ)/∂θ.

When extending the GARCH or ARMA model to the ARMA-GARCH model,

we can use the MLE to estimate the associated parameters. For the general model

(1.1), we can use the quasi-Gaussian MLE to estimate the parameters. In this case,

the score function is Dt(θ) = Ut(θ)ψ(ηt(θ)), where

Ut(θ) =


 1√

ht(θ)

∂µt(θ)

∂θ
,

1

2ht(θ)

∂ht(θ)

∂θ


 and ψ(x) =

[
x, x2 − 1

]′
.

We can see that Dt(θ0) is a martingale difference and Σ = E[D′
t(θ0)Dt(θ0)] if ηt is

symmetric and Eη4 = 3. Thus, our test can be used.
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3 NULL DISTRIBUTION & LOCAL POWER

To get the null distribution of Sa
n, we introduce assumptions as follows.

Assumption 3.1. Dt(θ0) is an Ft−measurable, strictly stationary and ergodic mar-

tingale difference with E(‖Dt(θ0)‖2(1+ι)) < ∞ for some ι > 0.

Assumption 3.2. Dt(θ) has the expansion Dt(θ) − Dt(θ0) = Pt(θ
∗)(θ − θ0)

′ and

EPt(θ0) = Σ/γ, where θ∗ lies between θ and θ0, and for any fixed C > 0,

sup√
n‖θ−θ0‖≤C

1

n

n∑

t=1

∥∥∥Pt(θ)− Pt(θ0)
∥∥∥ = op(1).

Here, Pt(θ) is an information-type matrix and is [∂Dt(θ)/∂θ] if Dt(θ) is differen-

tiable. The moment condition in Assumption 3.1 is minimal; Assumption 3.2 holds

for most of the strictly stationary time series models met in practice. We first give

a lemma whose proof is given in the Appendix.

Lemma 3.1. Under Assumptions 2.1, 3.1, and 3.2,

(a) sup
x∈R∪{∞}

‖Σ̂nx − Σx‖ = op(1),

(b) sup
x∈R

∥∥∥Tn(x, θ̂n)− Tn(x, θ0)− ΣxΣ
−1

√
n

n∑

t=1

Dt(θ0)
∥∥∥ = op(1).

The weak convergence of {Tn(x, θ̂n) :x ∈ R} is a corollary of Theorem 3 of

Escanciano (2007), as follows.

First, let Rγ = [γ1, γ2] ⊂ [x0, A) for some x0 ∈ R, where A is defined as in

(2.3). Let D[Rγ] denote the space of real-valued functions on Rγ which are right

continuous and have left-hand limits, and let it be equipped with the Skorohod

topology as in Billingsley (1968). The weak convergence on Dp[x0, A) is defined as

on D[Rγ]× · · · ×D[Rγ] (p factors) for any interval [γ1, γ2], and is denoted by =⇒.

Theorem 3.1 Suppose that Assumptions 2.1, 3.1, and 3.2 hold, and that ηt has a

bounded density f in R. If Σx0 is positive definite for some x0 ∈ R, then

Tn(x, θ̂n) =⇒ Gp(x) in Dp[x0, A)
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under H0, where {Gp(x) : x ∈ [x0, A)} is a p−dimensional Gaussian process with

mean zero and covariance kernel Kxy = Σx∧y −ΣxΣ
−1Σy; almost all paths of Gp(x)

are continuous in x.

We first note that Σ−1
x Tn(x, θ̂n) ⇒ G0p(x) in Dp[x0, A) under H0, where {G0p(x)}

is a p × 1 vector Gaussian process on [x0, A) with mean zero and covariance ker-

nel Kxy = Σ−1
x∨y − Σ−1. An important observation is that {G0p(x)} has indepen-

dent increments with E{[G0p(x) − G0p(y)][G0p(x) − G0p(y)]′} = Σ−1
y − Σ−1

x when

x > y. For marked empirical processes, the covariance kernel usually has the form

σx∧y − u′xΣ
−1uy. For Theorem 3.1, σx∧x = ux = Σx. This is the key for the pro-

cess {G0p(x)} to have independent increments. For marked processes (such as the

residual-marked process) for which σx∧x 6= ux, we cannot obtain a process with

independent increments after normalization.

Since the components of G0p(x) are dependent, its covariance kernel does not

admit a simple transformation and neither does a quadratic form or the maximum

of all its components. However, for any constant β, β′G0p(x) has the rather simple

covariance kernel σx ∧ σy, where σx = β′(Σ−1
x − Σ−1)β. For any finite constant

a ∈ [x0, A), σx/σa is a continuous and strictly decreasing function in terms of x

and runs through [0, 1] when x runs from A to a. Thus, B(τ) ≡ β′G0p(x)/
√

σa is a

standard Brownian motion on τ = σx/σa ∈ [0, 1]. Let b ∈ [a,A) be a constant and

Sa
n(b) = max

a≤x≤b

[β′Σ̂−1
nxTn(x, θ̂n)]2

β′(Σ̂−1
na − Σ̂−1

n )β
.

Theorem 3.1 and the Continuous Mapping Theorem yield the main result.

Theorem 3.2. If the assumptions of Theorem 3.1 hold, then, for any p×1 nonzero

constant vector β, we have

lim
b→A

lim
n→∞P [Sa

n(b) ≤ x] = P

[
max
τ∈[0,1]

B2(τ) ≤ x

]

for any a ∈ [x0, A) and any x ∈ R, where B(τ) is a standard Brownian motion on

C[0, 1].
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From this theorem, the constant Cα such that P [maxτ∈[0,1] B
2(τ) ≥ Cα] = α

can be used as an approximate critical value of Sa
n for rejecting the null H0 at the

significance level α. From Shorack and Wellner (1986, p.34), we have

P
[

max
τ∈[0,1]

B2(τ) ≥ x
]

= 1− 4

π

∞∑

k=0

(−1)k

2k + 1
exp

[
− (2k + 1)2π2

8x

]
,

for all x > 0, and C0.1 = 3.83, C0.05 = 5.00, and C0.01 = 7.63.

We next study the asymptotic local power of Sa
n. Let r1t = r1(yt−1, yt−2, · · ·)

and r2t = r2(yt−1, yt−2, · · ·) be Ft−1−measurable random variables for t = 0,±1, · · ·.
Consider the local alternative hypothesis

yt = µt(θ) +
r1t√

n
+ ηt

√
ht(θ) +

r2t√
n

.

Assume that ηt is normal and independent of ys for s ≤ 0, under both H0 and H1n.

Let m(x) = E[Dt(θ0)ζtI{yt−1 ≤ x}]−ΣxΣ
−1E[Dt(θ0)ζt], where ζt = ηtr1t/

√
ht(θ0)+

(1− η2
t )r2t/ht(θ0).

Theorem 3.3 If the assumptions of Theorem 3.2 hold and 0 < Er2
1t + Er2

2t < ∞
under H0, then under H1n, it follows that

(a) Tn(x, θ̂n) =⇒ m(x) + Gp(x) in Dp[R],

(b) lim
b→A

lim
n→∞P [Sa

n(b) ≤ z] = P

[
max
τ∈[0,1]

[u(τ) + B(τ)]2 ≤ z

]
,

for any z ∈ R, where u(τ) = β′Σ−1
x m(x)/[β′(Σ−1

a − Σ−1)β]1/2 with x such that

σx = τ , and Gp(x) and B(τ) are defined as in Theorems 3.1-3.2.

This shows that Sa
n has good local power if u(τ) 6= 0; otherwise it has no local

power. It is unlikely that u(τ) = 0, unless ζt = β′Dt(θ0). When n and b are large, we

have P (Sa
n > Cα) ≈ P

{
maxτ∈[0,1][u(τ)+B(τ)]2 > Cα

}
→ 1 if maxτ∈[0,1] |u(τ)| → ∞.

4 SIMULATION RESULTS

To conduct a theoretical study of the various goodness-of-fit tests in time series

would be ideal. However, there are difficulties. First, the composite nature of the
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alternative hypothesis means that the power is likely to change from one alternative

model to the next and there are (uncountably) infinitely many possible models. Sec-

ond, the distribution of the test statistic (especially for finite samples) is typically

unknown or unavailable under the alternative hypothesis, except for trivial cases

and for large samples. Third, asymptotic power is usually not practically informa-

tive. For example, when testing the goodness of fit of an AR(2) model against the

alternative of an AR(3) model, both the Ljung-Box test and our test have power 1

asymptotically.

Therefore, we compare the performances of tests on the basis of simulations. For

a summary of similar simulation-based comparative studies of tests in this vein; see,

e.g., Li (2004). This section examines the performance of the test statistic Sa
n in

finite samples through Monte Carlo experiments. In all the experiments, we take a

as the 5p%-quantile of data {y1, · · · , yn} and use 1000 independent replications.

We first study the size and the power of Sa
n when the null hypothesis is the

ARMA(1,1) model, yt = φyt−1 + ψεt−1 + εt, where εt is i.i.d. N(0, 1). We take

β = (1, 1)′ and (φ̂n, ψ̂n)′. For the size, the true parameters are taken to be (φ, ψ) =

(−0.8,−0.5), (−0.5,−0.5), (0.0,−0.5), (0.8,−0.5), (−0.8, 0.5), (0.0, 0.5), (0.5, 0.5)

and (0.8, 0.5). The sample sizes are n = 100, 200 and 400. Table 1 summarizes the

results when the significance level α is 0.01, 0.05 and 0.1. It shows that the sizes

are fairly close to their nominal values although there is evidence of conservatism.

To study the power of Sa
n, we consider two alternatives:

TARMA Model yt = 0.5yt−1 + 0.5εt−1 − θ(yt−1 + εt−1)I{yt−1 ≤ 0}+ εt,

BL Model yt = 0.5yt−1 + 0.5εt−1 − θyt−2εt−1 + εt.

The first is an example of the threshold ARMA models proposed by Tong (1978,

1990), while the second is an example of the bilinear models (or BL models, for

short); see, e.g., Granger and Andersen (1978). We first compare our tests with two

commonly used tests, namely the Ljung-Box Qn(m) test and the Li-Mak Q2
n(m) test.
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TABLE 1

Sizes of Sa
n for Null Hypothesis H0:

ARMA(1,1) model
at Significance Level α(1000 replications)

n=100 n=200 n=400

α .01 .05 .10 .01 .05 .10 .01 .05 .10
φ ψ β = (1, 1)′

-.8 -.5 .019 .041 .066 .009 .029 .069 .008 .052 .097
-.5 -.5 .008 .036 .066 .010 .033 .079 .013 .037 .090
.0 -.5 .009 .037 .078 .006 .040 .085 .009 .030 .072
.8 -.5 .015 .051 .105 .009 .041 .080 .012 .036 .079
-.8 .5 .007 .035 .067 .009 .033 .072 .007 .043 .084
.0 .5 .006 .031 .068 .010 .043 .087 .007 .037 .084
.5 .5 .002 .030 .071 .008 .046 .085 .012 .047 .093
.8 .5 .013 .049 .100 .015 .044 .092 .013 .056 .097

β = (φ̂n, ψ̂n)′

-.8 -.5 .014 .053 .093 .015 .051 .096 .006 .040 .090
-.5 -.5 .008 .029 .065 .007 .041 .086 .009 .043 .071
.0 -.5 .002 .015 .046 .007 .038 .082 .010 .032 .062
.8 -.5 .007 .029 .072 .009 .031 .060 .007 .028 .068
-.8 .5 .011 .038 .065 .005 .033 .067 .005 .038 .070
.0 .5 .008 .030 .072 .007 .033 .074 .008 .032 .081
.5 .5 .005 .035 .070 .009 .036 .079 .012 .034 .086
.8 .5 .011 .049 .097 .014 .053 .092 .018 .057 .098

We take θ = 0.1, 0.2, 0.3, 0.4 and 0.5 and compare the power of Sa
n with Qn(m) and

Q2
n(m) at level 0.05 when n = 100, 200 and 400. The results are reported in Table 2

when m = 6 and β = (1, 1)′, and in Table 3 when m = 12 and β = (φ̂n, ψ̂n)′. When

m = 6, their sizes ( i.e. the case with θ = 0.0) in Table 2 show that, like the Sa
n

test, there is apparently some evidence of conservatism for the Li-Mak test. When

m = 12, the sizes ( i.e. the case with θ = 0.0) in Table 3 show that Ljunge-Box

test tends to over-reject when n = 100 and 200, which is because its distribution

is not approximated well by the χ2−distribution when n − m is small. When the

alternative is the threshold ARMA model, Tables 2-3 show that the power of Sa
n

increases when the sample size n or θ increases, while both Qn(m) and Q2
n(m) have

much less, and in some cases almost no, power. When the alternative is the bilinear

ARMA model, we have a similar conclusion for Qn(m), but Q2
n(m) performs much

13



TABLE 2

Powers of Sa
n, Qn(m) and Q2

n(m) for Null
Hypothesis H0: ARMA(1,1)

Model at Significance Level 0.05
[β = (1, 1)′ and 1000 replications]

θ .0 .1 .2 .3 .4 .5

H1: TARMA Model

Sa
n .026 .081 .146 .419 .681 .884

n = 100 Qn(6) .053 .051 .056 .070 .082 .102
Q2

n(6) .027 .028 .027 .024 .029 .038

Sa
n .035 .118 .403 .780 .985 .997

n = 200 Qn(6) .066 .061 .077 .091 .118 .159
Q2

n(6) .035 .044 .052 .061 .090 .128

Sa
n .035 .180 .704 .980 1.000 1.000

n = 400 Qn(6) .052 .057 .064 .095 .186 .324
Q2

n(6) .034 .033 .036 .067 .120 .189

H1: BL Model

Sa
n .052 .114 .203 .263 .289

n = 100 Qn(6) .053 .051 .045 .064 .081
Q2

n(6) .030 .051 .104 .163 .229

Sa
n .073 .228 .406 .455 .440

n = 200 Qn(6) .072 .067 .069 .081 .098
Q2

n(6) .041 .096 .206 .313 .408

Sa
n .165 .495 .738 .721 .634

n = 400 Qn(6) .044 .044 .045 .053 .095
Q2

n(6) .044 .161 .393 .593 .626

better than Qn(m) although not nearly as well as Sa
n. The power of Sa

n is higher

when β = (1, 1)′ than when β = (φ̂n, ψ̂n)′ for the TARMA model, but it shows little

difference for the BL model. For the BL model, there is also evidence to suggest that

the power of Sa
n is affected adversely as θ approaches the boundary of invertibility,

which is approximately 0.6. It seems that our test is more powerful against the

TARMA alternative than against the BL alternative. This is consistent with the

interpretation of the test given in §2 by reference to an L-M test.

We next study the size and the power of Sa
n when the null hypothesis is the

GARCH(1,1) model, yt = ηt

√
ht and ht = α0 + α1y

2
t−1 + β1ht−1, where ηt is i.i.d.

14



TABLE 3

Powers of Sa
n, Qn(m) and Q2

n(m) for Null
Hypothesis H0: ARMA(1,1)

Model at Significance Level 0.05
[β = (φ̂n, ψ̂n)′ and 1000 replications]

θ .0 .1 .2 .3 .4 .5

H1: TARMA Model

Sa
n .030 .061 .170 .304 .416 .438

n = 100 Qn(12) .121 .110 .123 .135 .164 .209
Q2

n(12) .030 .032 .029 .029 .028 .030

Sa
n .046 .112 .362 .674 .878 .709

n = 200 Qn(12) .090 .094 .098 .139 .205 .314
Q2

n(12) .044 .039 .037 .051 .052 .067

Sa
n .047 .211 .674 .952 .970 930

n = 400 Qn(12) .062 .065 .088 .165 .336 .577
Q2

n(12) .057 .052 .051 .055 .071 .108

H1: BL Model

Sa
n .035 .098 .210 .206 .234

n = 100 Qn(12) .053 .051 .045 .064 .081
Q2

n(12) .039 .058 .091 .128 .175

Sa
n .083 .272 .455 .463 .480

n = 200 Qn(12) .086 .091 .097 .097 .101
Q2

n(12) .058 .086 .167 .237 .288

Sa
n .189 .582 .747 .826 .721

n = 400 Qn(12) .057 .062 .058 .062 .095
Q2

n(12) .069 .121 .246 .359 .419

N(0, 1). For the size, the true parameters are taken to be α0 = 0.1 and (α1, β1) =

(0.3, 0.4), (0.3,0.5), (0.3,0.6), (0.2,0.7), (0.1,0.8), (0.3,0.7), (0.2,0.8), and (0.1,0.9).

β = (1, 1, 1)′ and (α̂0n, α̂1n, β̂1n)′. The sample sizes are n =100, 200 and 400. Ta-

ble 4 summarizes the results when the significance level α is 0.01, 0.05 and 0.1,

respectively. It shows that the sizes of Sa
n are fairly close to their nominal values,

although there is some evidence of over-rejection when α = 0.01 and conservatism

when α = 0.10.

The power of of Sa
n is studied via two alternatives:

TGARCH
√

ht = 0.1 + 0.3|yt−1|+ 0.4
√

ht−1 + θ|yt−1|I{yt−1 ≤ 0},

15



TABLE 4

Sizes of Sa
n for Null Hypothesis H0:

GARCH(1,1) model
at Significance Level α(1000 replications)

n=100 n=200 n=400

α .01 .05 .10 .01 .05 .10 .01 .05 .10
α1 β1 β = (1, 1, 1)′

.3 .4 .016 .031 .055 .005 .027 .056 .008 .035 .063

.3 .5 .007 .027 .051 .007 .025 .057 .007 .034 .064

.3 .6 .008 .029 .056 .009 .032 .062 .008 .033 .063

.2 .7 .009 .032 .058 .010 .036 .069 .008 .037 .069

.1 .8 .011 .041 .070 .011 .034 .071 .007 .037 .069

.3 .7 .010 .036 .068 .008 .038 .070 .011 .038 .073

.2 .8 .010 .042 .069 .008 .035 .068 .010 .037 .078

.1 .9 .015 .055 .090 .016 .043 .084 .012 .048 .092
β = (α̂0n, α̂n, β̂n)′

.3 .4 .004 .027 .049 .005 .027 .056 .005 .027 .053

.3 .5 .007 .027 .051 .007 .025 .057 .005 .029 .052

.3 .6 .008 .029 .056 .009 .032 .062 .008 .033 .063

.2 .7 .009 .032 .058 .010 .036 .069 .008 .037 .069

.1 .8 .011 .041 .070 .011 .034 .071 .007 .037 .069

.3 .7 .010 .036 .068 .008 .038 .070 .011 .038 .073

.2 .8 .008 .035 .068 .008 .035 .068 .010 .037 .078

.1 .9 .015 .055 .090 .016 .043 .084 .012 .048 .092

NAGARCH h
3/4
t = 0.1 + 0.3 |(θ − sgn(ηt))yt|3/2 + 0.4h

3/4
t−1.

The first model is a threshold GARCH that is a special case of models proposed by

Taylor (1986) and Schwert (1989). The second is a nonlinear asymmetric GARCH

model proposed by Engle and Ng (1993). We take θ = 0.4, 0.6, 0.8, 1.0 and 1.2. The

sample sizes are n = 100, 200 and 400. Again, we compare the power of Sa
n with

those of Qn(m) and Q2
n(m). The sizes of Qn(6) and Q2

n(6) are very close to their

corresponding nominal values; see Li and Mak (1994) and Wong and Ling (2005)

for simulation evidence. The results reported in Table 5 are for the significance

level 0.05 when β = (1, 1)′. In all cases, Sa
n is more powerful than Qn(6) and

Q2
n(6). In particular, when the alternative is the NAGARCH model, Sa

n can reject

GARCH with power reaching 50 percent, while both Qn(6) and Q2
n(6) have virtually

no power. Again it seems that our test is more powerful against the TGARCH
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TABLE 5

Powers of Sa
n, Qn(m) and Q2

n(m) for Null
Hypothesis H0: GARCH(1,1)

Model at Significance Level 0.05
[β = (1, 1)′ and 1000 replications]

θ .4 .6 .8 1.0 1.2

H1: TGARCH Model

Sa
n .310 .543 .614 .618 .670

n = 100 Qn(6) .153 .156 .176 .286 .457
Q2

n(6) .072 .083 .069 .108 .177

Sa
n .478 .845 .766 .666 .751

n = 200 Qn(6) .138 .167 .196 .273 .502
Q2

n(6) .085 .066 .070 .138 .286

Sa
n .680 .978 .896 .737 .834

n = 400 Qn(6) .125 .132 .146 .230 .512
Q2

n(6) .145 .117 .080 .157 .479

H1: NAGARCH Model

Sa
n .099 .143 .217 .322 .457

n = 100 Qn(6) .075 .082 .091 .103 .115
Q2

n(6) .030 .040 .046 .050 .052

Sa
n .116 .173 .283 .454 .649

n = 200 Qn(6) .074 .079 .087 .100 .109
Q2

n(6) .040 .040 .046 .060 .062

Sa
n .127 .214 .393 .630 .863

n = 400 Qn(6) .051 .055 .063 .068 .072
Q2

n(6) .034 .044 .053 .065 .073

alternative than against the NAGARCH alternative. Similar conclusions hold when

β = (α̂0n, α̂1n, β̂1n)′ and m = 12. Details are available from the authors.

We also carried out some experiments when β = (1, δ) with δ =0, ±0.2, ±0.4,

±0.6 and ±0.8 for the null ARMA(1,1) model. The sizes are relatively stable. But,

for the alternative TARMA(1,1) model, Sa
n is less powerful than when β = (1, 1),

and is more powerful when |δ| > 0.4 and less powerful when |δ| ≤ 0.4 than when

β = (φ̂n, ψ̂n)′. We carried out some experiments by taking a as the 10%-quantile of

data {y1, · · · , yn} when the null is the GARCH (1,1) model. Compared with those

in Table 4, the sizes of Sa
n are closer to their nominal levels when the level is 0.01
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and 0.05, and are more conservative when the level is 0.1. In each case, the power

is higher than in Table 5. For example, when n = 400 and the alternative is the

NAGARCH model, the powers of Sa
n with β = (1, 1, 1)′ are 0.121, 0.940, 0.334, 0.533

and 0.776, respectively, for θ at 0.4, 0.6, 0.8, 1.0, and 1.2.

We now compare our test with that of Koul and Stute (1999). Since the

test in Koul and Stute (1999) has not been extended to cover the ARMA model

or the GARCH model in the literature, we only consider the null AR(1), yt =

φyt−1 + εt, where εt is i.i.d. N(0, 1). In this case, their test statistic is KSn ≡
maxx≤x0 |Vn(x)|/[σnGn(x0)], where Gn(x0) =

∑n
t=1 I{yt−1 ≤ x0}/n, σ2

n =
∑n

t=1 ε2
t (φ̂n)/n,

and

Vn(x) =
1√
n

n∑

i=1


I{yi−1 ≤ x} − 1

n

n∑

j=1

yj−1yi−1I{yj−1 ≤ yi−1 ∧ x})
n−1

∑n
k=1 y2

k−1I{yk−1 ≥ yj−1}


 εt(φ̂n),

where εt(φ̂n) = yt − φ̂nyt−1 and φ̂n is the LSE of φ. We take x0 to be the 95%th

quantile of data set {y1, · · · , yn}. In the simulation, φ = 0.5 and sample size n = 100,

200, and 400. Alternatives are TAR and bilinear (BL) models:

TAR Model yt = 0.5yt−1 − θyt−1I{yt−1 ≤ 0}+ εt,

BL Model yt = 0.5yt−1 − θyt−2εt−1 + εt.

Table 6 reports the sizes (i.e. case with θ = 0.0) and powers. It can be seen that

both tests have little power when (i) θ ≤ 0.2 and n = 100; (ii) θ = 0.1 and n = 200.

Except for these cases, the Sa
n test is uniformly more powerful than the KSn test.

In addition, it only needs n iterations to compute the Tn(x, θ̂) in the Sa
n test, while

it needs n3 iterations to compute the Vn(x) in the KSn test. For each cell in Table

6 when n = 200, the Sa
n test takes 15 seconds, while the KSn test takes 3 hours and

40 minutes (running on a Pentium IV at HKUST).

Finally, we compare our test with the generalized likelihood-based test with bias

reduction proposed by Fan and Zhang (2004). We first use the null and alternative

models exactly as in Example 1 of Fan and Zhang (2004). Specifically, the null
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TABLE 6

Sizes and Powers of Sa
n and KSn for Null

Hypothesis H0: AR(1)
Model at Significance Level 0.05

[β = 1 and 1000 replications]
θ .0 .1 .2 .3 .4 .5

H1: TAR Model

Sa
n .042 .061 .109 .171 .266 .392

n = 100 KSn .046 .055 .073 .113 .168 .248

Sa
n .044 .092 .184 .350 .546 .747

n = 200 KSn .054 .088 .158 .281 .472 .630

Sa
n .038 .106 .306 .618 .855 .960

n = 400 KSn .056 .098 .272 .587 .820 .947

H1: BL Model

Sa
n .032 .060 .111 .146 .158

n = 100 KSn .062 .085 .109 .113 .119

Sa
n .068 .179 .317 .423 .473

n = 200 KSn .078 .114 .134 .149 .155

Sa
n .119 .404 .667 .808 .840

n = 400 KSn .081 .129 .177 .206 .251

model is an AR(3) model given by model (4.1) with β = 0. The alternative model

is

yt = {θ1(1− β) + βν(yt−3)}yt−1 + θ2yt−2 + θ3yt−3 + εt,(4.1)

where ν(x) = 0.95I{−.5 ≤ x < 0} − 1.8xI{0 ≤ x ≤ 5}, {εt} are independently and

identically distributed N(0, 1) random variables, and β is a given parameter. The

true values of the θ-parameters are θ1 = 0.8, θ2 = −0.56, and θ3 = 0.6. For each

fixed β, we simulate a time series of length n = 500 and use 1000 replications for

different choices of β. Figure 1 shows the power functions of our test (LT) and the

Fan-Zhang test (FZ) when the significance level is 0.05. When β = 0, the power

becomes the size of the test.

From Figure 1, we can see that our test is more powerful than the Fan and Zhang

test when 0 < β ≤ 0.8 ( roughly), but is less powerful when 0.8 < β ≤ 1. Because it
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Figure 1: The power functions of our test (LT) and the Fan-Zhang test (FZ) at the 5% significance
level, based on 1000 simulations and for different choices of β for model (4.1).
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is not known whether model (4.1) is stationary or not and there is empirical evidence

to suggest that it may not be stationary when β > 0.8, we repeated the simulation

study with the following model, which we know is stationary. (Tong (1990), p. 464).

It is a two-regime TAR(3) model:

yt = [0.5I{yt−1 ≤ 0}+ (0.5− β)I{yt−1 > 0}]yt−1 − 0.3yt−2 − 0.1yt−3 + εt,(4.2)

where β ∈ [0, 1]. Figure 2 shows the power functions of LT and FZ when the

significance level is 0.05. Again, the power becomes the size of the test when β = 0.

We are puzzled by the very low power of the Fan-Zhang test in this case but can

offer no explanation.

5 THE HANG SENG INDEX

We used the Sa
n tests to investigate the Hang Seng Index (HSI) for the Hong

Kong stock market. Each period of two years from 01/06/1988-31/05/1996 was

considered. The model we used to fit the data was the AR-GARCH model

yt = φyt−1 + εt,(5.3)

εt = ηt

√
ht and ht = α0 + fε2

t−i + ght−i.(5.4)

The results are summarized in Table 7. In this table, the values in the parenthesis

are the corresponding asymptotic standard deviations of the estimated parameters

and LF is the value of log-likelihood function. As in Section 4, Qn(6) and Q2
n(6)

are the Ljung-Box test and Li-Mak test, respectively. Both tests suggest that this

model fits the data adequately. We used the statistic Sa
n with β = (1, · · · , 1)′ and a

being the 5p%-quantile of data {y1, · · · , yn} to test the null model (5.1)-(5.2). The

Sa
n test rejects the null model for all the four periods at the 0.05-significance level.

We should mention that the same model and data set were used for testing the

normality of ηt in Koul and Ling (2006). It is interesting to see if a DAR model,

yt = φyt−1 + ηt

√
ω + αy2

t−1, is adequate for these periods. It turns out that the
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Figure 2: The power functions of our test (LT) and the Fan-Zhang test (FZ) at the 5% significance
level, based on 1000 simulations and for different choices of β for model (4.2).
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values of Sa
n were 0.54, 1.77, 10.55, and 6.33, respectively. Thus, our test suggests

that the fitted DAR(1) is adequate at the 0.05 level for the first two periods but not

for the last two periods.

TABLE 7

Empirical Results for Hong Seng Index Fitted
AR(1)- GARCH(1,1) Models

Periods n φ α0 f g LF Qn(6) Q2
n(6) Sa

n

1/6/88−31/5/90 493 .242 .083 .223 .772 -117.9 6.38 0.61 26.92
(.055) (.027) (.048) (.031)

1/6/90−31/5/92 495 .186 .526 .203 .442 -131.7 2.97 0.92 7.61
(.056) (.162) (.070) (.145)

1/6/92−31/5/94 498 .117 .322 .242 .664 25.5 7.09 3.05 25.63
(.050) (.108) (.057) (.068)

1/6/94−31/5/96 497 .128 .053 .069 .900 -95.6 7.30 0.65 36.13
(.048) (.029) (.025) (.034)

6 CONCLUSIONS

This paper has developed a general approach to goodness-of-fit tests that are easy

to construct for a wide variety of time series models, ranging from the linear model

to the nonlinear model, and from the constant variance model to the ARCH-type

model. The critical values of the test statistics are available without the need to

bootstrap. To illustrate the versatility of our general approach, we have detailed the

construction for four specific models. Simulation results suggest that our test works

well compared with classical portmanteau tests such as the Ljung-Box test and the

Li-Mak test, and the recent Koul-Stute test (when comparison is possible) and Fan-

Zhang test. We have demonstrated the efficacy of our approach in an application

to the Hang Seng Index.

Size distortion is a fairly common problem among goodness-of-fit tests in time

series; ours is no exception. In the event of several competing tests each with size
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distortion, there seems to be some general agreement that in practice a conservative

test is preferred to one that over-rejects. (See, e.g., Kheoh and McLeod, (1992)).

As suggested in Li (2004, p. 11), this is particularly the case when their power is

comparable. For our approach, it is worthwhile to investigate whether the distortion

is due to a in (2.3) when the sample size is not large enough. Another challenging

open problem is the optimal choice of β. Of course, it is not inconceivable that

the problem might turn out to be as intractable as the number of lags used in, for

example, the Ljung-Box test or the Li-Mak test.
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A Appendix: Proofs of Lemma 3.1 and Theorem

3.3

Proof. (a). Note that E‖Dt(θ0)‖2 < ∞ and E‖Pt(θ0)‖ < ∞. We have

max
1≤t≤n

‖Dt(θ0)‖ = op(n
1/2) and max

1≤t≤n
‖Pt(θ0)‖ = op(n),

see e.g. Chung (1968, p.93). By Assumption 3.3, we have

∥∥∥Dt(θ̂n)D′
t(θ̂n)−Dt(θ0)D

′
t(θ0)

∥∥∥

≤
∥∥∥Dt(θ̂n)−Dt(θ0)

∥∥∥
2
+ 2‖D′

t(θ0)‖
∥∥∥Dt(θ̂n)−Dt(θ0)

∥∥∥

= Op(
1

n
)
∥∥∥Pt(θ̂

∗
n)

∥∥∥
2
+ Op(

1√
n

)‖Dt(θ0)‖
∥∥∥Pt(θ̂

∗
n)

∥∥∥

= Op(
1

n
)
∥∥∥Pt(θ̂

∗
n)− Pt(θ0)

∥∥∥
2
+ op(1)

∥∥∥Pt(θ̂
∗
n)− Pt(θ0)

∥∥∥ + op(n),(A. 1)
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where Op(·) and op(·) hold uniformly in t = 1, · · · , n, and θ̂∗n lies between θ̂n and θ0.

Note that
√

n(θ̂∗n − θ0) = Op(1). For any ε > 0, there exists a constant C such that

P (‖√n(θ̂∗n − θ0)‖ > C) ≤ ε

2
.

By Assumption 3.2 again, we have

P

(
1

n2

n∑

t=1

∥∥∥Pt(θ̂
∗
n)− Pt(θ0)

∥∥∥
2 ≥ ε

)

≤ P




[
1

n
sup√

n‖θ−θ0‖≤C

n∑

t=1

∥∥∥Pt(θ̂
∗
n)− Pt(θ0)

∥∥∥
]2

> ε


 +

ε

2
≤ ε,(A. 2)

as n is large enough. Similarly, we have

P

(
1

n

n∑

t=1

∥∥∥Pt(θ̂
∗
n)− Pt(θ0)

∥∥∥ ≥ ε

)
≤ ε.(A. 3)

By (A.1)-(A.3), we can show that

1

n

n∑

t=1

∥∥∥Dt(θ̂n)D′
t(θ̂n)−Dt(θ0)D

′
t(θ0)

∥∥∥ = op(1).

Using this equality, we have

sup
x∈R∪{∞}

‖Σ̂nx − Σx‖ ≤ 1

n
sup

x∈R∪{∞}

∥∥∥∆n(x)
∥∥∥ + op(1),(A. 4)

where ∆n(x) =
∑n

t=1 Dt(θ0)D
′
t(θ0)I{yt−1 ≤ x} − Σx. By the Ergodic Theorem, for

each fixed x, ∆n(x) = o(1) and ∆n(∞) = o(1), a.s.. Thus, for any ε > 0, there

exists a constant M such that

sup
x≤−M

‖∆n(x)‖ ≤ 1

n

n∑

t=1

‖Dt(θ0‖2I{yt−1 ≤ −M}+ ‖Σ−M‖ ≤ ε

2
.(A. 5)

Furthermore, by the Ergodic Theorem, for a large M we have

sup
x≥M

‖∆n(x)‖ ≤ sup
x≥M

‖∆n(∞)−∆n(x)‖+ o(1)

≤ 1

n

n∑

t=1

‖Dt(θ0‖2I{yt−1 ≥ M}+ E[‖Dt(θ0‖2I{yt−1 ≥ M}]

≤ o(1) +
ε

2
,(A. 6)
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as n →∞. Using a standard piece-wised argument, we can show that sup|x|≤M ‖∆n(x)‖ =

op(1). Furthermore, by (A.4)-(A.6), we can claim that (a) holds. (b) comes directly

from Assumptions 2.1 and 3.2 and (a) of this lemma. This completes the proof.

Proof of Theorem 3.3. Let P0n denote the joint distribution of (y1, · · · , yn)

under H0 and P1n that under H1n. Let the log-likelihood ratio of P1n to P0n be

denoted by Λn. Then

Λn = −1

2

n∑

t=1

[
log hnt − log ht(θ0)− ε2

nt

hnt

+
(yt − µt(θ0))

2

ht(θ0)

]
,

where εnt = yt − µt(θ0) − r1t/
√

n and hnt = ht(θ0) + r2t/
√

n. Using Le Cam’s third

lemma in Van der Vaart and Wellner (1996) and either Theorem 2.1 in Ling and McAleer

(2003) or by a direct method, we can show that (a) holds. Part (b) follows directly

from (a). This completes the proof. ¦
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